
8 Continuous Co-ordination Tools
and their Evaluation

A. Sarma, B. Al-Ani, E. Trainer, R. S. Silva Filho, I. da Silva, D. Redmiles,
A. van der Hoek

Abstract: This chapter discusses a set of co-ordination tools (the Conti-
nuous Co-ordination (CC) tool suite that includes Ariadne, Workspace
Activity Viewer (WAV), Lighthouse, Palantír, and YANCEES) and de-
tails of our evaluation framework for these tools. Specifically, we dis-
cuss how we assessed the usefulness and the usability of these tools
within the context of a predefined evaluation framework called
DESMET. For example, for visualization tools we evaluated the suita-
bility of the level of abstraction and the mode of displaying information
of each tool. Whereas for an infrastructure tool we evaluate the effort
required to implement co-ordination tools based on the given tool. We
conclude with pointers on factors to consider when evaluating co-
ordination tools in general.

Keywords: Distributed and Collaborative Software Engineering, Colla-
borative Tools, Evaluation.

8.1 Introduction

Co-ordination has been studied in different domains and within different
contexts, as any kind of group work entails co-ordination [1, 32]. For our
purposes, we focus on co-ordination efforts that are required to understand
interdependencies among artifacts and developers in a software project,
and to take appropriate steps to produce results with minimal conflicts. We
recognize that co-ordination is not a static process, but one that needs con-
tinuous adjustments. This means that concerned individuals have to have
the ability to respond to ongoing changes in the project and the effects of
these changes on their work. Furthermore, co-ordination efforts occur at
multiple levels: among developers, between managers and their teams,

among multiple teams working together, and so on. The information re-
quired by an individual strongly correlates with their role in the team and
their perspective of the project. Therefore, tool support for co-ordination
needs to ensure that the right information is presented to the right individ-
ual at the right time using appropriate presentation techniques. To achieve
this goal, we created a suite of co-ordination tools that meets the different
needs of different kinds of software development activities.

Evaluation of co-ordination tools is both critical and challenging [29]. In
this chapter, we discuss the strategies we used to evaluate our co-
ordination tool suite as well as results from the evaluation. In particular,
we discuss our goals when evaluating the tools with respect to their use-
fulness and usability. Generally, the usefulness and functionality of our
tool set has been largely motivated by our own ethnographical studies of
multiple software development teams [11, 15].

This chapter discusses our approach to evaluate the usability, as well as,
in some cases, the usefulness of each tool based on DESMET, Kitchenham
et al.’s framework for evaluating software engineering tools [29]. The
evaluation of each tool followed a subset of the nine evaluation types listed
by DESMET, which was based on the nature/features of the tools as well
as their maturity level. We found that evaluation should be iterative in na-
ture as has been recommended for prototyping in software development
[27].

The rest of the chapter is organized as follows. The next section pro-
vides a brief introduction to our approach. Section 1.2 provides a review of
related work in which we discuss interdependencies and the need for co-
ordination in addition to evaluation methodologies. This background sec-
tion is followed by a description of the DESMET framework and our ex-
tension of this framework. We then present an outline of the Continuous
Coordination (CC) principles, the origin of the CC tools, the evaluation
approaches adopted for each, and the lessons learned as a result. The chap-
ter concludes with a discussion of threats to the validity of our work and
conclusions regarding the evaluation of the usefulness and usability of the
CC tools.

8.2 Research Context

In software development the need for co-ordination among developers
generally arises because of the underlying technical dependencies among
work artifacts; as well as the structure of the development process [13, 7,
8]. Researchers in the software engineering as well as Computer-

Supported Co-operative Work (CSCW) communities have recognized this
problem and created a host of tools to improve team co-ordination. How-
ever, evaluating the usability and usefulness of such tools has proven to be
extremely difficult. Here we focus on different evaluation approaches that
are applicable for co-ordination tools.

There exists a diverse range of approaches to evaluating collaborative
tools, e.g., [41, 4, 35, 56, 18, 31, 50]. Adopting a combination of empirical
evaluation approaches is perceived as means to meet the challenges typi-
cally encountered [49]. The diversity of existing tools and evaluation ap-
proaches reflect the many challenges of facilitating co-ordination in teams
[24].

Further, several evaluation frameworks have been proposed to support
software tool evaluation, e.g., [29, 10, 30], among others. We base our
evaluations of the CC tool suite based on the DESMET framework [29].
We chose DESMET because it provides the desired level of abstraction
that readily lends itself to adoption and matches our research objectives.
This framework has also been successfully adopted by other researchers to
evaluate software tools, e.g., [34, 36, 25].

8.3 The CC Evaluation Framework

The DESMET evaluation methodology separates evaluation approaches
into two broad classes: (1) quantitative evaluations aimed at establishing
measurable effects of using a tool, and (2) qualitative evaluations aimed at
establishing method tool appropriateness, i.e., how well a tool fits the
needs and cultures of an organization. These two methods are further sub-
divided into experiments, case studies, surveys, feature analyses, and
screening to form nine distinct evaluation approaches. We used six of the
evaluation approaches listed by Kitchenham et al. Note, we did not use all
the approaches for each tool; rather a different combination of approaches
was used based on the particular features, level of maturity, and the goal of
the tool, i.e., usefulness or usability factors. Some of the factors that we
considered when evaluating usefulness or usability were the effort that us-
ers’ expended to utilize and/or understand a CC tool together with the per-
ceived benefits. Moreover, we considered issues relating to the appro-
priateness of information that a tool shares with the development team
(e.g., level of abstraction and mode of display).

We used the DESMET framework to determine which evaluation me-
thodology to use per tool. Here, we present an overview of the evaluation

approaches that we adopted, within the context of the framework as de-
fined by Kitchenham et al:

1. Qualitative screening is defined as a feature-based evaluation done
by a single individual (or cohesive group) that not only determines
the features to be assessed and their rating scale, but also performs the
assessment. In the initial screening, the evaluations are usually based
on literature describing the software method/tools rather than actual
use of the methods/tools. We conducted such a screening by survey-
ing existing tools and their features as reported in literature. Conse-
quently, we surveyed related work for each one of our tools.

2. Hybrid method 1: Qualitative effects analysis is defined as a sub-
jective assessment of the quantitative effect of methods and tools,
based on expert opinion. We have used this analysis approach repeat-
edly at different phases of tool development. All our tools followed
iterative prototyping and at the end of each prototyping cycle, we
demonstrated our tools to industry experts as well as researchers to
get their feedback on both usability and usefulness.

3. Qualitative experiment is defined as a feature-based evaluation done
by a group of potential users who are expected to try out the tools on
typical tasks before evaluating them. The tasks are performed by
staffs that have used the tool on a real project. We requested that par-
ticipants also “think out loud” during the experiment to get an idea of
which features are difficult to understand in addition to gaining in-
sights into the reasoning behind their actions [19]. Another subcate-
gory in this approach is the “feature analysis” experiment which is
typically adopted when a tool’s impact is not directly measurable on
one project and is thus evaluated across multiple projects. We con-
ducted such experiments with mature tools.

4. Quantitative case study is defined as an investigation of the quantit-
ative impact of tools organized as a case study. This mode of evalua-
tion can be used to understand the usefulness of a tool when applied
to a real project as well as the scalability of the tool. We utilized data
made available in open-source software projects repositories as case
study data. This data was collected from a real and ongoing large
scale project.

5. Hybrid method 2: Benchmarking: is defined as a process of run-
ning a number of standard tests usually comparing one tool to alterna-
tive tools and assessing the relative performance of the tools against
those tests. We selected a set of open source infrastructures to be
compared with our tool as a benchmark in this instance of evaluation.

6. Quantitative experiment is defined as an investigation of the quan-
titative impact of tools organized as a formal experiment. We used a
large enough sample size in our experiments to overcome the antic-
ipated effects of individual and team differences. We typically
adopted this methodology to evaluate mature tools because of the ex-
tensive effort and time required.

A detailed description of each tool is presented in the following section
together with details of the evaluation approaches adopted. (Appendix A)
presents a summary of the tools and the evaluation approaches we utilized
within the context of DESMET.

