
A Structure Preserving Database Encryption Scheme

Yuval Elovici1, Ronen Waisenberg1, Erez Shmueli1, Ehud Gudes2

1 Ben-Gurion University of the Negev, Faculty of Engineering, Department of Information
Systems Engineering, Postfach 653,

84105 Beer-Sheva, Israel
{elovici, ronenwai, erezshmu}@bgu.ac.il

2 Ben-Gurion University of the Negev, Department of Computer Science, Postfach 653,

84105 Beer-Sheva, Israel
ehud@cs.bgu.ac.il

Abstract. A new simple and efficient database encryption scheme is pre-
sented. The new scheme enables encrypting the entire content of the database
without changing its structure. In addition, the scheme suggests how to convert
the conventional database index to a secure index on the encrypted database so
that the time complexity of all queries is maintained. No one with access to the
encrypted database can learn anything about its content without having the en-
cryption key.

1 Introduction

Database is an integral part of almost every information system. According to [1] the
key features that databases propose are shared access, minimal redundancy, data con-
sistency, data integrity and controlled access.

The case where databases hold critical and sensitive information is not rare, there-
fore an adequate level of protection to database content has to be provided. Database
security methods can be divided into four layers [2]: physical security [3], operating
system security [4, 5, 6], DBMS security [7, 8, 9] and data encryption [10, 11, 12].
The first three layers alone are not sufficient to guarantee the security of the database
since the database data is kept in a readable form [13]. Anyone having access to the
database including the DBA (Database Administrator), is capable of reading the data.
In addition, the data is backed up frequently so access to the backed up data also
needs to be controlled [14]. Moreover, a distributed database system makes it harder
to control the disclosure of the data.

Database encryption introduces an additional security layer to the first three layers
mentioned above. It conceals the readable form of sensitive information even if the
database is compromised. Thus, anyone who manages to bypass the conventional
database security layers (e.g., an intruder) or a DBA, is unable to read the sensitive
information without the encryption key. Furthermore, encryption can be used to main-
tain data integrity so that any unauthorized changes of the data can easily be detected.

Database encryption can be implemented at different levels [14]: tables, columns,
rows and cells. Encrypting the whole table, column or row entails the decryption of
the whole table, column or row respectively when a query is executed. Therefore, an
implementation which decrypts only the data of interest is preferred.

The database encryption scheme presented in [13] is based on the Chinese-
Reminder theorem where each row is encrypted using different sub-keys for different
cells. This scheme enables encryption at the level of rows and decryption at the level
of cells. The database encryption scheme presented in [14] extends the encryption
scheme presented in [13] by supporting multilayer access control. It classifies subjects
and objects into distinct security classes. The security classes are ordered in a hierar-
chy such that an object with a particular security class can be accessed only by sub-
jects in the same or a higher security class. In this scheme, each row is encrypted with
sub-keys according to the security class of its cells. One disadvantage of both schemes
is that the basic element in the database is a row and not a cell, thus the structure of
the database needs to be changed. In addition, both schemes require re-encrypting the
whole row when a cell value is modified.

The conventional way to provide an efficient execution of database queries is by
using indexes, but indexes in an encrypted database raise the question of how to con-
struct the index so that no information about the database content is revealed [15, 16].

The indexing scheme provided in [17] is based on encrypting the whole row and
assigning a set identifier to each value in this row. When searching a specific value its
set identifier is calculated and then passed to the server which in turn returns to the
client a collection of all rows with values assigned to the same set. Finally, the client
searches the specific value in the returned collection and retrieves the desired rows.
However, in this scheme, equal values are always assigned to the same set, thus some
information is revealed when applying statistical attacks.

The indexing scheme provided in [18] is based on constructing the index on the
plaintext values and encrypting each page of the index separately. Whenever a specific
page of the index is needed for processing a query, it is loaded into memory and de-
crypted. Since the uniform encryption of all pages is likely to provide many cipher
breaking clues, the indexing scheme provided in [19] suggests encrypting each index
page using a different key depending on the page number. However, these schemes
being implemented at the level of the operating system are not satisfactory.

