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Abstract 
Standard client-server workflow management systems 
have an intrinsic scalability limitation, the central server, 
which represents a bottleneck for large-scale applica-
tions. This server is also a single failure point that may 
disable the whole system. We propose a fully distributed 
architecture for workflow management systems. It is 
based on the idea that the case (an instance of the proc-
ess) migrates from host to host, following a process plan, 
while the case activities are executed. This basic architec-
ture is improved so that other requirements for Workflow 
Management Systems, besides scalability, are also con-
templated. A CORBA-based implementation of such ar-
chitecture is discussed, with its limitations, advantages 
and project decisions described. 

 
 

Keywords: Large-scale Workflow, Distributed Objects, 
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1. Introduction 
 
Workflow Management Systems (WFMSs) are used to 

coordinate and sequence business processes, such as loan 
approval, insurance reimbursement, and other office pro-
cedures. Such processes are represented as workflows, 
computer interpretable description of activities (or tasks), 
and their execution order. The workflow also describes 
the data available and generated by each activity, parallel 
activities, synchronization points and so on. This descrip-
tion may also express constrains and conditions such as 
when the activities should be executed, a specification of 
who can or should perform each activity, and which tools 
and programs are needed during the activity execution [3]. 

Many academic prototypes and commercial WFMSs 
are based on the standard client-server architecture de-
fined by the WFMC (Workflow Management Coalition) 
[2]. In such systems, the Workflow Engine, the core of a 
WFMS, is executed in a server machine that typically 

stores both the application data (the data that is used and 
generated by each activity within the workflow), and the 
workflow data (its definition, the state and history infor-
mation about each instance of the workflow, and any other 
data related to its execution). 

This client-server centralized architecture represents a 
limiting barrier for large-scale applications, with many 
instances of process being executed concurrently. Fur-
thermore, the use of a central database in these systems 
represents a performance bottleneck and a single failure 
point that can paralyze the whole system and possibly the 
whole business itself. Therefore, WFMSs based on cen-
tralized client-server architectures are limited in providing 
appropriate levels of scalability, fault tolerance and avail-
ability, which may hind their use on an important set of 
applications [4]. 

In this paper we introduce the WONDER (Workflow 
ON Distributed EnviRonment) architecture, a WFMS that 
addresses, in special, the scalability and availability is-
sues. Other requirements of WFMSs, such as failure re-
covery, auditing and traceability are also addressed. In the 
WONDER architecture, the control, the storage of data, 
and the execution of the activities are all distributed over 
the hosts of an enterprise computer network. 

 
1.1. Terms 

 
We will use, from now on, the following definitions. A 

process definition or a plan is described in terms of the 
WFMC primitives: sequencing, and-join, and-split, or-
join, and or-split [2]. A case is an instance of a process. 
Processes are defined in terms of activities or tasks, 
which are atomic actions performed by a single person or 
by a program. Role is the generic description of a set of 
abilities required to a person in order to perform an activ-
ity. Thus, secretary, programmer and reviewer are roles. 
People or programs that perform the activities are called 
users or actors, and a particular user can perform many 
roles. If the user is a person she has a preferential host, a 
computer to where all her work related notifications and 
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activities are send. In particular, the notifications are send 
to her task list. 

 
1.2. Requirements for Workflow Systems 

 
In this paper, we will address the following require-

ments of a WFMS: 
Scalability: The WFMS should not have its perform-

ance degraded due to the increase of: processes, cases or 
activity instances within a workflow. It should also sup-
port a big volume of application data and actors. 

Failure recovery: The WFMS should deal with both 
software and hardware failures with the least intervention 
of users. 

Availability: The WFMS must not get unavail-
able/unreachable for long periods of time. 

Monitoring: The WFMS should be able to provide in-
formation about the current state of all cases and activities 
in execution. 

Traceability: History (trace) information of the cur-
rent and terminated cases must be provided by the 
WFMS. 

