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Abstract stores both the application data (the data thasésl and
Standard client-server workflow management systemsgenerated by each activity within the workflow)dathe
have an intrinsic scalability limitation, the ceatrserver, ~ Workflow data (its definition, the state and higtanfor-
which represents a bottleneck for |arge_sca|e a:rm“ mation about each instance of the WOI’kﬂOW, and(ah?r
tions. This server is also a single failure poinat may  data related to its execution).
disable the whole system. We propose a fully Histeid This client-server centralized architecture repmesea
architecture for workflow management systems. It is limiting barrier for large-scale applications, withany
based on the idea that the case (an instance optbe-  instances of process being executed concurrently- F
ess) migrates from host to host’ f0||owing a preqdan, thermore, the use of a central database in thmemg
while the case activities are executed. This basibitec- ~ represents a performance bottleneck and a singleefa
ture is improved so that other requirements for Mlow ~ Point that can paralyze the whole system and plystii

Management SystemS, besides Sca|abi|ity' are ase c whole business itself. Therefore, WFMSs based an ce

templated. A CORBA-based implementation of such ar-tralized client-server architectures are limitegbioviding

chitecture is discussed, with its limitations, adizges  appropriate levels of scalability, fault tolerarared avail-
and project decisions described. ability, which may hind their use on an importast sf

applications [4].
In this paper we introduce the WONDER (Workflow
Keyvvords: Large_scale Workﬂowy Distributed ObjectS, ON Distributed EnViRonment) arChiteCtUre, a WFMS&tth

CORBA, Distributed Systems, and Mobile Objects. addresses, in special, the scalability and avditiabs-
sues. Other requirements of WFMSs, such as failexe
1. Introduction covery, auditing and traceability are also addmskethe

WONDER architecture, the control, the storage dhda
and the execution of the activities are all distrdal over

Workflow Management Systems (WFMSs) are used to _
the hosts of an enterprise computer network.

coordinate and sequence business processes, sladmas
approval, insurance reimbursement, and other office
cedures. Such processes are represented as warkflow1-1- T€rms
computer interpretable description of activities fasks),

and their execution order. The workflow also desesi We will use, from now on, the following definitiona
the data available and generated by each actjtsgllel ~ Process definition or aplan is described in terms of the
activities, synchronization points and so on. Tescrip- ~ WFMC primitives: sequencing, and-join, and-split- o
tion may also express constrains and conditions ssc  JOIN. and or-split [2]. Acase is an instance of a process.
when the activities should be executed, a spetiificaf Processes are defined in terms autivities or tasks,
who can or should perform each activity, and whiapls ~ Which are atomic actions performed by a single qrex
and programs are needed during the activity execyg]. Py & programRole is the generic description of a set of
Many academic prototypes and commercial WFEMSs §b|llt|es required to a person in order to pe_zrf(mmactlv-
are based on the standard client-server archieeater  1ty- Thus, secretary, programmer and reviewer afesr

fined by the WFMC (Workflow Management Coalition) People or programs that perform the activities Gaked
[2]. In such systems, the Workflow Engine, the cofea users or actors, and a particular user can perform many

WEMS, is executed in a server machine that typicall foles. If the user is a person she haseierential host, a
computer to where all her work related notificacemd
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activities are send. In particular, the notificagoare send
to hertask list.

1.2. Requirementsfor Workflow Systems

In this paper, we will address the following reguir
ments of a WFMS:

Scalability: The WFMS should not have its perform-
ance degraded due to the increase of: processes oa
activity instances within a workflow. It should alsup-
port a big volume of application data and actors.

Failure recovery: The WFMS should deal with both
software and hardware failures with the least irgetion
of users.

Availability: The WFMS must not get unavail-
able/unreachable for long periods of time.

Monitoring: The WFMS should be able to provide in-
formation about the current state of all casesaatities
in execution.

Traceability: History (trace) information of the cur-

not a specific actor, should perform the activifyccedit
checking. In order to cope with this requirementoke
coordinator component, containing information ottea
role, was defined. In the example above, the caseiep
the credit evaluator coordinator, and asks it alacuger to
perform that activity. Once figured out the usée tase
moves to that user's host.

