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Abstract. A new simple and efficient database encryption scheme is pre-
sented. The new scheme enables encrypting the entire content of the database 
without changing its structure. In addition, the scheme suggests how to convert 
the conventional database index to a secure index on the encrypted database so 
that the time complexity of all queries is maintained. No one with access to the 
encrypted database can learn anything about its content without having the en-
cryption key. 

1 Introduction 

Database is an integral part of almost every information system. According to [1] the 
key features that databases propose are shared access, minimal redundancy, data con-
sistency, data integrity and controlled access.  

The case where databases hold critical and sensitive information is not rare, there-
fore an adequate level of protection to database content has to be provided. Database 
security methods can be divided into four layers [2]: physical security [3], operating 
system security [4, 5, 6], DBMS security [7, 8, 9] and data encryption [10, 11, 12]. 
The first three layers alone are not sufficient to guarantee the security of the database 
since the database data is kept in a readable form [13]. Anyone having access to the 
database including the DBA (Database Administrator), is capable of reading the data. 
In addition, the data is backed up frequently so access to the backed up data also 
needs to be controlled [14]. Moreover, a distributed database system makes it harder 
to control the disclosure of the data. 

Database encryption introduces an additional security layer to the first three layers 
mentioned above. It conceals the readable form of sensitive information even if the 
database is compromised. Thus, anyone who manages to bypass the conventional 
database security layers (e.g., an intruder) or a DBA, is unable to read the sensitive 
information without the encryption key. Furthermore, encryption can be used to main-
tain data integrity so that any unauthorized changes of the data can easily be detected. 



Database encryption can be implemented at different levels [14]: tables, columns, 
rows and cells. Encrypting the whole table, column or row entails the decryption of 
the whole table, column or row respectively when a query is executed. Therefore, an 
implementation which decrypts only the data of interest is preferred. 

The database encryption scheme presented in [13] is based on the Chinese-
Reminder theorem where each row is encrypted using different sub-keys for different 
cells. This scheme enables encryption at the level of rows and decryption at the level 
of cells. The database encryption scheme presented in [14] extends the encryption 
scheme presented in [13] by supporting multilayer access control. It classifies subjects 
and objects into distinct security classes. The security classes are ordered in a hierar-
chy such that an object with a particular security class can be accessed only by sub-
jects in the same or a higher security class. In this scheme, each row is encrypted with 
sub-keys according to the security class of its cells. One disadvantage of both schemes 
is that the basic element in the database is a row and not a cell, thus the structure of 
the database needs to be changed. In addition, both schemes require re-encrypting the 
whole row when a cell value is modified.  

The conventional way to provide an efficient execution of database queries is by 
using indexes, but indexes in an encrypted database raise the question of how to con-
struct the index so that no information about the database content is revealed [15, 16]. 

The indexing scheme provided in [17] is based on encrypting the whole row and 
assigning a set identifier to each value in this row. When searching a specific value its 
set identifier is calculated and then passed to the server which in turn returns to the 
client a collection of all rows with values assigned to the same set. Finally, the client 
searches the specific value in the returned collection and retrieves the desired rows. 
However, in this scheme, equal values are always assigned to the same set, thus some 
information is revealed when applying statistical attacks. 

The indexing scheme provided in [18] is based on constructing the index on the 
plaintext values and encrypting each page of the index separately. Whenever a specific 
page of the index is needed for processing a query, it is loaded into memory and de-
crypted. Since the uniform encryption of all pages is likely to provide many cipher 
breaking clues, the indexing scheme provided in [19] suggests encrypting each index 
page using a different key depending on the page number. However, these schemes 
being implemented at the level of the operating system are not satisfactory. 

Assuming the index is implemented as a B+-Tree, encrypting each of its fields 
separately would reveal the ordering relationship between the ciphertext values. The 
indexing scheme provided in [15] suggests encrypting each node of the B+-Tree as a 
whole. However, since references between the B+-Tree nodes are encrypted together 
with the index values, the index structure is concealed. 

In order to overcome the shortcomings of existing database encryption schemes, a 
new simple and efficient scheme for database encryption is proposed which suggests 
how to encrypt the entire content of the database without changing its structure. This 
property allows the DBA to continue managing the database without being able to 
view or manipulate the database content. Moreover, anyone gaining access to the 
database can learn nothing about its content without the encryption key. The new 
scheme suggests how to construct a secure index on the encrypted database so that the 



time complexity of all queries is maintained. Since the database structure remains the 
same no changes are imposed on the queries. 