 
1.3. Paper Description 

 
The next section discusses, at a glance, the main com-

ponents of the WONDER architecture. Section 3 dis-
cusses the implementation of this architecture using 
CORBA (Common Object Request Broker Architecture). 
Section 4 presents some implementation issues, Section 5 
describes some related work and Section 6 presents some 
conclusions. 

 

2. The Distributed Model 
 
In general, and using informal terms, our architecture is 

based on the idea that each case is a "mobile agent" that 
migrates from host to host as the case activities are per-
formed. The agent encapsulates both, the application data 
and the plan for that case (workflow control data). The 
case "moves" to a particular user's host once it "figures 
out" that the next activity will be performed by that user at 
that host. Once the activity is finished, the agent "figures 
out" another user to perform the next activity and moves 
to his/her host. This "mobile agent" architecture copes 
with the scalability requirement, since there is no central 
control or data server, and there is no performance bottle-
neck. 

Some components were added in order to deal with 
further requirements. It is usual that the plan of a process 
does not specify a particular user as the performer of an 
activity, but only a role. Consider a credit checking activ-
ity example, the plan will state that a credit evaluator, but 

not a specific actor, should perform the activity of credit 
checking. In order to cope with this requirement, a role 
coordinator component, containing information of each 
role, was defined. In the example above, the case queries 
the credit evaluator coordinator, and asks it about a user to 
perform that activity. Once figured out the user, the case 
moves to that user's host. 

Monitoring is also an issue in our architecture. How 
does one find out, without broadcasting, what is the cur-
rent state of a case, since it may be executing in any of the 
hosts of the network? A case coordinator component, that 
keeps track of the case as it moves along, was defined. 
Each time the case moves to a new user's host, it sends a 
notification to its case coordinator. Therefore the case 
coordinator knows where and at which process stage is a 
case. 

Another important problem for the mobile agent archi-
tecture is failure recovery. The distributed characteristic 
of our architecture introduces many failure-candidate 
points, but keeps the failure isolated from other processes. 
What happens to the case if the host where it is executing 
breaks down? To deal with it, some redundancy policies 
were specified. For the eventuality of a break down, while 
the case is executing in the current host, a persistent copy 
of its last state is stored at the previous host. As soon as 
the failure is detected, the case coordinator elects another 
host/user to restart or resume the halted activity, using the 
past case state. Furthermore, to avoid unnecessary storage 
of old activity states throughout the network, the case co-
ordinator may direct hosts to transfer these persistent state 
to a backup server, freeing their disk space. 

In its essence, the "mobile agent" is composed of an 
hierarchy of responsibilities, where each server manages a 
subset of objects. These servers correspond to the case 
coordinator, the role coordinator, the backup server and 
others. Our current approach of decentralized servers re-
moves the bottleneck of traditional workflow systems. In 
counterpart, distribution is known to increase communica-
tion among the decentralized servers, a problem that must 
be investigated in detail. For example, a case coordinator 
represents one instance of a process and receives very 
short asynchronous notifications from "mobile agents". 
These notifications comprise only the agents' current 
status and destination host. On the other hand, the backup 
server may receive large amounts of data, but this transfer 
is done asynchronously when network and server load 
allows for it. The only standard server, in a client-server 
sense, is the role coordinator, which receives a query and 
must return an answer before the case migration carries 
on. However, the respective amount of information ex-
changed is also small, comprising the sending of a short 
query and the return of a user identity of as an answer. 

Therefore, since message exchanging is small and 
asynchronous, communication is not a problem. 
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2.1. Main Components of the Architecture 

 
The architecture in Figure 1 is composed of autono-

mous distributed objects, which are described in the next 
subsections.  
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Figure 1. The main components of the architecture 

 
2.1.1. Process Coordinator. The process coordinator is 
responsible for the creation and management of case co-
ordinators. Upon a request for a new office supply pur-
chase, for instance, the “purchase of office supply process 
coordinator” will create a new case coordinator for this 
order, transferring the plan to this new object. 