Monitoring is also an issue in our architecturewHo
does one find out, without broadcasting, what & ¢hr-
rent state of a case, since it may be executigynof the
hosts of the network? A case coordinator comporikat,
keeps track of the case as it moves along, wasetefi
Each time the case moves to a new user's hostndtssa
notification to its case coordinator. Therefore ttese
coordinator knows where and at which process stage
case.

Another important problem for the mobile agent &rch
tecture is failure recovery. The distributed chsegstic
of our architecture introduces many failure-cantida
points, but keeps the failure isolated from othercpsses.

rent and terminated cases must be provided by theWhat happens to the case if the host where iteswting

WFMS.

1.3. Paper Description

The next section discusses, at a glance, the noam c

breaks down? To deal with it, some redundancy @dlic
were specified. For the eventuality of a break dowdnile
the case is executing in the current host, a gergisopy
of its last state is stored at the previous hostsfon as
the failure is detected, the case coordinator €lacbther

ponents of the WONDER architecture. Section 3 dis- host/user to restart or resume the halted actiuging the
cusses the implementation of this architecture qusin Past case state. Furthermore, to avoid unnecestagage
CORBA (Common Object Request Broker Architecture). of old activity states throughout the network, tase co-

Section 4 presents some implementation issuesioBegt
describes some related work and Section 6 presenis
conclusions.

2. TheDistributed M odel

In general, and using informal terms, our architeeis
based on the idea that each case is a "mobile "atiexit
migrates from host to host as the case activitiespar-
formed. The agent encapsulates both, the applicaiida
and the plan for that case (workflow control dafEhe
case "moves" to a particular user's host onceigutés
out" that the next activity will be performed byattuser at
that host. Once the activity is finished, the adéigures
out" another user to perform the next activity anoves
to his/her host. This "mobile agent" architectumpes
with the scalability requirement, since there iscamtral
control or data server, and there is no performéttde-
neck.

Some components were added in order to deal with

further requirements. It is usual that the plaragfrocess
does not specify a particular user as the performhem
activity, but only a role. Consider a credit chexkactiv-
ity example, the plan will state that a credit enadibr, but

ordinator may direct hosts to transfer these persistate
to a backup server, freeing their disk space.

In its essence, the "mobile agent" is composednof a
hierarchy of responsibilities, where each servenagas a
subset of objects. These servers correspond tadbke
coordinator, the role coordinator, the backup seam
others. Our current approach of decentralized seme
moves the bottleneck of traditional workflow sysgern
counterpart, distribution is known to increase camita-
tion among the decentralized servers, a problemntiost
be investigated in detail. For example, a casedioator
represents one instance of a process and receergs v
short asynchronous notifications from "mobile agént
These notifications comprise only the agents' aurre
status and destination host. On the other handydbkup
server may receive large amounts of data, butithisfer
is done asynchronously when network and server load
allows for it. The only standard server, in a dlisarver
sense, is the role coordinator, which receivesearyqand
must return an answer before the case migratioriesar
on. However, the respective amount of informatioxn e
changed is also small, comprising the sending shart
query and the return of a user identity of as awan.

Therefore, since message exchanging is small and
asynchronous, communication is not a problem.
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2.1. Main Components of the Architecture

kind of system?” or “Who was the programmer that im
plemented the previous version of that code?”.

The architecture in Figure 1 is composed of autono- 2.1.4. Synchronization Activity. And-joins and Or-Joins

mous distributed objects, which are described enrtaxt
subsections.

:Process Manages :Case Queries :Role Queries | :History
Coordinator Coordinator Coordinator Server
~
| [ ] |

ORB - Object Request Broker

[ Registers with \ [

:Backup :Task ‘Activity
Server List Manager

:Synchroniza
tionActivity

Manages

;O; Interacts Stores data

User with

Sequences Synchronizes

DataContainer vith

Figure 1. The main components of the architecture

2.1.1. Process Coordinator. The process coordinator is

responsible for the creation and management of case
ordinators. Upon a request for a new office supgply-
chase, for instance, the “purchase of office suppbcess
coordinator” will create a new case coordinator tiais
order, transferring the plan to this new object.