The remainder of the paper is structured as follows: in section 2 the desired proper-
ties of a database encryption scheme are outlined; in section 3 the new database en-
cryption scheme is illustrated; in section 4 the desired properties of a secure indexing 
scheme are described; in section 5 a new indexing scheme for the encrypted database 
is proposed; in section 6 performance and implementation issues are discussed, and 
section 7 presents our conclusions. 

2 The Desired Properties of a Database Encryption Scheme 

According to [13], a database encryption scheme should meet the following require-
ments: 
1) The encryption scheme should either be theoretically or computationally secure 

(require a high work factor to break it). 
2) Encryption and decryption should be fast enough so as not to degrade system per-

formance. 
3) The encrypted data should not have a significantly greater volume than the unen-

crypted data. 
4) Decryption of a record should not depend on other records. 
5) Encrypting different columns under different keys should be possible. 
6) The encryption scheme should protect against patterns matching and substitution 

of encrypted values attacks. 
7) Modifying data by an unauthorized user should be noticed at decryption time. 
8) Recovering information from partial records (records where some cells have null 

values) should be the same as from full records. 
9) The security mechanism should be flexible and not entail any change in the struc-

ture of the database. 
 

A naïve approach for database encryption is to encrypt each cell separately but this 
approach has several drawbacks. First, two equal plaintext values are encrypted to 
equal ciphertext values.  

)()(
2121 VEVEVV kk
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Therefore, it is possible, for example, to collect statistical information as to how many 
different values a specified column currently has, and what are their frequencies. The 
same holds for the ability to execute a join operation between two tables and collect 
information from the results. Second, it is possible to switch unnoticed between two 
ciphertext values. Different ciphertext values for equal plaintext values can be 
achieved using a polyalphabetic cipher (e.g. Vernam). However, in this solution de-
cryption of a record depends on other records and thus requirement 4 is violated. 

In the next section a new database encryption scheme complying with all the above 
requirements is presented. 



3 A New Database Encryption Scheme 

The position of a cell in the database is unique and can be identified using the triplet 
that includes its Table ID, Row ID, and Column ID. We will refer to this triplet as the 
cell coordinates.  

We suggest a new database encryption scheme where each database value is en-
crypted with its unique cell coordinates. These coordinates are used in order to break 
the correlation between ciphertext and plaintext values in an encrypted database. The 
new scheme has two immediate advantages. First, it eliminates substitution attacks 
attempting to switch encrypted values. Second, patterns matching attacks attempting 
to gather statistics based on the database encrypted values would fail. 

 
Fig. 1. Database encryption using two approaches. 

Figure 1 illustrates database encryption using two approaches. Figure 1a describes a 
database table (T) with one data column (C). Figure 1b describes encryption of table T 
using the naïve approach. Figure 1c describes encryption of table T using the new 
approach where each cell is encrypted with its cell coordinates. It is easy to see that 
equal plaintext values in figure 1a are encrypted to different ciphertext values in figure 
1c as opposed to the ciphertext values in figure 1b.  
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3.1 Encryption/Decryption in the New Scheme 

Let us define: 

trcV  - A plaintext value located in table t , row r and column c . 

NNNN ��� )(:�  - a function that generates a number based on the database 
coordinates. 

kEnc  - A function which encrypts a plaintext value with its coordinates. 

)),,(()( crtVEVEnc trcktrck ���  (2) 

Where k  is the encryption key and kE  is a symmetric encryption function (e.g. DES, 

AES). 

trcX  - A ciphertext value located in table t, row r and column c. 

)(X trc trck VEnc�  (3) 

kDec  - A function which decrypts a ciphertext value ( trcX ) and discards its coordi-

nates. 

trctrcKtrck VCRTXDXDec ��� ),,()()( �  (4) 

Where k  is the decryption key and kD  is a symmetric decryption function. 

3.2 Data Integrity 

Encryption ensures that a user not possessing the encryption key cannot modify a 
ciphertext value and predict the change in the plaintext value. Usually the range of 
valid plaintext values is significantly smaller than the whole range of possible plain-
text values. Thus, the probability that an unauthorized change to a ciphertext value 
would result in a valid plaintext value is negligible. Therefore, unauthorized changes 
to ciphertext values are likely to be noticed at decryption time.  

Substitution attacks as opposed to patterns matching attacks can not be prevented 
simply by using encryption. In the new scheme, each value is encrypted with its 
unique cell coordinates. Therefore, trying to decrypt a value with different cell coor-
dinates (e.g. as a result of a substitution attack) would probably result in an invalid 
plaintext value. 