Assuming the index is implemented as a B+-Tree, encrypting each of its fields
separately would reveal the ordering relationship between the ciphertext values. The
indexing scheme provided in [15] suggests encrypting each node of the B+-Tree as a
whole. However, since references between the B+-Tree nodes are encrypted together
with the index values, the index structure is concealed.

In order to overcome the shortcomings of existing database encryption schemes, a
new simple and efficient scheme for database encryption is proposed which suggests
how to encrypt the entire content of the database without changing its structure. This
property allows the DBA to continue managing the database without being able to
view or manipulate the database content. Moreover, anyone gaining access to the
database can learn nothing about its content without the encryption key. The new
scheme suggests how to construct a secure index on the encrypted database so that the

time complexity of all queries is maintained. Since the database structure remains the
same no changes are imposed on the queries.

The remainder of the paper is structured as follows: in section 2 the desired proper-
ties of a database encryption scheme are outlined; in section 3 the new database en-
cryption scheme is illustrated; in section 4 the desired properties of a secure indexing
scheme are described; in section 5 a new indexing scheme for the encrypted database
is proposed; in section 6 performance and implementation issues are discussed, and
section 7 presents our conclusions.

2 The Desired Properties of a Database Encryption Scheme

According to [13], a database encryption scheme should meet the following require-
ments:
1) The encryption scheme should either be theoretically or computationally secure

(require a high work factor to break it).
2) Encryption and decryption should be fast enough so as not to degrade system per-

formance.
3) The encrypted data should not have a significantly greater volume than the unen-

crypted data.
4) Decryption of a record should not depend on other records.
5) Encrypting different columns under different keys should be possible.
6) The encryption scheme should protect against patterns matching and substitution

of encrypted values attacks.
7) Modifying data by an unauthorized user should be noticed at decryption time.
8) Recovering information from partial records (records where some cells have null

values) should be the same as from full records.
9) The security mechanism should be flexible and not entail any change in the struc-

ture of the database.

A naïve approach for database encryption is to encrypt each cell separately but this
approach has several drawbacks. First, two equal plaintext values are encrypted to
equal ciphertext values.

)()(
2121 VEVEVV kk

����� (1)

Therefore, it is possible, for example, to collect statistical information as to how many
different values a specified column currently has, and what are their frequencies. The
same holds for the ability to execute a join operation between two tables and collect
information from the results. Second, it is possible to switch unnoticed between two
ciphertext values. Different ciphertext values for equal plaintext values can be
achieved using a polyalphabetic cipher (e.g. Vernam). However, in this solution de-
cryption of a record depends on other records and thus requirement 4 is violated.

In the next section a new database encryption scheme complying with all the above
requirements is presented.

3 A New Database Encryption Scheme

The position of a cell in the database is unique and can be identified using the triplet
that includes its Table ID, Row ID, and Column ID. We will refer to this triplet as the
cell coordinates.

We suggest a new database encryption scheme where each database value is en-
crypted with its unique cell coordinates. These coordinates are used in order to break
the correlation between ciphertext and plaintext values in an encrypted database. The
new scheme has two immediate advantages. First, it eliminates substitution attacks
attempting to switch encrypted values. Second, patterns matching attacks attempting
to gather statistics based on the database encrypted values would fail.

Fig. 1. Database encryption using two approaches.

Figure 1 illustrates database encryption using two approaches. Figure 1a describes a
database table (T) with one data column (C). Figure 1b describes encryption of table T
using the naïve approach. Figure 1c describes encryption of table T using the new
approach where each cell is encrypted with its cell coordinates. It is easy to see that
equal plaintext values in figure 1a are encrypted to different ciphertext values in figure
1c as opposed to the ciphertext values in figure 1b.

b) Encryption of
Table T Using the
Naive Approach

Row C
0 #$
1]{
2 &*
3 #$
4 #$
5 ^%
6 &*
7 0-
8 +=
9 @!

c) Encryption of
Table T Using the

New Scheme

Row C
0 !#
1 :]
2 &*
3 "/
4 ~?
5 |^
6 >\
7 @=
8){
9 -+

a) Table T before
Encryption

Row C
0 16
1 85
2 37
3 16
4 16
5 92
6 37
7 50
8 24
9 86

3.1 Encryption/Decryption in the New Scheme

Let us define:

trcV - A plaintext value located in table t , row r and column c .