If one needs to locate all instances of a procees,
process coordinator also keeps track of all otéise co-
ordinator instances in execution. For examplehéf defi-
nition of the process is changed, say to introdaggew
activity, the process coordinator will propagateesin
changes to all its cases.

2.1.2. Case coordinator. The case coordinator centralizes

all status information of a particular case. ltasponsible
for detecting case failures and for coordinatirsgrécov-
ery procedures. It executes the finalization precelsa
case, by performing the garbage collection of pativi-

ties data and state, and storing the collected idathe
history server. It also answers queries about tireent
case state, notifies the process coordinator wheasa is
terminated, as well as other management procedures.

2.1.3. Role Coordinator. The role coordinator is respon-

sible for the management of the users able to perfo
particular role. It also manages the current usetus,
such as the activities that the user is currenticating.
With this information, a “programmer role coordiogt
can answer queries like “Which is the least loageat
grammer?” or “Which are the available programmers?”

The role coordinator may also have access to tlke Hi

tory Server (which stores information about congaet
cases), and to corporate databases. With the fiehese
servers, the role coordinator can answer queries li

are a particular problem in "mobile agent" architees.
Each join of a case must be created before itsnbawj,

otherwise a "mobile agent" would not know wheregto
when it needs to synchronize with other "mobileragt
that are executing in different branches of theesafan.
The synchronization activity will wait for all nditations
(and-join) or the first naotification (or-join) frorts input
activities before starting the following (outputtiaity.

For example, during an and-join, once all "mobierts"
have moved from its input activities to the synctiza-
tion activity, this synchronization object mergdkcase
data, and composes a new single "agent" that iecthty
the host assigned to the next activity. In an an-fgyn-
chronization activity, the first case to arrive Iwtiligger
the sequencing of the next activity. A synchronaat
activity may also wait for other synchronizatiomgrsals,
such as external events.

2.15. Task List. The user interface is implemented as a
task list, similar to a mailbox. The task list fiie the
user of new activities that she is supposed tooperf
This allows the user to accept or to reject thevimag
activity according to the current specified polidyur-
thermore, the task list is the user's main interfex the
WEMS itself, so it should also allow for some cusiza-
tions, such as selection of preferred externaliegipbns,
change of the user's preferential host, selectigrolicies
for sorting the coming activities, and so on. #oatollects
information about the user's workload, to be qukby
the role coordinators.

2.1.6. History Server. The history server (or servers) is a
front-end for the repository of completed cases.ewh
case coordinator finishes its work, all relevantadased
by the case are stored in the history repositonghSro-
cedure allows for the cases to be audited and #rmaary
of the cases to be archived for further review.

2.1.7. Backup Server. The backup server (or servers)
is(are) a front-end(s) for the repository of theeimediary
state of the active cases. As we mentioned befloeegpast
state information about a “mobile agent” is stoiedome
of the hosts where it executed. These users’ lzostsei-
ther trusted to hold the past state informatiorefimitely,
nor to be active when this information is needete T
backup server runs in a more reliable and powerfai
chine. It receives the data and state of the paistitées of
an active case, under the command of the its caselie
nator. Once the backup is performed, the staterirdtion

“Who is the programmer with most experience in that can be erased from the users’ hosts.
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2.1.8. Activity Manager. So far, we have been using the
idea of a “mobile agent” as an intuitive descriptiaf the
distributed nature of a case. The case, howevenpis
really implemented as a “mobile agent” in its gtterms,
but as data and state that are transferred bettweespe-
cific objects. There is no code mobility.

Each activity manager coordinates the executioanof
instance of an activity for each case. When a netwity
of a case needs to be performed, a new activityagems
created at the preferential host of the user thktper-
form the activity. It is, then, configured with tlaetivity
specific data, and the previous activity case state
plan interpretation is resumed and the activitypés-
formed using the appropriate applications, throtighuse
of application wrappers. The activity manager waitsl
the user finishes and then computes who shouldugxec
the next activity (by interpreting the plan thatmgaalong
with the case state, and by querying the appraprale
coordinator). If the next activity is to be perfadby a
user, the activity manager sends the appropridtenia-
tion to that user's task list, notifying the caserdinator
that the activity has ended and who is the selegsed to
perform the next activity. After that, it transfafe case
information to the created activity manager. Itoale-
ceives requests from the case coordinator to ®antf
case data to a backup server.