If one needs to locate all instances of a process, the 
process coordinator also keeps track of all of its case co-
ordinator instances in execution. For example, if the defi-
nition of the process is changed, say to introduce a new 
activity, the process coordinator will propagate these 
changes to all its cases. 

 
2.1.2. Case coordinator. The case coordinator centralizes 
all status information of a particular case. It is responsible 
for detecting case failures and for coordinating its recov-
ery procedures. It executes the finalization process of a 
case, by performing the garbage collection of past activi-
ties data and state, and storing the collected data in the 
history server. It also answers queries about the current 
case state, notifies the process coordinator when a case is 
terminated, as well as other management procedures. 

 
2.1.3. Role Coordinator. The role coordinator is respon-
sible for the management of the users able to perform a 
particular role. It also manages the current user status, 
such as the activities that the user is currently executing. 
With this information, a “programmer role coordinator” 
can answer queries like “Which is the least loaded pro-
grammer?” or “Which are the available programmers?”. 

The role coordinator may also have access to the His-
tory Server (which stores information about completed 
cases), and to corporate databases. With the help of these 
servers, the role coordinator can answer queries like: 
“Who is the programmer with most experience in that 

kind of system?” or “Who was the programmer that im-
plemented the previous version of that code?”. 

 
2.1.4. Synchronization Activity. And-joins and Or-Joins 
are a particular problem in "mobile agent" architectures. 
Each join of a case must be created before its beginning, 
otherwise a "mobile agent" would not know where to go 
when it needs to synchronize with other "mobile agents", 
that are executing in different branches of the same plan. 
The synchronization activity will wait for all notifications 
(and-join) or the first notification (or-join) from its input 
activities before starting the following (output) activity. 
For example, during an and-join, once all "mobile agents" 
have moved from its input activities to the synchroniza-
tion activity, this synchronization object merges all case 
data, and composes a new single "agent" that is moved to 
the host assigned to the next activity. In an or-join syn-
chronization activity, the first case to arrive will trigger 
the sequencing of the next activity. A synchronization 
activity may also wait for other synchronization signals, 
such as external events. 

 
2.1.5. Task List. The user interface is implemented as a 
task list, similar to a mailbox. The task list notifies the 
user of new activities that she is supposed to perform. 
This allows the user to accept or to reject the incoming 
activity according to the current specified policy. Fur-
thermore, the task list is the user's main interface to the 
WFMS itself, so it should also allow for some customiza-
tions, such as selection of preferred external applications, 
change of the user's preferential host, selection of policies 
for sorting the coming activities, and so on. It also collects 
information about the user's workload, to be queried by 
the role coordinators. 

 
2.1.6. History Server. The history server (or servers) is a 
front-end for the repository of completed cases. When a 
case coordinator finishes its work, all relevant data used 
by the case are stored in the history repository. Such pro-
cedure allows for the cases to be audited and the memory 
of the cases to be archived for further review. 

 
2.1.7. Backup Server. The backup server (or servers) 
is(are) a front-end(s) for the repository of the intermediary 
state of the active cases. As we mentioned before, the past 
state information about a “mobile agent” is stored in some 
of the hosts where it executed. These users’ hosts are nei-
ther trusted to hold the past state information indefinitely, 
nor to be active when this information is needed. The 
backup server runs in a more reliable and powerful ma-
chine. It receives the data and state of the past activities of 
an active case, under the command of the its case coordi-
nator. Once the backup is performed, the state information 
can be erased from the users' hosts. 
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2.1.8. Activity Manager. So far, we have been using the 
idea of a “mobile agent” as an intuitive description of the 
distributed nature of a case. The case, however, is not 
really implemented as a “mobile agent” in its strict terms, 
but as data and state that are transferred between two spe-
cific objects. There is no code mobility. 