8.4 Continuous Co-ordination (CC) Tools: Their Orig in
and Evaluation

Co-ordination occurs at different levels and involves different stakeholders
(e.g., developers, managers, testers, clients), who may have differing co-
ordination requirements. Our suite of co-ordination tools attempts to meet
different requirements among different stakeholders.

The CC tool suite was designed while keeping four critical questions in
mind [42]. The first involves identifying when the tool should provide in-
formation. Providing a constant stream of information can overwhelm us-
ers whereas infrequent sharing of information may lead to some users lack-
ing information critical to completing their tasks. The information
provided to the user depends on their role within the team. “What kind of
information does the user need?” is the second question that guides our
work. For example, a manager would typically need to be aware of team
structure and work products to co-ordinate a project. A programmer, how-
ever, would generally need to be aware of changes to the design. These
considerations lead us to ask, “Who should information be provided to?”
For example, should information be provided to all programmers, to man-
agers, or to a sub-set of these? Finally, how information is presented
should also be considered. In general, our tools visualize graphical repre-
sentations of co-ordination information because it can be more efficient
and easier to understand information presented graphically than textually
[52, 5].

In the following sections, we discuss a subset of the CC tool suite we
subjected to more than one type of evaluation approach and the lessons we
learned.

8.4.1 Ariadne

Ariadne is a visual tool that infers dependencies between people based on
the modules they author. Our field studies led us to conclude that the man-
agement of dependencies becomes a daunting task as a project evolves and
grows in the number of artifacts and contributors [14, 16]. These studies
gave us insight into several types of communication and co-ordination
problems, which helped us develop several representative scenarios that
revealed the different types of dependency relationships managers and de-
velopers need to understand [14]. We call these relationships “socio-
technical” because they involve both artifacts and the people who work on
them.

Fig. 8.1. An overview and zoomed in view of a project’s socio-technical depen-
dencies using Ariadne

Ariadne visualizations allow developers and managers to identify rele-
vant socio-technical relationships central to their co-ordination needs.
First, Ariadne creates a call-graph representing dependencies between
source-code modules. Second, the tool annotates this graph with author-
ship information by connecting to a project’s configuration management

repository. Finally, Ariadne calculates a sociogram [54] representing de-
pendencies between developers through the modules with which they
work. The visualization is designed to take advantage of available screen
real estate and thus occupies the entire screen.

Ariadne visualizations were designed to make the most of available
screen real estate (shown in Fig. 8.1). Ariadne lays out called code units on
the horizontal axis and developers on the vertical axis. It draws connec-
tions from a dependent author to the code unit they are dependent upon
and back to the author responsible for that code unit and repeats this for
each code unit in the project. Further details on its visualization and its ad-
vantages have been reported elsewhere [51].

Objective of evaluation process and steps taken

Ariadne visualizes socio-technical relationships using highly abstract re-
presentations of dependency information, such as shapes, colors, and axes.
As such, effort is required to learn how to use the tool to accomplish spe-
cific tasks. We thus decided upon an evaluation strategy that would allow
us to evaluate this effort in early stages of the tool’s design.

A survey, or qualitative screening, of literature and existing socio-
technical tools revealed the general need to support awareness of depen-
dencies and identifying developers of interest via visual interpretation. Li-
terature in the information visualization field identified usability as one
important barrier to tool adoption by end-users [2, 3, 40]. Moreover, eva-
luating tools in real settings and with real users (in our case, developers
and managers) is expensive in terms of the effort required, especially in the
early stages of design. In an effort to get usability feedback “cheaply,” we
applied multiple inspection usability inspection methods: Nielsen’s Heuris-
tic Evaluation [37] Lewis and Polson’s Cognitive Walkthrough [55] and
Thomas Green’s Cognitive Dimensions of Notations [22]. In addition, we
applied Edward Tufte’s general principles of information presentation [52,
53]. We performed each inspection method with a team comprised of four
colleagues. They had no experience using the new visualization. This un-
familiarity helped us to identify problematic design assumptions about new
users’ expectations and assumptions about interacting with and drawing
conclusions from the visualization. Further information of our evaluations
is detailed elsewhere [51].

After this qualitative inspection, we performed a case study where we se-
lected several open-source projects from Sourceforge.net to visualize.
These projects had been active for several years, and were active at the
time of our evaluation. Thus they represented a test-bed from which to

confirm the scalability of the visualization to real-world projects. In paral-
lel to the previous, with the help of industry partners and open-source de-
velopers, we assessed the usefulness of current features and incorporated
suggested feedback into the tool. These activities, in combination with the
application of usability inspection methods, constituted a qualitative ef-
fects analysis in terms of DESMET.

Lessons learned with respect to the tool

We were able to tease out commonly occurring problems with respect to
usability through the combined application of evaluation approaches. For
example, the use of color to indicate individual developers and the direc-
tionality of dependencies proved to be more difficult than we originally
thought, especially as we visualized larger projects. The Cognitive Walk-
through, Tufte’s principles, and the Cognitive Dimensions analyses hig-
hlighted this issue. The Heuristic Evaluation and Cognitive Dimensions
revealed the potential need to allow users to undo certain filtering actions
in order to trace back their steps, as well as the option to view different
configurations of developers, e.g., aggregating them into teams. All three
methods suggested the need to improve feedback (e.g., to indicate that
specific dependencies have not been created instead of displaying no
search results).

Ariadne allows users to identify patterns in the way developers call dif-
ferent code in the system that from a general overview of a project’s socio-
technical dependencies. Throughout the course of applying the usability
inspection methods discussed above, we realized that these patterns would
heavily depend on the way the different axes were ordered. For example, a
pattern generated from a temporal ordering of the code units (arranged by
date last modified) might not show up if the code units were arranged in
alphabetical order instead. Thus, the ordering makes a difference in the
patterns that users will see, identify, and flag for future identification.

Lessons learned with respect to evaluation

The usability inspection methods we applied to Ariadne thus far have al-
lowed us to make certain corrections to Ariadne’s visualization before dep-
loying the tool to real users in real settings. However, evaluations of this
sort cannot account for organizational issues relating to adoption. This is
one limitation of our evaluation strategy. Publicly exposing sensitive in-
formation normally stored in software repositories may have effects on the
way developers work or even Ariadne’s results. In one instance, we
showed some of our early visualizations to several open source developers

who commented that they would avoid "touching" certain classes to avoid
breaking dependent code. To an extent, Ariadne can be used by managers
and supervisors to gauge developer's progress, or lack thereof. Further, as
speculated by our interviewees, individuals may “game” the tool to show
an increase in their contributions, especially if they feel that a lack of ac-
tivity may be used against them.

Some researchers claim that new evaluation approaches for visualiza-
tions are needed because current approaches test the wrong users and un-
conventional user interface components hurt user performance [2, 3]. We
have described the impracticality of deploying Ariadne to our intended
end-users in early design. To address the second point, the results from our
evaluation indicate that usability inspection methods can be usefully ap-
plied to abstract visualizations instead of traditional interface components
such as methods and drop-down menus. Moreover, despite the fact that
Tufte’s principles of information are general rather than domain-specific;
our work serves as one of the few examples of the application of these
rules-of-thumb to novel, interactive socio-technical visualizations for
software engineering. Thus, traditional evaluation approaches are still use-
ful for incremental prototyping and iterative design of our research tools.
As we continue to develop and refine Ariadne, visualization-specific eval-
uation heuristics like those suggested by other researchers [57] will be-
come more useful. We expect the aforementioned evaluation to be used as
a point-of-comparison for researchers evaluating socio-technical visual in-
terfaces in early design.