NNNN ���)(:� - a function that generates a number based on the database
coordinates.

kEnc - A function which encrypts a plaintext value with its coordinates.

)),,(()(crtVEVEnc trcktrck ��� (2)

Where k is the encryption key and kE is a symmetric encryption function (e.g. DES,

AES).

trcX - A ciphertext value located in table t, row r and column c.

)(X trc trck VEnc� (3)

kDec - A function which decrypts a ciphertext value (trcX) and discards its coordi-

nates.

trctrcKtrck VCRTXDXDec ���),,()()(� (4)

Where k is the decryption key and kD is a symmetric decryption function.

3.2 Data Integrity

Encryption ensures that a user not possessing the encryption key cannot modify a
ciphertext value and predict the change in the plaintext value. Usually the range of
valid plaintext values is significantly smaller than the whole range of possible plain-
text values. Thus, the probability that an unauthorized change to a ciphertext value
would result in a valid plaintext value is negligible. Therefore, unauthorized changes
to ciphertext values are likely to be noticed at decryption time.

Substitution attacks as opposed to patterns matching attacks can not be prevented
simply by using encryption. In the new scheme, each value is encrypted with its
unique cell coordinates. Therefore, trying to decrypt a value with different cell coor-
dinates (e.g. as a result of a substitution attack) would probably result in an invalid
plaintext value.

If the range of valid plaintext values is not significantly smaller than the whole pos-
sible range, or invalid plaintext values cannot be distinguished from valid plaintext
values, encryption has to be carried out as follows:

)),,(||()(crtVEVEnc trcktrcK �� (5)

Since),,(crt� is concatenated to the plaintext value before encryption, attempt-
ing to change the ciphertext value or trying to switch two ciphertext values would
result in a corrupted),,(crt� 1 after decryption. Obviously, concatenating

),,(crt� results in data expansion.

3.3 Scheme Analysis

The new database encryption scheme satisfies the requirements mentioned in section
2:
1) The scheme security relies on the security of the encryption algorithm used. In

order to reveal some database value it has to be decrypted using the correct key.
2) Encryption and decryption are fast operations and are mandatory in any database

encryption scheme. The proposed implementation adds the overhead of a Xor op-
eration and � computation which are negligible compared to encryption.

3) Using encryption algorithms such as DES or AES which are based on encrypting
blocks of data results in value expansion (in many cases this expansion is negligi-
ble).

4) The basic element of reference is a database cell. Operations on a cell do not
depend on or have any effect on other cells.

5) The proposed scheme facilitates subschema implementation. Since each cell is
encrypted separately, each column can be encrypted under a different key2.

6) The new scheme prevents patterns matching attacks since there is no correlation
between a plaintext value and a ciphertext value (achieved by using encryption)
and there is no correlation between ciphertext values (achieved by using � be-
fore encryption). Substitution attacks are also prevented as discussed in section
3.2.

7) Unauthorized manipulation on the encrypted data without the encryption key
would be noticed at decryption time. (see section 3.2)

8) As the basic element of reference is a database cell, it is possible to recover in-
formation from partially completed records (records with null values) in the same
way as it is recovered from full records.

9) The new scheme complies with the structure preserving requirements as the basic
element of reference is a database cell.

4 The Desired Properties of a Secure Indexing Scheme

An index is a data structure supporting efficient access to data and indexes are fre-
quently used in databases. Most commercial databases even create a default index on
the primary-key columns. Most databases implement indexes using a B+-Tree which

1 � implementation is discussed in section 6.2.
2 Key management is discussed in section 6.3.

is a data structure maintaining an ordered set of values and supporting efficient opera-
tions on this set such as search, insert, update and delete.