If the range of valid plaintext values is not significantly smaller than the whole pos-
sible range, or invalid plaintext values cannot be distinguished from valid plaintext 
values, encryption has to be carried out as follows: 

)),,(||()( crtVEVEnc trcktrcK ��  (5) 



Since ),,( crt�  is concatenated to the plaintext value before encryption, attempt-
ing to change the ciphertext value or trying to switch two ciphertext values would 
result in a corrupted ),,( crt� 1 after decryption. Obviously, concatenating 

),,( crt�  results in data expansion. 

3.3 Scheme Analysis 

The new database encryption scheme satisfies the requirements mentioned in section 
2: 
1) The scheme security relies on the security of the encryption algorithm used. In 

order to reveal some database value it has to be decrypted using the correct key. 
2) Encryption and decryption are fast operations and are mandatory in any database 

encryption scheme. The proposed implementation adds the overhead of a Xor op-
eration and �  computation which are negligible compared to encryption. 

3) Using encryption algorithms such as DES or AES which are based on encrypting 
blocks of data results in value expansion (in many cases this expansion is negligi-
ble).  

4) The basic element of reference is a database cell. Operations on a cell do not 
depend on or have any effect on other cells.  

5) The proposed scheme facilitates subschema implementation. Since each cell is 
encrypted separately, each column can be encrypted under a different key2. 

6) The new scheme prevents patterns matching attacks since there is no correlation 
between a plaintext value and a ciphertext value (achieved by using encryption) 
and there is no correlation between ciphertext values (achieved by using �  be-
fore encryption). Substitution attacks are also prevented as discussed in section 
3.2. 

7) Unauthorized manipulation on the encrypted data without the encryption key 
would be noticed at decryption time. (see section 3.2) 

8) As the basic element of reference is a database cell, it is possible to recover in-
formation from partially completed records (records with null values) in the same 
way as it is recovered from full records. 

9) The new scheme complies with the structure preserving requirements as the basic 
element of reference is a database cell. 

4 The Desired Properties of a Secure Indexing Scheme 

An index is a data structure supporting efficient access to data and indexes are fre-
quently used in databases. Most commercial databases even create a default index on 
the primary-key columns. Most databases implement indexes using a B+-Tree which 

                                                           
1 � implementation is discussed in section 6.2.  
2 Key management is discussed in section 6.3. 



is a data structure maintaining an ordered set of values and supporting efficient opera-
tions on this set such as search, insert, update and delete. 
 

 
Fig. 2. An example of a database index. 

Figure 2 illustrates a database index which is constructed on column C in table T and 
is implemented as a B+-Tree. A graphical representation of the B+-Tree is given in 
figure 2a; a table representation of the B+-Tree is given in figure 2b and table T is 
given in figure 2c. Figure 2b sharpens the separation between the index structure and 
its data. 
 
A secure index in an encrypted database has to comply with the following require-
ments: 
1) No information about the database plaintext values can be learned from the index. 
2) The secure index should not reduce the efficiency of data access. 
3) The secure index should not reduce the efficiency of insert, update and delete 

operations. 
4) The secure index should not have a significantly greater volume than an ordinary 

index. 
5) The secure index structure should not differ from a standard index. In this way, a 

DBA can manage the index without the encryption key. 
 
A trivial approach which constructs an index over the plaintext values would re-

duce security since the plaintext values are exposed. Another approach would con-
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struct the index over the database ciphertext values. In this approach, executing equal-
ity queries is possible but executing range queries is a problem. This approach would 
expose the index to patterns matching attacks since equal plaintext values are en-
crypted to equal ciphertext values. Moreover, since executing range queries is a prob-
lem, Oracle does not support encrypting indexed data [20]. 

In the next section, a new indexing scheme which overcomes the shortcomings of 
existing indexing schemes is presented. 

5 A New Database Indexing Scheme 

Several indexing schemes for encrypted databases were proposed [15, 18, 17, 21] that 
fulfill most of the requirements described in section 4 but none preserve the index 
structure. We claim that there should be a separation between data and structure. For 
example, A DBA should be able to manage database indexes without the need of 
decrypting its values. 

We suggest a new database indexing scheme which preserves the index structure 
where each index value is the result of encrypting a plaintext value in the database 
concatenated with its row-id. This ensures that there is no correlation between the 
index values and the database ciphertext values3. Furthermore, the index does not 
reveal the statistics or order of the database values. 