2.1.9. Application Wrappers. The application wrappers
are objects that control the execution of a paldicin-
voked application. It launches the application withial
data and files and collects the application outfuis a
bridge between specific programs and the activignim
ager. When the task finishes, the Wrappers ndtiéydor-
responding Activity Manager.

3. CORBA Implementation

The CORBA communication framework [9] provides a
set of functionalities and transparencies that owerthe
distributed applications development. It implemeats
object-oriented distributed bus, providing transpaies
of access (independence of hardware, languageevap
ing system) and location (independence of the Wbstre
the object is executing). It offers all object-aitied pro-
gramming advantages, such as inheritance, infoomati
hiding, reusability, polymorphism and so on. Itcakn-
ables the use of legacy applications, which wereede
oped for different hardware and software platforms,
through the definition of IDL interfaces to thesmgdcy
applications.

3.1. Referencesto CORBA Objects

The main problem using CORBA as the support envi-
ronment for the distributed workflow architectur® its
object reference specification. CORBA standard I0Rs
(Interoperable Object References) are not adeqicate
our application. These references are dynamicdlty a
cated, and include the IP address and port numibech
respectively locate the host and an object withilsince
the completion of a case may take up to many days,
even months, one cannot assume that, for a whae ca
execution lifecycle, an object will keep itself iaet on
the same port it was created, being located bys#me
IOR. The OMG (Object Management Group) CORBA
specification still lacks an object persistencevisey;
therefore we had to create our own persistent obgder-
ences. In our scheme, the objects are locally dtard
identified using the following naming structure:oéh,
process, case, actor, activity, file) for filespgh process,
case, actor, activity) for activities; (host, presecase) for
case coordinators; (host, process) for processdowmr
tors; (host, backup-server) for backup servers,sanon.

In order to provide transparent object persisteaaeh
host has a Local Object Activator (LOA). The LOAeex
cutes as a hook in the WONDER runtime environment
daemon (orbixd — OrbixWeb locator daemon) and inter
mediates the object activation (bind), deactivatamd
persistence, saving the object state and datddonad re-
served disk area (object repository). For exantpke case
coordinator for a request for the purchase of 58pep
clips (case C4375), of the process "purchase dteoff
supply" (process P12), in the host abc.def.condésnti-
fied by (abc.def.com, P12, C4375). To access thjsad
(or formally to bind to this object), a process mssnd
the reference (P12, C4375) to the LOA in machine
abc.def.com, which will activate and restore tretesiof
that case coordinator. This activation uses therinétion
previously stored in the object repository. The L@wn
returns the IOR of the newly restored object tdrbme-
diately used.

3.2. Hierarchy of Interfaces

We describe below the main aspects of the mapping
between the components of the architecture and the
CORBA environment. A hierarchy of interfaces (ar@ o
jects) is described.

The interface hierarchy, presented in Annex Ao
posed of three interface grougRepository WonderCo-
ordinator and Activity interfaces.Repositoryrepresents
interfaces implemented by objects that manage stata
age. There are two kinds of data repositoriBack-
upServer and HistoryServer Coordinators manage the
execution of other system objects. There are case a
process coordinatorgictivity instances are objects that
control the task execution. They are manage€aseCo-
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ordinator instances. There are two subclasseAdiivity:
one to perform and control the execution of tagkpdo-
ple (or programs)ActivityManage), and one to carry out
synchronization points SiynchronizationActivily The

3.3.1. Activity Sequencing. Figure 2 shows a typical
example of an activity sequencing procedure. Whnen t
activity execution ends (sending messages 5 anthé),
activity manager AM2 starts the new activity sequieg