8.4.2 Workspace Activity Viewer

Workspace Activity Viewer (WAV) provides a highly scalable view of all
ongoing parallel development activities in a software project [43]. WAV
visualizes information in 3D to illustrate changes to a software project over
time, the types and sizes of the changes, and provides various filters to ex-
amine aspects of workspace activities in more detail. WAV reveals social
evolution via a movie-like playback of the state of the project, showing
what developers are active when, and to which types of artifacts they con-
tribute (Fig. 8.2.). As such, WAV can benefit both developers and manag-
ers, and provides two different views: artifact-centric and developer-
centric, accordingly. Both views use a cylinder metaphor to represent
workspace changes, where the width of the cylinder represents the size of a
change. In the artifact-centric view, cylinders represent artifacts, with each
segment of a cylinder denoting a developer that has made changes to that
artifact. In the developer-centric view, cylinders represent developers, with

each segment of a cylinder denoting an artifact that developer has touched.
As stacks (artifacts or developers) become dormant, the associated stack of
cylinders slowly moves to the back of the display. A more detailed account
of the tool is reported elsewhere [43].

Objective of evaluation process and steps taken

The objective of our evaluation of WAV was to confirm the accuracy of
the tool's playback of the activities occurring in real software development
projects and to test the visualization’s capacity to scale to large software
projects [43]. In terms of display technique, we wanted to see if all rele-
vant workspace events could be clearly visualized using the screen real-
estate WAV requires. As we have seen in the case of Ariadne, deploying
tools in real settings is a difficult challenge, especially in early prototyping.
Thus, we decided to evaluate WAV through a case study and report results
to project managers and developers.

We applied WAV to five open-source projects: ArgoUML, GAIM,
Freemind, jEdit, and Scarab. In addition, we analyzed project data from a
local company that collaborates with our research group. Since we used
archived data for our case study, we did not gather information of real-time
workspace edits. To overcome this problem, we simulated workspace data
based on CVS change metadata (e.g., who checked the file in, when they
did it, and how much changed). This metadata allowed us to establish
known states for each artifact and subsequently generate events correlating
to workspace activity before the commit occurred. The evaluation we per-
formed constitutes a qualitative-effects analysis and a quantitative case
study.

Fig. 8.2. Developer-centric mode on six monitors (left) and artifact-centric mode
with user-definable filters on the right

Lessons learned with respect to the tool

Visualizing the collective activity in a project can allow managers to
choose and identify patterns that may lead to co-ordination breakdowns.
For example, the movie-like playback feature of WAV allows one to see
periods of stagnation which may indicate insufficient progress. Whereas
spurts of activity as artifacts and developers' piles expand upward and
move to the front may indicate conflicts. These patterns can then be used
as potential “red flags” to indicate the possibility of problems over the life-
cycle of a project.

An important concern is the visualization’s ability to scale to large soft-
ware projects caused by the amount of workspace events captured [43].
Over this range, the filters available on WAV’s interface and the ability to
rotate the visualization’s axes provided sufficient support to manage the
problem of scalability, as reported by the managers to whom we showed
the data. The evaluation method we chose for WAV allowed us to validate
the accuracy of the events captured by the tool by correlating them with
actual events over the course of development. It was further validated by a
project manager who confirmed our observations.

Lessons learned with respect to evaluation methods

Our evaluations are not a substitute for assessment in real settings. How-
ever, they come close by looking at real project data from real develop-
ment teams. Unlike costly evaluation approaches such as talk-aloud me-
thods or human subjects tests, case-study data can be collected relatively
cheaply from existing, (often) publicly available project repositories.
While we were not able to gain access to real workspace activities, we
were able to simulate them based on randomizations of the patterns be-
tween known check-ins and check-outs. As such, we could still make ob-
servations about the evolution of the projects. The most expensive part of
the process is reflecting findings back to the original participants.

One aspect that evaluations of this type leave out is usability for the
end-user, which is typically one of the main barriers to visualization adop-
tion [2, 3, 40]. Usability is especially important in the context of the work
discussed here because of the upfront costs associated with human subjects
testing. Future WAV evaluations involves the application of usability in-
spection methods such as those applied to Ariadne [51]. These evaluations
can reveal patterns of interest and compare activity between both develop-
ers and artifacts.

8.4.3 Lighthouse

Lighthouse is an awareness tool that supports team co-ordination by pro-
viding each developer with information of ongoing activities in the project
[9]. The goal of the tool is to improve a developer’s understanding about
others’ activities and how one’s own activities affect the others. The tool
builds an Emerging Design diagram, an always up-to-date abstraction of
the source code components, dependencies, authorship and current
changes. The diagram consists of a UML-like class representation of the
code as it exists on the developers’ workspaces (Fig. 8.1.). All information
about changes made to the code is collected automatically by Lighthouse
from the IDE and the CM system and is propagated immediately to all
project members.

Lighthouse visualization supports early detection of design decay by al-
lowing users to identify unintended design changes. Problems like con-
flicting changes in shared artifacts and duplicate work can also be spotted
as soon as they surface. A detailed account of the tool’s features and the
nature of the support it provides is reported elsewhere [9].

Objective of evaluation process and steps taken

Lighthouse has been evaluated both via qualitative effects analysis and qu-
alitative experiments. We demonstrated Lighthouse to various industry ex-
perts and academic researchers, obtained and incorporated their feedbacks.
Later we evaluated Lighthouse via a qualitative observational study to in-
vestigate its usefulness in warning participants of emerging conflicts, as
well as the effort required by an individual to investigate and resolve con-
flicts.

Fig. 8.1. Lighthouse emerging design

This study recruited four graduate student volunteers who had sufficient
knowledge about the Java programming language, the Eclipse IDE, and
the software configuration management (SCM) tool (preferably Subver-
sion). These volunteers used the prototype to execute small programming
tasks on a simulated software development team. More specifically, partic-
ipants were told that they would be joining a pre-existing team, substitut-
ing a developer who recently left the project. They were also informed that
the rest of the team was distributed and available for communication solely
by Instant Messaging (IM). Each participant was asked about their back-
ground, given a brief tutorial on Lighthouse, assigned a set of five pro-
gramming tasks involving online store software, and asked to fill out an
exit questionnaire. In reality, each participant was working by themselves;
the other two team members being virtual entities (confederates) that were
controlled by the experimenters [44]. The confederate’s programming
tasks were simulated with automated scripts that introduced changes in the
software source code at pre-defined time intervals. Some of these tasks in-
troduced conflicts in the source code that were supposed to be detected and
dealt with by the participants. The experimenter also controlled the com-
munication via IM between participant and confederates. The use of con-
federates allowed for control over the number of conflicts and co-
ordination opportunities introduced in the experiment which facilitated the
comparison of results across experiments.

Lessons learned with respect to the tool

For the experiment, we introduced two direct conflicts (concurrent changes
to the same artifact) and two indirect conflicts (conflicting changes to de-
pendent artifacts). We observed that the timing of conflict introduction was
a decisive factor on detecting direct conflicts; developers who had already
started coding a task before the confederate created the duplicated effort
did not detect the conflict. We also observed that changes made by confe-
derates were either noticed as soon as they surfaced or not until the end of
the task, when participants faced merge problems because of the CM sys-
tem. All changes detected on time, though, were quickly and appropriately
addressed. When indirect conflicts were introduced during the experiment,
only half of the participants recognized the conflict in one task and none
could complete the other task in the given time.

We designed the experiment to understand the role of “emerging de-
sign” is helping participant’s co-ordinate their work. At the end of the
study participants reported that they found the emerging design served as a
reference for understanding the software structure, which were corrobo-
rated by our observations on how participants explored the diagram during
the study. We also found that participants by using filters that highlighted
recent changes to the emerging diagram were able to use the diagram as a
way of identifying ongoing changes in the project. Finally, in many cases
the emerging design stimulated communication in a team. For example,
when trying to contact a confederate to resolve a conflict, participants al-
ways first looked for the author of conflicting changes using the emerging
design diagram. In all cases, participants contacted the most adequate con-
federate to address the issue. Further, changes that were unrelated to the
tasks being performed were correctly ignored, thereby showing that Ligh-
thouse streamlines communications in a project. However, we observed
that participants were sometimes confused regarding which changes were
local and which remote. Consequently, this usability problem might hinder
users from responding to remote emerging conflicts. Our future work will
provide means to differentiate between local and remote changes, which
will help overcome this problem.