5.1 Index Construction in the New Scheme 

In order to construct an index, a set of values and a function determining the order4 of 
these values are needed. 
Let us define: 
C  - An encrypted database column that was encrypted as defined in section 3.1. 

pC - The column obtained from decrypting columnC : 

CxCxDec trcptrck �����)(  (6) 

Where kDec  is the decryption function defined in section 3.1. 

iC  - The column obtained from encrypting values in pC  concatenated with their 

row-ids: 

ptrcitrck CVCrVE �����)||(  (7) 

                                                           
3 If the database is encrypted as described in section 3.2, then �  should not be implemented 

as rcrt �),,(� since there will be a strong correlation between the index values and the 
database encrypted values. 

4 Some indexes require only an equality function and not an order function to be constructed. 
In this case, the term "order" in this section can be replaced by the term "equality". 



Where k  is the encryption key, kE  is an encryption function and r  is the row id. 

pik CC �:	  -  A function which decrypts a value in iC  (using key k ) and dis-

cards its row-id: 

|)|),(()( rxDDiscardx kk �	  (8) 

Where k  is the decryption key, kD  is a decryption function, r  is the row-id, || r  is 

the length of r  in bits, and ),( nvDiscard  stands for discarding the n  rightmost 
bits of v . 

pR  - The values in pC  are ordered by the relation pR : 

)(,),( yxAndCyxRyx pp 
�����  (9) 

iR  - The values in iC  are ordered by the relation iR : 

pkkii RyxAndCyxRyx ������ ))(),((,),( 		  (10) 

The new index will be constructed based on the values in iC , using the relation iR  as 

an order function.  

 
Fig. 3. Encryption in the new scheme. 

Figure 3 illustrates encryption of the table and the index which were illustrated in 
figure 2 using the new schemes. Figure 3a describes the encryption of the table in the 
new scheme where each cell is encrypted with its coordinates. Figure 3b describes the 
encryption of the index where each index value is the result of encrypting a database 
plaintext value concatenated with its row-id. It is easy to see that the table and index 
structure are not changed by the encryption process. 
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5.2 Executing a Query in the New Scheme 

The following SQL query illustrates the retrieval of all rows in table T, which their 
values in column C are greater or equal to V: 

SELECT * FROM T WHERE T.C>=V (11) 

The following pseudo code illustrates the retrieval of row-ids of rows which answer 
the above query. The pseudo code assumes that the index is implemented as a binary 
B+-Tree. 

INPUT: A table T, a column C and a value V. 
OUTPUT: A collection of row-ids. 

X := getIndex(T, C).getRootNode(); 
 
While X is not a leaf Do 
   If X.getData().getValue()<V Then 
      X := X.getRightSonNode(); 
   Else 
      X := X.getLeftSonNode(); 
   End If; 
End While; 
 
RESULT := � ; 
 
While X.getData().getValue()<V Do 
   X := X.getRightSiblingNode(); 
End While; 
 
While X is not null Do 
   RESULT := RESULT� {X.getData().getRowId()}; 
   X := X.getRightSiblingNode(); 
End While; 
 
Return RESULT; 

Each node in the index which is not a leaf has a left son node, a right son node and a 
data which stores a value. Each leaf in the index has a right sibling node and a data 
which stores a value and a row-id.  

In the new scheme the data in each index node is an encryption of a database value 
concatenated with its row-id. Thus, the functions getValue() and getRowId() need to 
be given a new implementation in order to support the new indexing scheme. How-
ever, the above pseudo code stands without any change.  

5.3 Index Integrity 

In the new scheme, a substitution attack which attempts to substitute index values can 
be carried out without being noticed at decryption time. If it is possible to maintain a 
unique position for each value in the index, this kind of attack can be eliminated using 



a technique similar to the one proposed in section 3 where each value is encrypted 
with its unique position.   

 

Fig. 4. Maintaining data integrity. 

Figure 4 illustrates data integrity maintenance of the table and the index which were 
illustrated in figure 2. Figure 4a describes data integrity maintenance of the table as 
suggested in section 3.2. Figure 4b describes data integrity maintenance of the index 
where each index value is concatenated to its unique position in the index (ID) and 
then encrypted.  

We argue that without changing the index structure and affecting its efficiency, 
maintaining a unique position for each value in the index is not a trivial matter. 