Fig. 2. An example of a database index.

Figure 2 illustrates a database index which is constructed on column C in table T and
is implemented as a B+-Tree. A graphical representation of the B+-Tree is given in
figure 2a; a table representation of the B+-Tree is given in figure 2b and table T is
given in figure 2c. Figure 2b sharpens the separation between the index structure and
its data.

A secure index in an encrypted database has to comply with the following require-
ments:
1) No information about the database plaintext values can be learned from the index.
2) The secure index should not reduce the efficiency of data access.
3) The secure index should not reduce the efficiency of insert, update and delete

operations.
4) The secure index should not have a significantly greater volume than an ordinary

index.
5) The secure index structure should not differ from a standard index. In this way, a

DBA can manage the index without the encryption key.

A trivial approach which constructs an index over the plaintext values would re-

duce security since the plaintext values are exposed. Another approach would con-

a) An Index Constructed on
Column C in Table T

b) Table Representation of
the Index

ID Struct. Data
0 1,2 5000
1 3,4 2500
2 5,6 7500
3 4 1000, �
4 5 2500, �
5 6 5000, �
6 - 7500, �

�

c) Table T

Row C
0 5000
1 2500
2 1000
3 7500

2500

1000 2500

7500

5000 7500

5000

�

�

� �

�

�

struct the index over the database ciphertext values. In this approach, executing equal-
ity queries is possible but executing range queries is a problem. This approach would
expose the index to patterns matching attacks since equal plaintext values are en-
crypted to equal ciphertext values. Moreover, since executing range queries is a prob-
lem, Oracle does not support encrypting indexed data [20].

In the next section, a new indexing scheme which overcomes the shortcomings of
existing indexing schemes is presented.

5 A New Database Indexing Scheme

Several indexing schemes for encrypted databases were proposed [15, 18, 17, 21] that
fulfill most of the requirements described in section 4 but none preserve the index
structure. We claim that there should be a separation between data and structure. For
example, A DBA should be able to manage database indexes without the need of
decrypting its values.

We suggest a new database indexing scheme which preserves the index structure
where each index value is the result of encrypting a plaintext value in the database
concatenated with its row-id. This ensures that there is no correlation between the
index values and the database ciphertext values3. Furthermore, the index does not
reveal the statistics or order of the database values.

5.1 Index Construction in the New Scheme

In order to construct an index, a set of values and a function determining the order4 of
these values are needed.
Let us define:
C - An encrypted database column that was encrypted as defined in section 3.1.

pC - The column obtained from decrypting columnC :

CxCxDec trcptrck �����)((6)

Where kDec is the decryption function defined in section 3.1.

iC - The column obtained from encrypting values in pC concatenated with their

row-ids:

ptrcitrck CVCrVE �����)||((7)

3 If the database is encrypted as described in section 3.2, then � should not be implemented

as rcrt �),,(� since there will be a strong correlation between the index values and the
database encrypted values.

4 Some indexes require only an equality function and not an order function to be constructed.
In this case, the term "order" in this section can be replaced by the term "equality".

Where k is the encryption key, kE is an encryption function and r is the row id.

pik CC �:	 - A function which decrypts a value in iC (using key k) and dis-

cards its row-id:

|)|),(()(rxDDiscardx kk �	 (8)

Where k is the decryption key, kD is a decryption function, r is the row-id, || r is

the length of r in bits, and),(nvDiscard stands for discarding the n rightmost
bits of v .

pR - The values in pC are ordered by the relation pR :

)(,),(yxAndCyxRyx pp
����� (9)

iR - The values in iC are ordered by the relation iR :

pkkii RyxAndCyxRyx ������))(),((,),((10)

The new index will be constructed based on the values in iC , using the relation iR as

an order function.

Fig. 3. Encryption in the new scheme.