Lessons learned with respect to the evaluation of tool

Our study suffered from threats to validity common for user experiments.
The total time of one hour was insufficient for subjects to complete all the
tasks and a simple walkthrough of Lighthouse’s features was insufficient
for them to correctly appropriately learn all the tool features. We found
that the complexity of Lighthouse’s different interactive features meant

participants required more time to learn how to use them. Further, to un-
derstand how the software code was evolving and its effect on the given
tasks required a much longer experiment involving a more complicated
code base. Such an experiment would allow independent changes made in
different parts of the code to interact and create more intricate conflicts.
Finally, the pressure of having to complete all the tasks within a limited
period of time might have made participants spend less time observing and
understanding the emerging design. We plan to follow this study with a
more detailed in situ study of real developers working on their projects.

8.4.4 Palantír

Palantír is a workspace awareness tool that automatically and unobtrusive-
ly intercepts local edits as well as all CM operations in a workspace and
transmits these events across relevant workspaces to inform developers of
ongoing changes in the project [46]. Each workspace summarizes the
events it receives and communicates these to a developer via subtle aware-
ness cues.

Fig. 8.2. Palantír workspace awareness

The purpose of these cues is to unobtrusively draw the user’s attention

to emerging conflicts, both direct and indirect, without undue distractions
or overwhelming the user with too much information (Fig. 8.2.). Palantír
currently detects indirect conflicts that arise because of changes to public
methods and variables [45]. Palantír was integrated into the Eclipse devel-
opment environment such that annotations in the package explorer view
inform developers of activities in other workspaces (top inset in Fig. 8.2.)
and a new Eclipse view, the conflict view, allows users to obtain further
details of changes causing conflicts (bottom inset in Fig. 8.2.). The goal is
for the textual annotations to warn developers of impending conflicts and
when the user needs further information, they can investigate the conflict
via the Palantír conflict view, where various kinds of icons provide addi-
tional information about the state of a conflict.

Objective of evaluation process and steps taken

Palantír is one of the more mature prototypes in the CC tool suite. There-
fore it has iteratively undergone several evaluation approaches. Qualitative
screening by surveying other tools via literature survey and iterative qua-
litative effects analysis, to get feedback from experts, helped us determine
its specific awareness and display features early on in the project. We then
validated the feasibility of our approach via feature analysis experiments,
where we integrated Palantír with three CM systems – CVS, RCS, and
Subversion. We subsequently performed initial qualitative experiments to
validate and obtain feedback on our experimental setup before performing
our quantitative user experiments. These experiments were designed to test
the usefulness of Palantír in enabling participants discover potential con-
flicts and test its ease of use and the effort required by participants to no-
tice, investigate, and resolve conflicts in their tasks.

The experiments were specifically designed to observe a participant
making edits in a group setting with (and without) using Palantír to co-
ordinate their changes. Particular individual differences that concern our
experiment are differences in how a team member interacts in the group
and a programmer’s technical skills. We controlled for differences in
group interaction by using confederate based design, similar to Lighthouse
evaluations, where a participant could interact with the two other team
members via IM.

We controlled individual differences that stem from technical skills by
conducting stratified random assignment. Further, we benchmarked the
non-programming tasks evaluations with our results from an analogous
experiment with programming tasks. In “textual” experiment, we chose a

sample text that was neither too complex nor too interesting to overwhelm
or distract the participants. The text reflected some key properties of soft-
ware, primarily modularity and dependency. Modularity was attained by
using text which was comprised of separate files (chapters). Whereas, de-
pendency was simulated by text containing references that linked text
across modules and which had to be kept consistent. The textual experi-
ment was followed by a “Java” experiment to evaluate Palantír in the pro-
gramming domain. This experiment sought to confirm results from the first
experiment. However, here we sought to takes into account the limitation
of the programmer’s individual differences becoming visible, especially in
the time it takes for them to complete change tasks.

Lessons learned with respect to the tool

The evaluation of Palantír sought answers to three principle questions re-
garding the tool’s usefulness and usability. Firstly, does workspace aware-
ness help users in their ability to identify and resolve a larger number of
conflicts? We found with statistical significance that participants in the
Experiment group detected and resolved a larger number of conflicts for
both conflict types (direct and indirect). We found that participants typical-
ly noticed information provided by Palantír before embarking on their task
or right after finishing it. Secondly, does workspace awareness affect the
time–to-completion for tasks with conflicts? An obvious effect of work-
space awareness tools is the fact that they incur some extra overhead as
developers must spend time and effort to monitor the information that is
provided to them. Further, if they suspect a conflict then they spend time
and effort to investigate and resolve it. We examine this overhead by com-
paring the average time, which includes the time to detect, investigate, co-
ordinate, and resolve a conflict that participants in each of the treatment
groups took to complete tasks. We found that on average participants using
Palantír detected a larger number of conflicts without significant over-
heads. Finally, does workspace awareness promote co-ordination? We ob-
served that on detecting a conflict participants generally took one of the
following actions: synchronize, update, chat, skip the particular task, or
implement the task by using a placeholder. In general, we saw a compara-
ble number of co-ordination actions for direct conflicts between the control
and experiment groups, but a sharp increase in the number of co-ordination
actions for indirect conflicts for the experiment group.

Lessons learned with respect to the evaluation of tool

Our experiments led us to conclude that evaluating co-ordination tools that
require a group of people to understand and use the information provided
to co-ordinate with each other is extremely complex. While we took great
care to control individual differences between participants we still found
large enough variances in the time to completion of tasks. Another way of
controlling individual differences would have been to perform a between
subject test, i.e., test the same participant in both the control and experi-
ment conditions using two very similar projects. Additionally, in our expe-
riment we seeded the same type of conflicts in the same order. It is possi-
ble that participants may learn from past conflicts and change their
behavior with how they react to new conflicts; therefore, changing the or-
der in which we introduced the direct and indirect conflicts may produce
different results. Finally, in the Java experiment, participants were not re-
quired to integrate their changes and build the entire project. Therefore,
nearly all participants in the control group and some in the experiment
group did not detect the conflicts remaining in the code base. This fact
combined with the fact that we did not penalize the task with unresolved
conflicts precluded us from quantifying the benefits of workspace aware-
ness with respect to the time and effort saved in co-ordination. While this
experiment design decision was disadvantageous, finding the perfect bal-
ance between the amounts of time required for participants to learn about
the tool, complete tasks, and the complexity of the project is not trivial.

8.4.5 YANCEES

Notification servers (or publish/subscribe infrastructures) support the con-
tinuous co-ordination requirements of disseminating information from dis-
tributed information producers to different information consumers in a
timely fashion [39]. They provide mechanisms for publishing, routing, fil-
tering and disseminating information in the form of events. As such, pub-
lish/subscribe infrastructures have been used in support of different event-
driven applications [12, 17, 26, 46]. Whenever a new event-driven applica-
tion is conceived, developers face two alternatives: build a pub-
lish/subscribe infrastructure from scratch, or reuse one of many existing
research and industrial systems. A qualitative screening of existing pub-
lish/subscribe infrastructures revealed different architectural patterns
adopted by industrial and research publish/subscribe infrastructures in the
support of the evolving and heterogeneous requirements of different appli-
cation domains [48]. For example: minimal core, one-size-fits-all, co-
ordination languages and compositional models. Most of these patterns are

neither extensible nor configurable in the set of features they provide,
making their adaptation and reuse a difficult endeavor. This observation
motivated the development of YANCEES, which is an extensible and con-
figurable publish/subscribe infrastructure based on plug-ins [47]. As such,
our goal in the development of YANCEES was twofold. First, from the in-
frastructure developers’ perspective, we sought the reduction of the devel-
opment effort. Second, from the point of view of infrastructure consumers,
we sought an infrastructure that can reduce the development effort of
event-driven applications. In order to evaluate these goals, we designed the
following evaluation.