Each activity manager coordinates the execution of an 
instance of an activity for each case. When a new activity 
of a case needs to be performed, a new activity manager is 
created at the preferential host of the user that will per-
form the activity. It is, then, configured with the activity 
specific data, and the previous activity case state. The 
plan interpretation is resumed and the activity is per-
formed using the appropriate applications, through the use 
of application wrappers. The activity manager waits until 
the user finishes and then computes who should execute 
the next activity (by interpreting the plan that came along 
with the case state, and by querying the appropriate role 
coordinator). If the next activity is to be performed by a 
user, the activity manager sends the appropriate informa-
tion to that user's task list, notifying the case coordinator 
that the activity has ended and who is the selected user to 
perform the next activity. After that, it transfers the case 
information to the created activity manager. It also re-
ceives requests from the case coordinator to transfer its 
case data to a backup server. 

 
2.1.9. Application Wrappers. The application wrappers 
are objects that control the execution of a particular in-
voked application. It launches the application with initial 
data and files and collects the application output. It is a 
bridge between specific programs and the activity man-
ager. When the task finishes, the Wrappers notify the cor-
responding Activity Manager. 

 

3. CORBA Implementation  
 
The CORBA communication framework [9] provides a 

set of functionalities and transparencies that improve the 
distributed applications development. It implements an 
object-oriented distributed bus, providing transparencies 
of access (independence of hardware, language or operat-
ing system) and location (independence of the host where 
the object is executing). It offers all object-oriented pro-
gramming advantages, such as inheritance, information 
hiding, reusability, polymorphism and so on. It also en-
ables the use of legacy applications, which were devel-
oped for different hardware and software platforms, 
through the definition of IDL interfaces to these legacy 
applications. 

 
3.1. References to CORBA Objects 

 

The main problem using CORBA as the support envi-
ronment for the distributed workflow architecture is its 
object reference specification. CORBA standard IORs 
(Interoperable Object References) are not adequate for 
our application. These references are dynamically allo-
cated, and include the IP address and port number, which 
respectively locate the host and an object within it. Since 
the completion of a case may take up to many days, or 
even months, one cannot assume that, for a whole case 
execution lifecycle, an object will keep itself active, on 
the same port it was created, being located by the same 
IOR. The OMG (Object Management Group) CORBA 
specification still lacks an object persistence service, 
therefore we had to create our own persistent object refer-
ences. In our scheme, the objects are locally stored, and 
identified using the following naming structure: (host, 
process, case, actor, activity, file) for files; (host, process, 
case, actor, activity) for activities; (host, process, case) for 
case coordinators; (host, process) for process coordina-
tors; (host, backup-server) for backup servers, and so on. 

In order to provide transparent object persistence, each 
host has a Local Object Activator (LOA). The LOA exe-
cutes as a hook in the WONDER runtime environment 
daemon (orbixd – OrbixWeb locator daemon) and inter-
mediates the object activation (bind), deactivation and 
persistence, saving the object state and data in a local re-
served disk area (object repository). For example, the case 
coordinator for a request for the purchase of 500 paper 
clips (case C4375), of the process "purchase of office 
supply" (process P12), in the host abc.def.com is identi-
fied by (abc.def.com, P12, C4375). To access this object 
(or formally to bind to this object), a process must send 
the reference (P12, C4375) to the LOA in machine 
abc.def.com, which will activate and restore the state of 
that case coordinator. This activation uses the information 
previously stored in the object repository. The LOA then 
returns the IOR of the newly restored object to be imme-
diately used. 

 
3.2. Hierarchy of Interfaces 

 
We describe below the main aspects of the mapping 

between the components of the architecture and the 
CORBA environment. A hierarchy of interfaces (and ob-
jects) is described. 