5.4 Scheme Analysis 

The new index implementation on an ordered set of values is identical to the ordinary 
index implementation. The only differences between the ordinary index and the new 
one are the set of values and the order function defined on them.  
The new index complies with the requirements mentioned in section 4: 
1) Since the values in the index are encrypted and unique (achieved by concatenat-

ing row-id) there is no correlation between them as to the column ciphertext val-
ues, or the column plaintext values. Therefore, no information is revealed on the 
database data by the new index. 

2) The order function is implemented in a time complexity of )1(O  since decryp-

tion and discarding bits are implemented in a time complexity of )1(O . There-
fore, data access using the proposed index is as efficient as with an ordinary in-
dex. 

3) Determining the order of two values is implemented in a time complexity of 
)1(O . Therefore, the delete operation is as efficient as in an ordinary index. En-
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crypting a new value is implemented in a time complexity of )1(O , thus the effi-
ciency of insert and update operations is not changed. 

4) Each value in the new index is a result of encrypting a database plaintext value 
concatenated with its row-id, therefore the space added for each node in the new 
index is fixed. Thus, the index space complexity remains the same.  

5) The new index structure remains the same and only its data is modified. Thus, any 
administrative work on the index can be carried out without the need of decrypt-
ing the index values. 

6 Performance and Implementation Issues 

Implementing the new schemes requires careful consideration. Several performance 
and implementation issues are discussed in this section.  

6.1 Stable Cell Coordinates 

The proposed scheme assumes that cell coordinates are stable. That is, insert, update 
and delete operations do not change the coordinates of existing cells. However, if a 
database reorganization process changes cell coordinates, all affected cells are to be 
re-encrypted with their new coordinates and the index updated respectively.  

A naïve implementation which uses the row number in the table as the row-id, 
proves to be limited in this respect as row numbers are affected by insert and delete 
operations. In the Oracle database, for example, cell coordinates are stable. 

6.2 Implementing a Secure �  Function 

As defined in section 3.2, the values in the database are encrypted as follows: 

)),,(||()( crtVEVEnc trcktrcK ��  (12) 

A secure implementation of �  would generate different numbers for different coordi-
nates: 

),,(),,(),,(),,( 222111222111 crtcrtcrtcrt �� 
���
  (13) 

Unfortunately, generating a unique number for each database coordinates may result 
in considerable data expansion. An alternative implementation reducing the data ex-
pansion may result in collisions. Assume that there are two cells, which�  generates 
two equal values for their coordinates: 

)],,(),,([)],,(),,[(

|,,,,,

222111222111

222111

crtcrtcrtcrt

crtcrt

�� ��


�
 

(14) 



It is possible to substitute the ciphertext values of these cells (
111 crtx and 

222 crtx ) with-

out �  being corrupted  at decryption time. If it is difficult to find two cells such as 
those mentioned above, this kind of attack can be prevented. This can be achieved by 
using a collision free hash function. 

6.3 Key Management 

Databases contain information of different sensitivity degrees that have to be selec-
tively shared between a large numbers of users. The proposed scheme facilitates sub-
schema implementation since each column can be encrypted with a different key. 
Encrypting each column with a different key, results in a large number of keys for 
each legitimate user. However, using the approach proposed in [22] can reduce the 
number of keys. It is suggested in [22] how the smallest elements which can be en-
crypted using the same key according to the access control policy can be found. Thus, 
the keys are generated according to the access control policy in order to keep their 
number minimal. This approach can be incorporated in the proposed scheme in order 
to encrypt sets of columns with the same key in accordance with the database access 
control policy. 

6.4 Performance 

In the new scheme, all conventional algorithms remain the same since the structure of 
the database remains the same. This ensures that the only overhead of the new scheme 
is that of encryption and decryption operations. 

7. Conclusions 

In this paper, a new structure preserving scheme for database encryption has been 
presented. In the new scheme, each database cell is encrypted with its unique position 
and this guarantees that patterns matching and substitution attacks cannot succeed, 
thus, guaranteeing information confidentiality and data integrity. 

A new database indexing scheme that does not reveal any information on the data-
base plaintext values was proposed. In the new scheme index values are encrypted 
with a unique number (the row-id of the database value) in order to eliminate patterns 
matching attacks and any correlation between index and database values. Ensuring 
index integrity is possible if an index position can be attached to each index value by 
simply using a technique similar to the one used for table encryption. 

The new schemes do not impose any changes on the database structure, thus ena-
bling a DBA to manage the encrypted database as any other non-encrypted database. 
Furthermore, implementing the new scheme in existing applications does not entail 
modifying the queries.  
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