Objective of evaluation process and steps taken

Our evaluation had three major objectives. First, we sought to assess the
usefulness of YANCEES i.e., its ability to support the performance and
application-specific requirements of different application domains.
Second, we sought to evaluate its usability, which is measured as the de-
velopment effort of both infrastructure developers and consumers. Finally,
our evaluation compares these measures with existing approach in both the
literature and industry. We took the following steps to achieve these goals:

1. We performed qualitative screening of industrial and research infra-
structures with the goal of identifying major architectural patterns
adopted by these tools in the support of different application domains
requirements. The screening revealed four new alternatives which in-
cluded: (a) employ generalization in the construction of minimal APIs;
(b) support extensibility through the use of co-ordination languages; (c)
employ variation in the construction of one-size-fits-all infrastructures;
(d) or support flexibility by the use of component frameworks as is the
case with YANCEES.

2. We selected a set of open source infrastructures, one for each category
to be compared in a benchmark. These included Siena [6] representing
generalized minimal APIs; Sun JavaSpaces [20] representing co-
ordination languages; CORBA Notification Service (or CORBA-NS)
[38] representing one-size-fits-all infrastructures, and YANCEES [47]
representing flexible compositional infrastructures

3. We selected three feature-rich event-driven application domains as the
source of requirements for our study. These were usability monitoring
represented by EDEM, awareness represented by CASSIUS and colla-
borative environments represented by Impromptu [17, 28]. These infra-
structures were selected first for their diversity of requirements, and
second, for the previous experience of the authors in their development,

which provides both access to the source code, and expertise in their set
of requirements.

4. The requirements of each application were then abstracted into a set of
reference APIs representing ideal features that a publish/subscribe infra-
structure must support in each domain. We implemented each one of
these tree reference APIs using the four selected infrastructures. We also
implemented each API from scratch, as a control implementation.

5. Finally, we performed a quantitative evaluation of the resulting imple-
mentations, measuring their average responsiveness and the total devel-
opment effort of each. The development effort is calculated as the prod-
uct of the number of lines of code (LOC) and the McCabe Cyclomatic
Complexity (or McCabeCC) of the code required to adapt each
infrastructure in the implemnetatoin of each API [33]. The goal of the
performance benchmark in our study is to determine the usefulness of
the infrastructure, in serving its purpose within the requirements of each
application domain.

Fig. 8.3. YANCEES Performance Benchmark (left) and Comparative Develop-
ment Effort (right)

Lessons learned with respect to the tool

In our performance benchmarks, we compared responsiveness of an infra-
structure implemented with YANCEES with the same infrastructure im-
plemented reusing the other infrastructures. The results of one of the three
benchmarks are shown in Fig. 8.3. (left). The results show that YANCEES
performance is comparable to that obtained by reusing existing infrastruc-
tures or even to the cases where the APIs are building from scratch.

This demonstrates YANCEES ability to support the requirements of dif-
ferent application domains and its usefulness in supporting the develop-

ment of application-specific infrastructures, with no significant perfor-
mance penalty.

We also compared the total development effort (measures at the product
of LOC and McCabeCC) to determine the usability of YANCEES when
the other infrastructures are used to support the three application domains
Fig. 8.3. (right). It is important to note that infrastructures (e.g., Siena,
CORBA-NS, etc.,) are reused as black-boxes. They are extended “from the
outside”, by building the required functionality around their provided
APIs. YANCEES, on the other hand, is configurable and extensible “from
the inside”, allowing the modification of the set of features its supports.
This fundamental difference is reflected in the graphs of (Fig. 8.3.) where
both client and server side development efforts are shown, together with
combined effort (client + sever) in a separate bar.

Fig. 8.3. (right) demonstrates that while the total cost of reuse of
YANCEES in all the three scenarios (client + server) is comparable with
existing approaches, its ability to separate client and server-side develop-
ment has two important advantages. First, it allows the separation between
publish/subscribe infrastructures producers and consumers, dividing the
development effort (the two bars: YANCEES client and YANCEES server
in Fig. 8.3.). Second it reduces the application development effort, since
the infrastructure can be configured and extended to support the exact ap-
plication-specific set of features required by the application domain. This
is made evident by the lower YANCEES client effort (Fig. 8.3.). Contrary
to our expectations, the total (server + client) side development effort
when using YANCEES was not significantly lower than the other ap-
proaches. This can be the consequence of the additional effort devoted to
configuration and extension of the infrastructure.

Lessons learned with respect to the evaluation

When comparing different software infrastructures, developed with differ-
ent original goals, it is important to strive for a fair evaluation process. Dif-
ferent strategies were adopted in the design of our benchmark to increase
equitable comparison between the different approaches. First, we chose to
implement the benchmark ourselves to eliminate the variance that may
come by the use of different developers at different levels of expertise.
Second, we adopted best of breed design practices in all implementations
[21] and modularized common features into components that were reused
throughout the different implementations. We also adopted the same algo-
rithms used by the original applications (EDEM, CASSIUS, Impromptu)
we emulated. Finally, we aligned the different implementations to follow
the same task structure. This facilitates our data collection and analysis.

These strategies collectively increase the likelihood that code style, algo-
rithms and overall software architecture were similar throughout our expe-
riments. Finally, the benchmark tests were conducted in the same set of
machines (one client and one server), connected via a 100 Mbps local
Ethernet, thus providing a constant environment.

While the overall comparison of different infrastructures reusability
based on the number of LOC and McCabeCC allows the comparison of the
total development effort of these infrastructures, they do not reveal impor-
tant details about the individual concerns and costs involved in each ap-
proach. For example, the costs of adaptation, extension and configuration.
In order to investigate these costs in more details, we are currently con-
ducting a finer-grained analysis of the code uses in our benchmark.

8.5 Discussion

Our goal was to evaluate the usability and usefulness of different co-
ordination tools constituting our CC tool suite. Our tools were motivated
by findings from a set of ethnographic studies on co-ordination in software
teams [14, 16] and a qualitative screening of existing co-ordination tools.
While these studies formed the basis on which we determined the useful-
ness of the tool features, each tool’s usefulness and usability was further
evaluated using the DESMET evaluation framework. The particular ap-
proach used for a particular tool was determined based on its functionality,
the specific aspect that was being evaluated (usefulness or usability), and
the maturity level of the tool.

The majority of our tools strive to provide appropriate information of
ongoing project activities to the user, therefore, a primary goal of our eval-
uations was to study the usefulness of the tools based on whether a tool
achieved an appropriate level of abstraction. Depending on the desired
functionality of a co-ordination tool and the target audience, different le-
vels of data abstraction are required, which can then be visualized via text,
tables, charts, or other visualization metaphors. Most of our CC tools have
a visualization component. These components vary, from being completely
unobtrusive and subtle, such as information display as extensions to the
development editor, or more intensive displays requiring separate stand
alone visualizations that work best in auxiliary display units (second moni-
tor or ambient devices) or as large scale visualization that acts as a com-
mand control center. Thus, a key evaluation criterion was to assess the use-
fulness of a tool’s display technique. In particular, we investigated the
tradeoff between the amounts of information that was displayed and the

obtrusiveness of the display. Towards this goal, we observed that qualita-
tive effects analysis and usability inspections served as a good first level of
analysis to obtain user feedback. Further, most software projects are large,
which requires that our tools can scale well to large data sets. Towards as-
sessing the scalability of our tools, we used quantitative case studies,
namely, using our tools to visualize large scale open source projects and
then interviewing developers or managers from those projects to obtain
their feedback.

The next important criterion for our evaluation was to test the usability
of our tools. We primarily evaluated the usability of a tool by investigating
the trade-offs between the efforts users are willing to expend in operating
and/or learning a tool, versus the estimated benefits gained. Moreover,
since many visualization tools rely on novel metaphors to help users in-
terpret and navigate the vast information space generated by software, it is
important to evaluate the time and effort it takes users to understand visua-
lizations. Therefore, we also evaluated the effort expended by individuals
to understand the information provided by a tool via user experiments
(both qualitative and quantitative).