The interface hierarchy, presented in Annex A, is com-
posed of three interface groups: Repository, WonderCo-
ordinator and Activity interfaces. Repository represents 
interfaces implemented by objects that manage data stor-
age. There are two kinds of data repositories: Back-
upServer and HistoryServer. Coordinators manage the 
execution of other system objects. There are case and 
process coordinators. Activity instances are objects that 
control the task execution. They are managed by CaseCo-
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ordinator instances. There are two subclasses of Activity: 
one to perform and control the execution of tasks by peo-
ple (or programs) (ActivityManager), and one to carry out 
synchronization points (SynchronizationActivity). The 
ActivityManager also implements the activity sequencing 
and execution. The activity sequencing procedure uses 
DataContainer instances to store data and process defini-
tions. These containers are exchanged among Activity-
Manager objects. The coordinator and activity groups, 
along with the RoleCoordinator, are sub-interfaces of the 
WorkflowObject. The RoleCoordinator objects manage 
dynamic and history information concerned with the sys-
tem users (User instances). Each user has an associated 
role. WonderObject instances are uniquely identified, and 
can be controlled, located and stored. Local Object Acti-
vators (LOA) are responsible for implementing the objects 
persistence and activation. TaskList instances store infor-
mation concerned with user allocated activities. 

 
3.3. Execution Scenarios 

 
In this section, some execution examples are presented. 

They emphasize the main objects of the architecture, 
showing their communication and interaction. For sim-
plicity, we will not represent the interaction with the LOA 
object in our diagrams. This interaction occurs each time 
an object is created, restarted or reconnected. The scenar-
ios are described using the UML sequence diagram nota-
tion. 

1: Start
Activity()

2: Init()
3: SetEvent
(Running)

       4:Exec()
5: Finish

Notification()
6: SetEvent
(Finish)

7: SetEvent
(Sequencing)

8: QueryUsers
9:QueryData()

10: Suggest
Activity()

11: Accept
Activity

12: true

13: <create>>
14: Bind()
{wake up}

15: GetData()
16: SetData()
17: Add
Activity()

18: Start
activity

19: Init()

20: Set
Event
(Starting)

21: SetEvent
(Finishing)

22: Save()

24: Save    23: Exit()

25: Exit()

AM1:Activity
Manager

User1
TL1:Task
List

AM2:Activity
Manager

CC1:Case
Coordinator

RC1:Role
Coordinator

TL2:Task
List User2

AM3:Activity
Manager

HS3:History
Server

 
Figure 2. Activity sequencing diagram 

 

3.3.1. Activity Sequencing. Figure 2 shows a typical 
example of an activity sequencing procedure. When the 
activity execution ends (sending messages 5 and 6), the 
activity manager AM2 starts the new activity sequencing 
process. The case coordinator CC1, executing in a differ-
ent host, receives an “end of the activity” notification (6). 
The AM2 activity interprets the process plan and “figures-
out” which activity is to be performed next, and by which 
role. The AM2 queries RC1 (the role coordinator for the 
role to execute the next activity - message 8), which se-
lects a user to perform the next activity. The AM2 places 
the notification of the new activity in the user’s task list 
TL2 (10). If the selected user accepts the activity, the ac-
tivity creation procedure starts (10 to 13). The activity 
manager AM2 creates the next activity manager, AM3, in 
the user’s preferential host (13), and transfers all neces-
sary data to this object (16). Since AM2 does not have all 
necessary data to send to AM3 locally, it gets data from 
AM1 (14 and 15). The data is wrapped in a data container 
together with the case state. Finally the AM3 activity 
manager is inserted in the User2 task list (17). It is initial-
ized (19) and the AM2 activity is finalized (21 to 23).  

For performance reasons, only data necessary for the 
created activity is transferred. The remainder data are 
passed as links, in order to be retrieved by subsequent 
activities. 

1:CreateNe
wCase()

2: <<create>>

3: SetData()

4: Init()

5: *[for every
join in the plan] <<create>>

6:QueryUsers()
7: QueryData()

8: Suggest
Activity()

9: accept
10: true

11: <<create>>

12: SetData()
13: Add
Activity()

14: Init()

PC1:Process
CoordinatorUser1

CC1:Case
Coordinator

RC1:Role
Coordinator

TL2:Task
List User2

HS3:History
Server

SA1:Synchro
nizationAct

AM1:Activity
Manager1

 