ActivityManageralso implements the activity sequencing process. The case coordinator CC1, executing iiffex-d
and execution. The activity sequencing procedures us ent host, receives an “end of the activity” notifion (6).
DataContainerinstances to store data and process defini- The AM2 activity interprets the process plan arigufes-
tions. These containers are exchanged amictiyity- out” which activity is to be performed next, and wlgich
Manager objects. The coordinator and activity groups, role. The AM2 queries RC1 (the role coordinator the

along with theRoleCoordinatoy are sub-interfaces of the
WorkflowObject The RoleCoordinator objects manage
dynamic and history information concerned with Hys-

role to execute the next activity - message 8)clvtte-
lects a user to perform the next activity. The Apldces
the notification of the new activity in the usetask list

tem users Yser instances). Each user has an associatedTL2 (10). If the selected user accepts the actiig ac-
role. WonderObjecinstances are uniquely identified, and tivity creation procedure starts (10 to 13). Theiviy

can be controlled, located and stored. Local Objeti

vators (OA) are responsible for implementing the objects

persistence and activatiomaskListinstances store infor-
mation concerned with user allocated activities.

3.3. Execution Scenarios

In this section, some execution examples are ptegen

They emphasize the main objects of the architecture

showing their communication and interaction. Fan-si
plicity, we will not represent the interaction witie LOA
object in our diagrams. This interaction occurshetite
an object is created, restarted or reconnected stéear-

ios are described using the UML sequence diagraia- no

tion.

TL1:Task | | AM2:Activity : : HS3:History
List User2 Server

Manager

RC1:Role
Coordinator

TL2:Task
List

CC1:Case
Coordinator

Usert

1: Start
Activity()
P 2 it
3: SetEvent
(Running)
z 4:Exec()
5: Finish
Notification()
I~ 6: SetEvent
(Finish)
7: SetEvent
(Sequencing),
8: QueryUsers
9:QueryData()
10: Suggest
Activity()
P11 Accept
Activity
12 te
13: <create>> AM3:Activity
14: Bind() P Manager
AM1:Activity | {wake up}
Manager
) 15: GetData()
16: SetData() o
17: Add et
Activity()
18; Start
activity
19: Init()
»
20: Set
Event
> Starting
21: SefEvent |+ {Sanal
Finishing) >
: Save()
i" Save] 23 Exit(

Figure 2. Activity sequencing diagram

manager AM2 creates the next activity manager, AM3,
the user’s preferential host (13), and transferneates-
sary data to this object (16). Since AM2 does rantehall
necessary data to send to AM3 locally, it gets diaten
AM1 (14 and 15). The data is wrapped in a dataaioat
together with the case state. Finally the AM3 aigtiv
manager is inserted in the User2 task list (175 initial-
ized (19) and the AM2 activity is finalized (2128).

For performance reasons, only data necessary éor th
created activity is transferred. The remainder data
passed as links, in order to be retrieved by sules®q
activities.

1:CreateNe

wCase() »

HS3:History
Server

CC1:Case
Coordinator|

3: SetData()
>

2: <<create>}

4:Init()

5: *[for every

joinin the plan] ! <<create>> w| SAT:Synchro
¥ nizationAct
S'Quersters& ]
H
|

7: QueryData()
8: Suggest >
Activity()

7 ¢ 9: accept

10: true

11: <<create>> AM1:Activity

%’| Managert

12: SetData()
13: Add g
Activity()

14: Init()

Figure 3. Case creation sequence diagram

3.3.2 Case Creation. The case creation procedure, pre-
sented in Figure 3, is initiated by a user (Userebuest

in the process coordinator PC1 interface (1). Taguest
results in the case coordinator CC1 creation amdiguo-
ration (2 and 3). The setup process starts andCtbg
creates the synchronization activities for the qaé3eAf-

ter querying the RCL1 role coordinator for a usepéo-
form this activity (User 2), and after the activigcep-
tance by this user (8 to 10), the CCL1 createsitbedase
activity AM1 (11 to 14) and the case starts.
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3.3.3. Activities And-Split. The and-split is implemented
as a parallel sequence of activities, the procedige
scribed in Figure 2 is iterated for each activity the
branch. The new created activities follow independe
paths until a synchronization activity (and-jois)found.

3.3.4. Activities Synchronization. The synchronization
activities are created by the case coordinator, thed
localization is placed in the process plan at tbgiiming
of the case. When an activity ends, and its follgnactiv-
ity is an and-join, the plan will refer directly this syn-
chronization activity address.