We found that two challenges are typically encountered when evaluat-
ing co-ordination tools: (1) differences in outcome because of differences
in the technical aptitude of participants and (2) differences in how a group
reacts to tasks and conflicts. Through our experiments, we sought to con-
trol for both these differences. We controlled for differences in technical
aptitude by stratifying our participants based on their background and then
randomly selecting participants from each stratum. Further, we ben-
chmarked our results first by using non-programming tasks and then con-
firming these results in a programming domain. We controlled for differ-
ences in group interactions by using confederate based design, which
ensured consistency in the kind and timing of conflicts, as well as group
interactions via IM.

While we took special care to control external factors to be able to test
specifically the usability of our tools, our study suffers from the common
external threats to research validity that arise in user experiments. For ex-
ample, selecting students as participants in several of our evaluation
threatens the ability to generalize from our results. We sought to recruit
different participants each time with varying levels of expertise (i.e., grad-
uate and post-graduate students) to limit this threat. We used confederates
to achieve consistency in our experiments. As such, we realize that results
can differ if events are introduced closer to the completion of the task or at
random intervals, as may happen in practice. Thus, the controlled introduc-
tion of an event at a specific time can also threaten the generality of our re-
sults.

We note that the evaluation of a co-ordination infrastructure tool such as
YANCEES, require different evaluation methods than other frontend co-
ordination tools. Therefore, its evaluations follow a slightly different for-
mat, although they still fall within the DESMET evaluation framework.
We tested the usefulness of YANCEES mainly through qualitative screen-
ing; and the usability and robustness of YANCEES by implementing three
feature rich applications using YANCEES and three other competing event
notification services. A quantitative evaluation of the resulting implemen-
tations was performed that assessed the average responsiveness and total
development effort required per implementation.

Finally, we encountered internal threats in the form of bias that may
have been introduced during our qualitative screening evaluations. The po-
tential for bias also exists in the feedback participants provided because
tool developers typically conducted the experiments and were direct reci-
pients of the feedback. We strove to minimize the impact of these threats
by conducting a combination of different evaluation approaches for each
tool.

8.6 Conclusions

In this paper, we described a set of co-ordination tools as known the CC
tool suite. The focus of this chapter was to describe in detail the different
evaluation methodologies that we followed for assessing the usefulness
and usability of our tools. In conclusion, we maintain there is no one eval-
uation method for a tool; rather, tools should be iteratively evaluated using
multiple evaluation methods to obtain well rounded evaluation results. We
found that a different evaluation methodology is often needed to assess
usefulness or usability aspects of a tool. Finally, the experience acquired
while researching continuous co-ordination has led us to conclude that we
need to consider the co-ordination information in terms of what, how,
when, and who shares it, which means that the evaluation of these tools
would benefit from evaluating whether these aspects of the tools addressed
developers’ needs.

Future plans for each tool were specified in their respective sections.
However, we have specific tasks ahead of us that hold true for most of the
CC tools at both the individual and organizational level. For example, at
the individual level we need to evaluate the impact the order of events has
on the outcome of our evaluations and the possible co-ordination patterns
that can emerge. CC tools typically share potentially sensitive information
thus it would be beneficial to investigate the issues relating to individual

privacy and data confidentiality. Both are important issues that need to be
carefully assessed to design usable co-ordination tools. Co-ordination tools
can fail if individuals perceive that the tool is used as a managerial perfor-
mance metric or used by their competitors [23]. We also need to evaluate
the use of CC tools within an organizational context. A tool that requires
changes to the typical workflow in an organization will generally encoun-
ter more resistance because potential users do not readily change their
work processes to adopt a new tool.

Acknowledgements

This research was supported by the U.S. National Science Foundation un-
der grants 0534775, 0326105, 0093489, and 0205724, by the Intel Corpo-
ration, by two IBM Eclipse Technology Exchange grants, and an IBM
Technology Fellowship.

References

[1] Amrit C (2005) Co-ordination in software development: the problem of task
allocation, In Proceedings of the 2005 workshop on Human and social factors
of software engineering (ACM) St. Louis, Missouri, pp 1 - 7

[2] Andrews K (2006) Evaluating Information Visualizations, In AVI workshop
on beyond time and errors: novel evaluation methods for information visuali-
zation (ACM) Venice, Italy, pp 1-5

[3] Ardito C, Buono P, Costabile MF, Lanzilotti R (2006) Systematic inspection
of information visualization systems, In AVI workshop on beyond time and
errors: novel evaluation methods for information visualization (ACM) Ve-
nice, Italy

[4] Barkhuus L, Rode JA (2007) From Mice to Men - 24 Years of Evaluation in
CHI, In CHI 2007 http://www.viktoria.se/altchi/

[5] Card SK, Mackinlay JD, Shneiderman B (1999) Readings in Information Vi-
sualization: Using Vision to Think. Morgan Kaufmann San Francisco, CA

[6] Carzaniga A, Rosenblum DS, Wolf AL (2001) Design and Evaluation of a
Wide-Area Event Notification Service. ACM Transactions on Computer Sys-
tems, (19) 3:332-383

[7] Cataldo M, Wagstrom PA, Herbsleb JD, Carley KM (2006) Identification of
Co-ordination Requirements: Implications for the Design of Collaboration and
Awareness Tools, In Computer Supported Co-operative Work. Banff, Alberta,
Canada, pp 353 - 362

[8] Crowston K (1997) A Co-ordination Theory Approach to Organizational
Process Design. Organization Science, (8) 2:157-175

[9] da Silva I, Chen P, Van der Westhuizen C, Ripley R, Hoek Avd (2006) Ligh-
thouse: Co-ordination through Emerging Design. In: OOPSLA workshop on
Eclipse Technology eXchange, Portland, Oregon, pp 11-15

[10] Damianos L, Hirschman L, Kozierok R, Kurtz J, Greenberg A, Walls K,
Laskowski S, Scholtz J (1999) Evaluation for collaborative systems. ACM
Computing Surveys, Vol. 31, Issue 2es, Article No. 15

[11] de Souza CRB (2005) On the Relationship between Software Dependencies
and Co-ordination: Field Studies and Tool Support, In Ph.D. dissertation, Do-
nald Bren School of Information and Computer Sciences, UC, Irvine, CA

[12] de Souza CRB, Basaveswara SD, Redmiles D (2002) Lessons Learned Using
Notification Servers to Support Application Awareness, In: Meeting of the
Human Computer Interaction Consortium, Frasier, CO

[13] de Souza CRB, Froehlich J, Dourish P (2005) Seeking the source: software
source code as a social and technical artifact, In ACM SIGGROUP Confe-
rence On Supporting Group Work, Sanibel Island, Florida, USA, November
06 - 09 2005, pp 197-206

[14] de Souza CRB, Quirk S, Trainer E, Redmiles DF (2007) Supporting Collabor-
ative Software Development Through the Visualization of Socio-technical
Dependencies, In 2007 International ACM Conference on Supporting Group
Work (ACM) Sanibel Island, Florida, USA, pp 147-156

[15] de Souza CRB, Redmiles D, Cheng LT, Millen D, Patterson J (2004) How a
Good Software Practice Thwarts Collaboration - The Multiple roles of APIs
in Software Development. In: Foundations of Software Engineering, Newport
Beach, CA, October 31 to Nov 5 2004, (ACM Press) pp 221 - 230

[16] de Souza CRB, Redmiles D, Dourish P (2003) "Breaking the code", moving
between private and public work in collaborative software development, In
ACM SIGGROUP Conference on Supporting Group Work (ACM), Sanibel
Island, Florida, USA, November 9-12 2003, pp 105 - 114

[17] DePaula R, Ding X, Dourish P, Nies K, Pillet B, Redmiles D, Ren J, Rode J,
Silva Filho RS (2005) In the Eye of the Beholder: A Visualization-based Ap-
proach to Information System Security. International Journal of Human-
Computer Studies - Special Issue on HCI Research in Privacy and Security,
Vol. 63, Issue 1-2, pp 5-24

[18] Ellis JB, Wahid S, Danis C, Kellogg WA (2007) Task and social visualization
in software development: evaluation of a prototype, In SIGCHI conference on
Human factors in computing systems, San Jose, CA, Apr 28 - May 03 2007,
pp 577-586