Figure 3. Case creation sequence diagram 

 
3.3.2 Case Creation. The case creation procedure, pre-
sented in Figure 3, is initiated by a user (User 1) request 
in the process coordinator PC1 interface (1). This request 
results in the case coordinator CC1 creation and configu-
ration (2 and 3). The setup process starts and the CC1 
creates the synchronization activities for the case (5). Af-
ter querying the RC1 role coordinator for a user to per-
form this activity (User 2), and after the activity accep-
tance by this user (8 to 10), the CC1 creates the first case 
activity AM1 (11 to 14) and the case starts. 
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3.3.3. Activities And-Split. The and-split is implemented 
as a parallel sequence of activities, the procedure de-
scribed in Figure 2 is iterated for each activity in the 
branch. The new created activities follow independent 
paths until a synchronization activity (and-join) is found.  

 
3.3.4. Activities Synchronization. The synchronization 
activities are created by the case coordinator, and their 
localization is placed in the process plan at the beginning 
of the case. When an activity ends, and its following activ-
ity is an and-join, the plan will refer directly to this syn-
chronization activity address. 
The synchronization procedure involving the activities 
AM1, AM2, and SA4 is described in Figure 4. During this 
synchronization process, each activity manager notifies 
the synchronization activity SA4 and the case coordinator 
CC1 (2 and 3). After both activity managers (AM2 and 
AM1) have notified SA4, it starts the following activity in 
the standard way as described in 3.3.1. As usual, CC1 is 
kept informed of the progress of the case, managing the 
case and handling its failures. 

1: SetData()

2: Synchroniz()

3: SetEvent
(finish)

4: SetData()

5: Synchroniz()

6: SetEvent
(finish)

7: Save() 9:QueryUsers()

          8: Exit() 10: Suggest
Activity()

12: Save() 11: Accept

13: Exit() 14: True

15: SetEvent
(sequencing)

16:<<Create>>

17: SetData()

18: AddActivit()

19: Init()
20: SetEvent
(finish)

22: Save()
21: SetEvent

(started)

          23: Exit()

CC1:Case
Coordinator

RC1:Role
Coordinator

TL2:Task
List

User2
SA4:Synchro
nizationAct

AM1:Activity
Manager

AM2:Activity
Manager

AM3:Activity
Manager

 
Figure 4. An and-join synchronization diagram 

 
3.3.5. Case Finalization. The Figure 5 presents the dia-
gram of a case finalization procedure. By the end of each 
case, data stored at each host that executed at least one 
activity of the case, and all case data stored in the backup 
server(s) are removed by the case coordinator CC3 (9, 11 
and 13). An execution summary containing relevant data 
for future queries is stored in the History Server HS2 (12).  

 

1: SetEvent
(finish)

2: SetEvent
(finish)

3: Save()

5: Garbage
Collect()

              4: Exit()

6: *[for each
activity in the
case]

bind()

7: GetData()

8: Exit()
9: Remove

Data()

       10: Exit()
11: Remove
Object()

12: SetData()

13: Remove
Data ()

        14: Exit()

AM80:Activity
Manager

?:Activity
Manager

CC3:Case
Coordinator

PC2:Process
Coordinator

HS2:History
Server

BS2:Backup
Server

 
Figure 5. A sequence diagram of a finalizing case 

 
3.3.6. Failure Recovery. The failure recovery process 
consists of: halting the current process (current executing 
activities), restoring the system to a previous stable state, 
modifying the case process definition (adding compensa-
tion activities), and finally resuming the case. This routine 
is managed by the Case Coordinator, using data stored in 
the object repository of each host, and in the backup serv-
ers scattered over the system. 
 

4. Implementation Issues 
 
The system was developed in the Institute of Comput-

ing at UNICAMP. It was written in Java (Sun JDK1.1), 
using the Iona OrbixWeb 3.1c, a Java ORB implementa-
tion. The distributed system used during the implementa-
tion is composed of Unix Workstations, NCD Diskless X-
terminals and Windows NT/Linux PC Workstations. All 
computers are connected by a 10Mb Local Area Network. 