Figure 3 illustrates encryption of the table and the index which were illustrated in
figure 2 using the new schemes. Figure 3a describes the encryption of the table in the
new scheme where each cell is encrypted with its coordinates. Figure 3b describes the
encryption of the index where each index value is the result of encrypting a database
plaintext value concatenated with its row-id. It is easy to see that the table and index
structure are not changed by the encryption process.

a) Encryption of Table T in the
New Scheme

Row C

0)),0,(5000(CTEk ��

1)),1,(2500(CTEk ��

2)),2,(1000(CTEk ��

3)),3,(7500(CTEk ��

b) Encryption of the Index in
the New Scheme

ID Struct. Data
0 1,2 kE (5000 || 0)

1 3,4 kE (2500 || 1)

2 5,6 kE (7500 || 3)

3 4 kE (1000 || 2)

4 5 kE (2500 || 1)

5 6 kE (5000 || 0)

6 - kE (7500 || 3)

5.2 Executing a Query in the New Scheme

The following SQL query illustrates the retrieval of all rows in table T, which their
values in column C are greater or equal to V:

SELECT * FROM T WHERE T.C>=V (11)

The following pseudo code illustrates the retrieval of row-ids of rows which answer
the above query. The pseudo code assumes that the index is implemented as a binary
B+-Tree.

INPUT: A table T, a column C and a value V.
OUTPUT: A collection of row-ids.

X := getIndex(T, C).getRootNode();

While X is not a leaf Do
 If X.getData().getValue()<V Then
 X := X.getRightSonNode();
 Else
 X := X.getLeftSonNode();
 End If;
End While;

RESULT := � ;

While X.getData().getValue()<V Do
 X := X.getRightSiblingNode();
End While;

While X is not null Do
 RESULT := RESULT� {X.getData().getRowId()};
 X := X.getRightSiblingNode();
End While;

Return RESULT;

Each node in the index which is not a leaf has a left son node, a right son node and a
data which stores a value. Each leaf in the index has a right sibling node and a data
which stores a value and a row-id.

In the new scheme the data in each index node is an encryption of a database value
concatenated with its row-id. Thus, the functions getValue() and getRowId() need to
be given a new implementation in order to support the new indexing scheme. How-
ever, the above pseudo code stands without any change.

5.3 Index Integrity

In the new scheme, a substitution attack which attempts to substitute index values can
be carried out without being noticed at decryption time. If it is possible to maintain a
unique position for each value in the index, this kind of attack can be eliminated using

a technique similar to the one proposed in section 3 where each value is encrypted
with its unique position.

Fig. 4. Maintaining data integrity.

Figure 4 illustrates data integrity maintenance of the table and the index which were
illustrated in figure 2. Figure 4a describes data integrity maintenance of the table as
suggested in section 3.2. Figure 4b describes data integrity maintenance of the index
where each index value is concatenated to its unique position in the index (ID) and
then encrypted.

We argue that without changing the index structure and affecting its efficiency,
maintaining a unique position for each value in the index is not a trivial matter.

5.4 Scheme Analysis

The new index implementation on an ordered set of values is identical to the ordinary
index implementation. The only differences between the ordinary index and the new
one are the set of values and the order function defined on them.
The new index complies with the requirements mentioned in section 4:
1) Since the values in the index are encrypted and unique (achieved by concatenat-

ing row-id) there is no correlation between them as to the column ciphertext val-
ues, or the column plaintext values. Therefore, no information is revealed on the
database data by the new index.

2) The order function is implemented in a time complexity of)1(O since decryp-

tion and discarding bits are implemented in a time complexity of)1(O . There-
fore, data access using the proposed index is as efficient as with an ordinary in-
dex.