[19] Ericsson KA, Simon HA (1993) Protocol Analysis - Rev'd Edition: Verbal
Reports as Data (MIT Press Cambridge, MA) p 496

[20] Freeman E, Hupfer S, Arnold K (1999) Java Spaces Principles, Patterns, and
Practice. The Jini Technology Series (Book News, Inc.,)

[21] Gamma E, Helm R, Johnson R, Vlissides J (1995) Design Patterns: Elements
of Reusable Object-Oriented Software. Addison Wesley Professional Compu-
ting Series (Addison-Wesley Publishing Company)

[22] Green TRG (1989) Cognitive Dimensions of Notations, In Fifth Conference
of the British Computer Society, Human-Computer Interaction Specialist

Group on People and Computers (Cambridge University Press) Univ. of Not-
tingham, pp 433-460

[23] Grudin J (1988) Why CSCW applications fail: problems in the design and
evaluation of organization of organizational interfaces. In: Computer Sup-
ported Co-operative Work, Portland, Oregon, pp 85-93

[24] Grudin J (1994) Groupware and Social Dynamics: Eight Challenges for De-
velopers. Communications of ACM, (37) 1:92-105

[25] Hedberg H, Lappalainen J (2005) A Preliminary Evaluation of Software In-
spection Tools, with the DESMET Method, In International Conference on
Quality Software (IEEE Computer Society) 19-20 Sept 2005, pp 45-54

[26] Hilbert D, Redmiles D (1998) An Approach to Large-scale Collection of Ap-
plication Usage Data over the Internet. In: 20th International Conference on
Software Engineering (ICSE '98), Kyoto, Japan. April 19-25 1998, (IEEE
Computer Society Press) pp 136-45

[27] Huang EM, Mynatt ED, Russell DM, Sue AE (2006) Secrets to Success and
Fatal Flaws: The Design of Large-Display Groupware. IEEE Computer
Graphics and Applications, (26) 1:37-45

[28] Kantor M, Redmiles D (2001) Creating an Infrastructure for Ubiquitous
Awareness. In: Eighth IFIP TC 13 Conference on Human-Computer Interac-
tion (INTERACT 2001), Tokyo, Japan, pp 431-438

[29] Kitchenham BA (1996) Evaluating Software Engineering Methods and Tool
Part 1: The Evaluation Context and Evaluation Methods. SIGSOFT Software
Engineering Notes, (21) 1:11-14

[30] Lethbridge TC, Sim SE, Singer J (2005) Studying Software Engineers: Data
Collection Techniques for Software Field Studies. Empirical Software Engi-
neering, (10) 3:311-341

[31] Lungu M, Lanza M, Girba T, Heeck R (2007) Reverse Engineering Super-
Repositories, In Proceedings of the 14th Working Conference on Reverse En-
gineering (IEEE Computer Society) pp 120-129

[32] Malone TW, Crowston K (1994) The Interdisciplinary Study of Co-
ordination. ACM Computing Surveys, (26) 1:87-119

[33] McCabe TJ (1976) A Complexity Measure, In IEEE Transactions on Software
Engineering, December 1976, pp 308-320

[34] Mealy E, Strooper P (2006) Evaluating Software Refactoring Tool Support, In
Proceedings of the Australian Software Engineering Conference (IEEE Com-
puter Society) pp 331-340

[35] Michelis GD, Loregian M, Martini P (2006) Directional Interaction with
Large Displays Using Mobile Phones, In Proceedings of the 4th annual IEEE
international conference on Pervasive Computing and Communications
Workshops (IEEE Computer Society) 5:13-17

[36] Morera D (2002) COTS Evaluation Using DESMET Methodology & Analyt-
ic Hierarchy Process (AHP), In 4th International Conference on Product Fo-
cused Software Process Improvement (Springer-Verlag) pp 485-493

[37] Nielsen JK (1994) Heuristic Evaluation. Wiley, New York
[38] OMG (2004) CORBAcos Notification Service version 1.1 formal/04-10-13,

(Object Management Group) p 229

[39] Patterson JF, Day M, Kucan J (1996) Notification servers for synchronous
groupware, In: ACM conference on Computer supported co-operative work
(CSCW'96), Boston, Massachusetts, pp 122-129

[40] Plaisant C (2004) The Challenge of Information Visualization Evaluation, In
Working Conference on Advanced Visual Interfaces (ACM) Gallipoli, Italy,
pp 109-116

[41] Ramage M (1999) The Learning Way: Evaluating Co-operative Systems, PhD
Dissertation. In: Department of Computer Science. Lancaster, UK, p 142

[42] Redmiles D, Hoek Avd, Al-Ani B, Hildenbrand T, Quirk S, Sarma A, Silva
Filho R, de Souza CRB, Trainer E (2007) Continuous Co-ordination: A New
Paradigm to Support Globally Distributed Software Development Projects.
Wirtschaftsinformatik, Vol. 49, pp 28-38

[43] Ripley R, Sarma A, Hoek Avd (2007) A Visualization for Software Project
Awareness and Evolution. In: Workshop on Visualizing Software for Under-
standing and Analysis, Alberta, Canada, pp 137-144

[44] Russell J, Roberts C (2001) Angles on Psychological Research (Nelson
Thornes Ltd. p 256

[45] Sarma A, Bortis G, Hoek Avd (2007) Towards Supporting Awareness of Indi-
rect Conflicts across Software Configuration Management Workspaces. In:
Conference on Automated Software Engineering, Atlanta, USA, pp 94-103

[46] Sarma A, Noroozi Z, Hoek Avd (2003) Palantír: Raising Awareness among
Configuration Management Workspaces. In: Twenty-fifth International Con-
ference on Software Engineering, Portland, Oregon, USA, pp 444-454

[47] Silva Filho RS, Redmiles D (2005) Striving for Versatility in Pub-
lish/Subscribe Infrastructures. In: 5th International Workshop on Software
Engineering and Middleware (SEM'05), Lisbon, Portugal, 5-6 September
2005, (ACM Press) pp 17 - 24

[48] Silva Filho RS, Redmiles DF (2005) A Survey on Versatility for Pub-
lish/Subscribe Infrastructures. Technical Report UCI-ISR-05-8, (Institute for
Software Research) Irvine, CA, pp 1-77

[49] Sjoberg DIK, Dyba T, Jorgensen M (2007) The Future of Empirical Methods
in Software Engineering Research. In: Future of Software Engineering, 2007.
FOSE '07, pp 358-378

[50] Storey MA, Cheng LT, Bull I, Rigby P (2006) Shared waypoints and social
tagging to support collaboration in software development, In Proceedings of
the 2006 20th anniversary conference on Computer supported co-operative
work (ACM) Banff, Alberta, Canada, pp 195-198

[51] Trainer E, Quirk S, de Souza CRB, Redmiles DF (2008) Analyzing a Socio-
Technical Visualization Tool Using Usability Inspection Methods, In IEEE
Symposium on Visual Languages and Human Centric Computing, Washing-
ton, DC, pp 78-81

[52] Tufte E (1990) Envisioning Information (Graphics Press Cheshire, CT) p 126
[53] Tufte E (2006) Beautiful Evidence (Graphics Press Cheshire, CT) p 213
[54] Wasserman S, Faust K (1994) Social Network Analysis: Methods and Appli-

cations (Cambridge University Press) Cambridge, UK

[55] Wharton C, Rieman J, Lewis C, Polson P (1994) The Cognitive Walkthrough
Method: A Practitioner's Guide, In: Usability inspection methods, (Eds.) Wi-
ley, pp 105-140

[56] Xiaojun B, Yuanchun S, Xiaojie C (2006) uPen: A Smart Pen-liked Device
for Facilitating Interaction on Large Displays. In: First IEEE International
Workshop on Horizontal Interactive Human-Computer Systems, Adelaide,
South Australia. 5-7 January 2006

[57] Zuk T, Schlesier L, Neumann P, Hancock MS, Carpendale S (2006) Heuris-
tics for Information Visualization Evaluation, In AVI Workshop on Beyond
time and errors: novel evaluation methods for information visualization.
(ACM) Venice, Italy

Appendix A

T
oo

l
P

ur
po

se
 o

f t
oo

l
P

ur
po

se
 o

f E
va

lu
at

io
n

D
E

S
M

E
T

E
va

lu
at

io
n

A
pp

ro
ac

h
A

ria
dn

e
A

llo
w

s
de

ve
lo

pe
rs

 t
o

ex
pl

or
e

an
d

an
al

yz
e

so
ci

o-
te

ch
ni

ca
l

de
pe

nd
en

cy
 in

fo
rm

at
io

n.