 
4.1. CORBA Services 

 
Many CORBA based Workflow architectures use a 

subset of the OMA CORBA Services [10,11]. The most 
commonly used services are the Naming, Event, Notifica-
tion, Security and Transaction. Due to the large-scale re-
quirements of the WONDER architecture, and its mobile 
object approach, some inadequacy points of these services 
came up. These issues are discussed as follows. 

Some workflow implementations use the CORBA 
Transaction Service to coordinate the data flow among 
many different servers [10,13]. This approach creates a 
fail-safe data transfer protocol among different activities, 
implementing a set of “transactional communication 
channels”. Large systems require transactional semantics, 
but may not always require distributed transactions [12]. 

In the WONDER architecture the Activity Manager 
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peers manage the consistence of the data transfer. All the 
data and the case state are transferred simultaneously, in a 
single operation invocation, from one activity manager to 
another. During splits, this process is iterated for each 
activity in the branch. Hence, the CORBA method invoca-
tion mechanism is sufficient for our implementation. Er-
rors are handled using retransmission policies. If some 
error occurs during the remote operation invocation, due 
to a temporary link crash, for example, the ORB throws a 
SystemException. This exception is caught and resolved 
by the data sender which, according to the failure reason, 
can result in another method invocation when the link is 
up again. If the fail persists, the case coordinator carries 
on the error procedure, creating an alternative path to be 
followed. This simple approach dispenses a more complex 
control implemented by a transaction server. 

The Event and the Notification Services decouple the 
producer and consumer servers, implementing a message 
queue. These messages can be made persistent in some 
COSNotification proprietary implementations [Web-1]. 
This safe event channel, however, increases the failure 
detection complexity. 

The WONDER architecture does not rely on any stan-
dard CORBA naming service because of the IOR prob-
lems described in section 3.1. Instead, each host executes 
a locator that resolves markers (OrbixWeb user-friendly 
object names) to IOR object references. This locator, op-
erating with the LOA, is also used to implement the ob-
jects activation and deactivation, besides their persistence. 
The locator is implemented using the OrbixWeb orbixd 
daemon and an OrbixWeb LoaderClass hook, which spe-
cialization implements the LOA object. 

 
4.2. Workflow, CORBA and Java Implementa-
tion. Advantages and Drawbacks 
 

The core CORBA mechanism (ORB) implements what 
could be described as a “statefull remote procedure call”. 
Objects are created and can remain active in memory, 
keeping its state, for a long time after their use. The proc-
esses of activation and deactivation of such objects are 
time consuming operations. CORBA objects were not 
designed to be constantly created and destroyed. Further-
more, in many Java CORBA implementations, one virtual 
machine is assigned for each object created. This ap-
proach creates processes which may overload a typical 
desktop workstation. Unloading inactive servers from 
memory solves this problem. This is performed, periodi-
cally, by the LOA which saves and kills the inactive ob-
jects through a timeout mechanism. Hence, in a typical 
use case, there will be only one activity manager in main 
memory, the server corresponding to the current activity 
in execution. 

The activation and deactivation delays, associated with 

the CORBA objects, however, represent a fraction of the 
total activity time. Workflow processes are usually en-
acted by human users. In a typical scenario, electronic 
forms and data are routed among actors in a company, 
who can read, fill or create these documents. Such activi-
ties may elapse minutes, hours, or even days. Hence, the 
object activation delays do not represent a problem to our 
application. 

The workflow state mobility is easily implemented in 
Java. The Plan Interpreter, the core of the Workflow en-
gine, is a Java object that is paused, serialized and carried 
among adjacent Activity Managers using the Java object 
serialization facilities. The serialized object is transmitted 
between two activities as a sequence of bytes, during the 
setData() message operation invocation. The new activity, 
then, writes the byte stream to the disk and un-serializes 
the data creating a local Plan Interpreter instance. This 
approach makes the Plan Interpreter easy to be stopped 
and resumed. The implementation of the CORBA server’s 
loading and saving mechanism is implemented by the 
LOA, using this same approach. 

Network delays are not significant in our application, 
since most of the activity processing time will be spent in 
user interaction with the invoked applications. 