3) Determining the order of two values is implemented in a time complexity of
)1(O . Therefore, the delete operation is as efficient as in an ordinary index. En-

a) Maintaining Data Integrity of
Table T

Row C

0)),0,(||5000(CTEk �

1)),1,(||2500(CTEk �

2)),2,(||1000(CTEk �

3)),3,(||7500(CTEk �

b) Maintaining Data Integrity of
the Index

ID Struct. Data
0 1,2)0||5000(kE

1 3,4)1||2500(kE

2 5,6)2||7500(kE

3 4)3||)2 1000,((kE

4 5)4||)1 2500,((kE

5 6)5||)0 5000,((kE

6 -)6||)3 7500,((kE

crypting a new value is implemented in a time complexity of)1(O , thus the effi-
ciency of insert and update operations is not changed.

4) Each value in the new index is a result of encrypting a database plaintext value
concatenated with its row-id, therefore the space added for each node in the new
index is fixed. Thus, the index space complexity remains the same.

5) The new index structure remains the same and only its data is modified. Thus, any
administrative work on the index can be carried out without the need of decrypt-
ing the index values.

6 Performance and Implementation Issues

Implementing the new schemes requires careful consideration. Several performance
and implementation issues are discussed in this section.

6.1 Stable Cell Coordinates

The proposed scheme assumes that cell coordinates are stable. That is, insert, update
and delete operations do not change the coordinates of existing cells. However, if a
database reorganization process changes cell coordinates, all affected cells are to be
re-encrypted with their new coordinates and the index updated respectively.

A naïve implementation which uses the row number in the table as the row-id,
proves to be limited in this respect as row numbers are affected by insert and delete
operations. In the Oracle database, for example, cell coordinates are stable.

6.2 Implementing a Secure � Function

As defined in section 3.2, the values in the database are encrypted as follows:

)),,(||()(crtVEVEnc trcktrcK �� (12)

A secure implementation of � would generate different numbers for different coordi-
nates:

),,(),,(),,(),,(222111222111 crtcrtcrtcrt ��
���
 (13)

Unfortunately, generating a unique number for each database coordinates may result
in considerable data expansion. An alternative implementation reducing the data ex-
pansion may result in collisions. Assume that there are two cells, which� generates
two equal values for their coordinates:

)],,(),,([)],,(),,[(

|,,,,,

222111222111

222111

crtcrtcrtcrt

crtcrt

�� ��

�

(14)

It is possible to substitute the ciphertext values of these cells (
111 crtx and

222 crtx) with-

out � being corrupted at decryption time. If it is difficult to find two cells such as
those mentioned above, this kind of attack can be prevented. This can be achieved by
using a collision free hash function.

6.3 Key Management

Databases contain information of different sensitivity degrees that have to be selec-
tively shared between a large numbers of users. The proposed scheme facilitates sub-
schema implementation since each column can be encrypted with a different key.
Encrypting each column with a different key, results in a large number of keys for
each legitimate user. However, using the approach proposed in [22] can reduce the
number of keys. It is suggested in [22] how the smallest elements which can be en-
crypted using the same key according to the access control policy can be found. Thus,
the keys are generated according to the access control policy in order to keep their
number minimal. This approach can be incorporated in the proposed scheme in order
to encrypt sets of columns with the same key in accordance with the database access
control policy.

6.4 Performance

In the new scheme, all conventional algorithms remain the same since the structure of
the database remains the same. This ensures that the only overhead of the new scheme
is that of encryption and decryption operations.

7. Conclusions

In this paper, a new structure preserving scheme for database encryption has been
presented. In the new scheme, each database cell is encrypted with its unique position
and this guarantees that patterns matching and substitution attacks cannot succeed,
thus, guaranteeing information confidentiality and data integrity.

A new database indexing scheme that does not reveal any information on the data-
base plaintext values was proposed. In the new scheme index values are encrypted
with a unique number (the row-id of the database value) in order to eliminate patterns
matching attacks and any correlation between index and database values. Ensuring
index integrity is possible if an index position can be attached to each index value by
simply using a technique similar to the one used for table encryption.

The new schemes do not impose any changes on the database structure, thus ena-
bling a DBA to manage the encrypted database as any other non-encrypted database.
Furthermore, implementing the new scheme in existing applications does not entail
modifying the queries.