Id
en

tif
y

us
ab

ili
ty

 is
su

es
 w

ith

A
ria

dn
e’

s
vi

su
al

 in
te

rf
ac

e.
Q

ua
lit

at
iv

e
sc

re
en

in
g;

Q
ua

lit
at

iv
e-

ef
fe

ct
s

an
al

ys
is

;
Q

ua
nt

ita
tiv

e
ca

se
-s

tu
dy

.

U
sa

bi
lit

y
in

sp
ec

tio
n

m
et

ho
ds

:
H

eu
ris

tic
 E

va
lu

at
io

n
C

og
ni

tiv
e

W
al

kt
hr

ou
gh

C
og

ni
tiv

e
D

im
en

si
on

s
of

 N
ot

at
io

ns
T

uf
te

’s
 p

rin
ci

pl
es

 o
f

in
fo

rm
at

io
n

pr
es

en
ta

tio
n.

W
A

V
P

ro
vi

de
s

a
3d

 v
ie

w
 o

f
al

l
pa

ra
lle

l w
or

ks
pa

ce
 a

ct
iv

iti
es

an

d
su

pp
or

ts
 p

la
yb

ac
k

ov
er

tim

e.

D
em

on
st

ra
te

 a
cc

ur
ac

y
of

da

ta
 c

ol
le

ct
ed

 a
nd

 t
o

te
st

sc

al
ab

ili
ty

 o
f t

he
 v

is
ua

liz
at

io
n.

Q
ua

lit
at

iv
e

sc
re

en
in

g;
Q

ua
lit

at
iv

e-
ef

fe
ct

s
an

al
ys

is
;

Q
ua

nt
ita

tiv
e

ca
se

-s
tu

dy
.

P
os

t-
m

or
te

m
 a

na
ly

si
s

(e
.g

.
ca

se
 s

tu
dy

)
of

ex

is
tin

g
op

en
- s

ou
rc

e
pr

oj
ec

ts
 a

nd
 v

al
id

at
io

n
of

re

su
lts

 w
ith

 p
ro

je
ct

 m
em

be
rs

.

Li
gh

th
ou

se
C

re
at

es
 t

he
 E

m
er

gi
ng

 D
es

ig
n,

an

 a
lw

ay
s

up
-t

o-
da

te

ab
st

ra
ct

io
n

of
 t

he
 s

of
tw

ar
e

co
de

.

O
bs

er
ve

 th
e

us
ef

ul
ne

ss
 o

f
Li

gh
th

ou
se

 in
 h

el
pi

ng
 u

se
rs

un

de
rs

ta
nd

 o
ng

oi
ng

 p
ro

je
ct

ac

tiv
iti

es
, d

et
ec

t
em

er
gi

ng

co
nf

lic
ts

,
an

d
co

m
m

un
ic

at
e

w
ith

 te
am

 m
em

be
rs

.

Q
ua

lit
at

iv
e

sc
re

en
in

g;
Q

ua
lit

at
iv

e-
ef

fe
ct

s
an

al
ys

is
;

Q
ua

lit
at

iv
e

ex
pe

rim
en

ts
.

In
fo

rm
al

 u
se

r
ex

pe
rim

en
t

in
vo

lv
in

g
O

bs
er

va
tio

n
by

 e
xp

er
im

en
te

rs
T

hi
nk

 a
lo

ud
 te

ch
ni

qu
es

E
xi

t s
ur

ve
y

P
al

an
tír

P
ro

m
ot

e
w

or
ks

pa
ce

aw

ar
en

es
s

by
 t

ra
ns

m
itt

in
g

in
fo

rm
at

io
n

of
 o

ng
oi

ng
 p

ro
je

ct

ac
tiv

iti
es

 to
 d

et
ec

t
em

er
gi

ng

di
re

ct
 a

nd
 in

di
re

ct
 c

on
fli

ct
s

at

re
al

 ti
m

e

S
ta

tis
tic

al
ly

 d
et

er
m

in
e

th
e

us
ef

ul
ne

ss
 o

f P
al

an
tír

 in

de
te

ct
in

g
em

er
gi

ng
 c

on
fli

ct
s

an
d

pr
om

ot
in

g
co

or
di

na
tio

n
to

re

so
lv

e
co

nf
lic

ts

Q
ua

lit
at

iv
e

sc
re

en
in

g;
Q

ua
lit

at
iv

e-
ef

fe
ct

s
an

al
ys

is
;

Q
ua

lit
at

iv
e

ex
pe

rim
en

ts
 (

us
er

ex

pe
rim

en
t;

in
te

ro
pe

ra
bi

lit
y)

;
Q

ua
nt

ita
tiv

e
ex

pe
rim

en
t;

B
en

ch
m

ar
ki

ng
 o

f e
xp

er
im

en
t

re
su

lts

F
or

m
al

 s
se

r
ex

pe
rim

en
t

(B
en

ch
m

ar
k:

 u
se

 t
ex

t
da

ta
 to

 c
on

tr
ol

 fo
r

in
di

vi
du

al
 d

iff
er

en
ce

 a
ris

in
g

du
e

to
 d

iff
er

en
ce

 in
 te

ch
ni

ca
l s

ki
lls

;
C

on
fe

de
ra

te
 d

es
ig

n:
 c

on
tr

ol
 t

he
 t

yp
e,

 n
um

be
r,

an

d
tim

in
g

of
 c

on
fli

ct
s

to
 o

ve
rc

om
e

va
ria

nc
es

in

 g
ro

up
 in

te
ra

ct
io

n)
O

bs
er

va
tio

n
by

 e
xp

er
im

en
te

rs
T

hi
nk

 a
lo

ud
 te

ch
ni

qu
es

E
xi

t s
ur

ve
y

Y
A

N
C

E
E

S
Im

pr
ov

e
th

e
su

pp
or

t
fo

r
he

te
ro

ge
ne

ou
s

se
t

of

re
qu

ire
m

en
ts

 o
f

C
on

tin
uo

us

C
oo

rd
in

at
io

n
to

ol
s

A
ss

es
s

th
e

re
us

ab
ili

ty
 a

nd

pe
rf

or
m

an
ce

 o
f Y

A
N

C
E

E
S

,
co

m
pa

rin
g

th
e

re
su

lts
 w

ith

ex
is

tin
g

ap
pr

oa
ch

es

Q
ua

lit
at

iv
e

sc
re

en
in

g
to

de

te
rm

in
e

ex
is

tin
g

ap
pr

oa
ch

es
.

Q
ua

nt
ita

tiv
e

ex
pe

rim
en

t:
re

us
ab

ili
ty

B
en

ch
m

ar
ki

ng
: p

er
fo

rm
an

ce

Im
pl

em
en

t
th

re
e

A
P

Is
 b

as
ed

 o
n

se
le

ct
ed

in

fr
as

tr
uc

tu
re

s,
 m

ea
su

rin
g

th
e

de
ve

lo
pm

en
t

ef
fo

rt
.

B
en

ch
m

ar
k:

 e
va

lu
at

e
th

e
pe

rf
or

m
an

ce
 o

f
th

e
re

su
lti

ng
 im

pl
em

en
ta

tio
ns

T
ab

le
 1

4.
1

S
um

m
ar

y
of

 e
va

lu
at

io
n

ap
p

ro
ac

he
s

fo
r

e
ac

h
C

C
 t

o
ol