 
4.3. Mobile Object Usage 

 
The mobile object approach allows the moving of data 

and processing to the actor’s host. The activity manager is 
independent and autonomous to enact the workflow. As 
there is no code mobility, the workflow runtime environ-
ment, which includes the WONDER objects binaries, is 
replicated in each host that participates in our application 
execution, being restrict to the corporation using our ar-
chitecture. Hence, the problems related to mobile agent's 
authentication and hosting do not exist. 

Compared to a centralized system, the use of distrib-
uted agents carrying their own data does not reduce the 
overall traffic of data in the network. In both cases, data 
or part of the data must be copied locally, in the client 
hosts. The decentralized model, however, distributes the 
data traffic over the local network, unloading the central 
server backbone. The traffic is not client-server centric 
but peer-to-peer centric. The decentralization of data and 
control also distributes the server processing and commu-
nication among client hosts. 
 

5. Related Work 
 
Some of the components of the Exotica project 

[5,6,7,8], developed at IBM Almaden Research Center, 
have similarities to our proposal. In particular the Exot-
ica/FMQM (Flowmark on Message Queue Manager) ar-
chitecture is a distributed model for workflows, using a 
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proprietary standard (MQI - Message Queue Interface) of 
persistent queues. The case data is bundled in a message 
that is conveyed from one activity to the other through a 
fault tolerant persistent queue. Nevertheless, the proposal 
is not very detailed on how to deal with all the other re-
quirements for a WFMS. 

The OMG Workflow Management Facility [10] im-
plements workflow framework that satisfies the basic 
workflow management requirements. This specification is 
based on the WFMC standards and defines a set of basic 
objects and interfaces. Because of its generality, this 
specification was not designed to handle the large-scale 
workflow specific requirements. 

The Mentor Project [11] of the University of Saarland 
is a scalable, traceable workflow architecture. Fault toler-
ance is achieved by using TP-Monitors and logs. CORBA 
is used as a communication and integration support for 
heterogeneous commercial components. Scalability is 
achieved by replicating the data in backup servers. Similar 
to our architecture, the data and references to data are 
exchanged between Task List Managers when the activi-
ties are being executed and terminated. A limited first 
prototype was implemented and future extensions should 
include support for dynamic change of processes and the 
rollback of cancelled or incomplete workflows. 

 

6. Conclusions 
 
In this paper, we have presented WONDER, a distrib-

uted architecture for large scale workflow enactment. The 
architecture is based on the idea that the case moves from 
user host to user host, following the process definition. 
The case is implemented as a mobile object, in which 
there is no code mobility. A set of coordinators and serv-
ers were added to the basic architecture so that all other 
requirements of a WFMS could also be contemplated. 
Such decentralization of control and data allows for the 
definition, enactment and management of large-scale 
workflows, providing the necessary scalability for these 
applications. 

The WONDER uses the CORBA communication 
framework as its basic communication and distribution 
system. The CORBA hides all low-level communication 
and distribution issues, providing location and access 
transparences in a standard object-oriented programming 
framework. 

The Java language facilitates the mobile object imple-
mentation, allowing the serialization/de-serialization of 
the case state and data, besides being portable among dif-
ferent hardware and operating system environments. 

The use of CORBA as the support environment for 
such architecture has problems with the persistence of 
objects. The standard CORBA references were not de-
signed for applications in which objects can be dynami-

cally deactivated and reactivated, in different host ports, 
during its lifecycle. 

The information about where an activity should be cre-
ated and executed is an important issue in our architec-
ture. An application specific naming space was created 
using persistent location-dependent object names. Some 
CORBA services were not used due to simplifications and 
requirements of our architecture. 

Future extensions include support for dynamic change 
of process definitions, and ad-hoc workflows. The 
WONDER distributed and autonomous approach facili-
tates the change of the plan during the case execution, 
since the workflow activities and user allocation is done 
on demand, at runtime, using the process definition en-
acted by the mobile object. 
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Annex A  
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Figure A.1. The WONDER Interface (and classes) diagram 