References

1. Date, C.J.: An Introduction to Database Systems. Vol. 1, Fifth Edition. Addison Wesley,
Massachusetts (1990)

2. Fernandez , E.B., Summers, R.C. and Wood C.: Database Security and Integrity. Addison-
Wesley, Massachusetts, (1980)

3. Coper, J.A.: Computer & Communication Security: Strategies for the 1990s. McGraw-
Hill, New York (1989)

4. Conway, R.W., Maxwell, W.L. and Morgan, H.L.: On the implementation of security
measures in information systems. Communications of the ACM 15(4) (1972) 211-220

5. Graham, G.S. and Denning, P.J.: Protection - Principles and practice. Proc. Spring Jt.
Computer Conf., Vol. 40, AFIPS 417-429, Montrale, N.J. (1972)

6. Hwang, M.S. and Yang, W.P.: A new dynamic access control scheme based on subject-
object-list. Data and Knowledge Engineering 14(1) (1994) 45-56

7. Garvey, C. and Wu, A.: ASD-Views. Proc. IEEE Symposium on Security and Privacy,
Oakland, California (1988) 85-95

8. Lunt, T.F., Denning, D.E., Schell, R.R., Heckman, M. and Shockley, W.R.: The SeaView
security model. IEEE Trans. on Software Engineering, SE-16(6) (1990) 593-607

9. Stachour, P.D. and Thuraisingham, B.: Design of LDV: A multilevel secure relational
database management system, IEEE Trans. on Knowledge and Data Engineering 2(2)
(1990) 190-209

10. National Bureau of Standards. Data Encryption Standard. FIPS, NBS (1977)
11. Rivest, R.L., Shamir, A. and Adleman, L.: A method for obtaining digital signatures and

public key cryptosystems. Communications of the ACM 21(2) (1978) 120-126
12. Smid, M.E. and Branstad, D.K.: The data encryption standard: past and future. Proc. IEEE

76(5) (1988) 550-559
13. Davida, G.I., Wells, D.L., and Kam, J.B.: A Database Encryption System with Subkeys.

ACM Trans. Database Syst. 6 (1981) 312-328
14. Min-Shiang, H. and Wei-Pang, Y.: Multilevel secure database encryption with subkeys.

Data and Knowledge Engineering 22 (1997) 117-131
15. Damiani, E., De Capitani diVimercati, S., Jajodia, S., Paraboschi, S. and Samarati, P.:

Balancing Confidentiality and Efficiency in Untrusted Relational DBMSs. CCS’03, Wash-
ington (2003) 27–31

16. Denning, D.E.: Cryptography and Data Security. Addison-Wesley, Massachusetts (1982)
17. Hacigümüs, H., Iyer, B., Li, C., and Mehrotra, S.: Executing SQL over encrypted data in

the database-service-provider model. In Proc. of the ACM SIGMOD’2002, Madison,
Wisconsin, USA (2002)

18. Iyer, B., Mehrotra, S., Mykletun, E., Tsudik, G. and Wu, Y.: A Framework for Efficient
Storage Security in RDBMS. E. Bertino et al. (Eds.): EDBT 2004, LNCS 2992 (2004)
147–164

19. Bouganim, L. and Pucheral, P.: Chip-secured data access: Confidential data on untrusted
servers. In Proc. of the 28th International Conference on Very Large Data Bases, Hong
Kong, China (2002) 131–142

20. Database Encryption in Oracle9i™. An Oracle Technical White Paper (2001)
21. Bayer, R. and Metzger, J.K.: On the Encipherment of Search Trees and Random Access

Files. ACM Trans Database Systems, Vol. 1 (1976) 37-52
22. Bertino, E. and Ferrari, E.: Secure and Selective Dissemination of XML Documents.

ACM Transactions on Information and System Security Vol. 5 No. 3 (2002) 290–331
23. Hwang, M.S. and Yang, W.P.: A two-phase encryption scheme for enhancing database

security. J. Systems and Software 31(12) (1995) 257-265