The synchronization procedure involving the adtt
AM1, AM2, and SA4 is described in Figure 4. Durithgs
synchronization process, each activity managerfiesti
the synchronization activity SA4 and the case coatdr
CC1 (2 and 3). After both activity managers (AM2dan
AMZ1) have notified SA4, it starts the following adty in
the standard way as described in 3.3.1. As usuW@al, i€
kept informed of the progress of the case, manatiing
case and handling its failures.

AM2:Activity
Manager

AM1:Activity
Manager

CC1:Case
Coordinator

RC1:Role
Coordinator

TL2:Task
List

SA4:Synchro
nizationAct

User2

1: SetData()
2 iz()
P>
3: SetEvent
(finish) »
4: SelDatal) , 4
5: Synchroniz|
>
6: SetEvent
(finish) o
>
E 7: Save() 9:QueryUsers()
— >
8: Exit() 10: Suggest
Activity()
P
212: Save() 11t Accept
<
; 13: Exit() 14: True.
15: SetEvent
(sequencing) .
»
16:<<Create>> o AM3:Activity
P Manager
17: SetData()
18: AddActivit()
19: Init() o
20: SetEvent
(finish) »
z g 21: SetEvent
22: Save() (started)
23: Exit()

Figure 4. An and-join synchronization diagram

3.3.5. Case Finalization. The Figure 5 presents the dia-
gram of a case finalization procedure. By the ehdazh
case, data stored at each host that executed sitdra
activity of the case, and all case data storethénbiackup
server(s) are removed by the case coordinator OCB1(
and 13). An execution summary containing relevaiad
for future queries is stored in the History Semd&2 (12).

PC2:Process
Coordinator

CC3:Case
Coordinator

2:Activity
Manager

AMBO:Activity
Manager

HS2:History
Server

BS2:Backup
Server

1: SetEvent |

¢ finish) |
2: SetEvent ! 3: Save()
& (finish)

5 Garbage

Collect »

! 4: Exit()
b
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7: GetData()

8: Exit »

9: Remove
:\ Data()

10: Exit()

11: Remove be
Object() ~

12 SetData()

v

|
|
h 13: Remove

Data ()

1
;“ 14: Exit()

Figure 5. A sequence diagram of a finalizing case

3.3.6. Failure Recovery. The failure recovery process
consists of: halting the current process (curremtcating
activities), restoring the system to a previoudblstatate,
modifying the case process definition (adding consjpe
tion activities), and finally resuming the caseisTtoutine
is managed by the Case Coordinator, using datadsiar
the object repository of each host, and in the bpderv-
ers scattered over the system.

4. Implementation | ssues

The system was developed in the Institute of Comput
ing at UNICAMP. It was written in Java (Sun JDK1.1)
using the lona OrbixWeb 3.1c, a Java ORB implementa
tion. The distributed system used during the imgleta-
tion is composed of Unix Workstations, NCD Diskless
terminals and Windows NT/Linux PC Workstations. All
computers are connected by a 10Mb Local Area Nétwor

4.1. CORBA Services

Many CORBA based Workflow architectures use a
subset of the OMA CORBA Services [10,11]. The most
commonly used services are the Naming, Event, iatif
tion, Security and Transaction. Due to the largiesce-
quirements of the WONDER architecture, and its rieobi
object approach, some inadequacy points of thesees
came up. These issues are discussed as follows.

Some workflow implementations use the CORBA
Transaction Service to coordinate the data flow ragno
many different servers [10,13]. This approach asa
fail-safe data transfer protocol among differertivitees,
implementing a set of “transactional communication
channels”. Large systems require transactional sgosa
but may not always require distributed transact{d2s.

In the WONDER architecture the Activity Manager
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peers manage the consistence of the data traddfehe
data and the case state are transferred simultslyeoua
single operation invocation, from one activity mgeato
another. During splits, this process is iterated dach
activity in the branch. Hence, the CORBA methodirar
tion mechanism is sufficient for our implementatidr-
rors are handled using retransmission policiessoline
error occurs during the remote operation invocatihre
to a temporary link crash, for example, the ORB Wy a
SystemExceptionThis exception is caught and resolved
by the data sender which, according to the faitesson,
can result in another method invocation when thk is
up again. If the fail persists, the case coordinaturies
on the error procedure, creating an alternativéa patbe
followed. This simple approach dispenses a morepéem
control implemented by a transaction server.

The Event and the Notification Services decoupke th

the CORBA objects, however, represent a fractiothef
total activity time. Workflow processes are usuadly-
acted by human users. In a typical scenario, @eictr
forms and data are routed among actors in a company
who can read, fill or create these documents. Sutiki-

ties may elapse minutes, hours, or even days. KHehee
object activation delays do not represent a prolitewur
application.

The workflow state mobility is easily implementad i
Java. The Plan Interpreter, the core of the Wowvkfém-
gine, is a Java object that is paused, serialipedcarried
among adjacent Activity Managers using the Javacibj
serialization facilities. The serialized objectriansmitted
between two activities as a sequence of bytesngutie
setDatq) message operation invocation. The new activity,
then, writes the byte stream to the disk and uialssss
the data creating a local Plan Interpreter instarides

producer and consumer servers, implementing a messa approach makes the Plan Interpreter easy to beetiop
gueue. These messages can be made persistent én sorand resumed. The implementation of the CORBA sé&yver

COSNotification proprietary implementations [Web-1].
This safe event channel, however, increases therdai
detection complexity.

The WONDER architecture does not rely on any stan-
dard CORBA naming service because of the IOR prob-

lems described in section 3.1. Instead, each hestutes
a locator that resolves markers (OrbixWeb usendtiy
object names) to IOR object references. This lacatp-
erating with the LOA, is also used to implement tie
jects activation and deactivation, besides theisipgnce.
The locator is implemented using tlbixWeb orbixd
daemon and a@rbixWeb LoaderClashook which spe-
cialization implements the LOA object.

4.2. Workflow, CORBA and Java | mplementa-
tion. Advantages and Drawbacks

The core CORBA mechanism (ORB) implements what

could be described as a “statefull remote procedal?.

loading and saving mechanism is implemented by the
LOA, using this same approach.

Network delays are not significant in our applioati
since most of the activity processing time will gpent in
user interaction with the invoked applications.

4.3. Mobile Object Usage

The mobile object approach allows the moving ofdat
and processing to the actor’s host. The activitpawer is
independent and autonomous to enact the workflosv. A
there is no code mobility, the workflow runtime &@ow-
ment, which includes the WONDER objects binarias, i
replicated in each host that participates in oylieption
execution, being restrict to the corporation using ar-
chitecture. Hence, the problems related to molglengs
authentication and hosting do not exist.

Compared to a centralized system, the use of lolistri
uted agents carrying their own data does not reduee

Objects are created and can remain active in memoryoverall traffic of data in the network. In both eas data

keeping its state, for a long time after their uBee proc-
esses of activation and deactivation of such objace

or part of the data must be copied locally, in tfient
hosts. The decentralized model, however, distribe

time consuming operations. CORBA objects were not data traffic over the local network, unloading trentral

designed to be constantly created and destroyethdfu
more, in many Java CORBA implementations, one airtu
machine is assigned for each object created. This a
proach creates processes which may overload aatypic
desktop workstation. Unloading inactive serversniro
memory solves this problem. This is performed, quffi
cally, by the LOA which saves and kills the inaetigb-
jects through a timeout mechanism. Hence, in acépi
use case, there will be only one activity managemain
memory, the server corresponding to the currerivigct
in execution.

The activation and deactivation delays, associaitu

server backbone. The traffic is not client-serventdc
but peer-to-peer centric. The decentralization atb.dand
control also distributes the server processingammu-
nication among client hosts.

5. Related Work

Some of the components of the Exotica project
[5,6,7,8], developed at IBM Almaden Research Center
have similarities to our proposal. In particulae thxot-
ica/FMQM (Flowmark on Message Queue Manager) ar-
chitecture is a distributed model for workflows,ngs a
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proprietary standard (MQI - Message Queue Intejfate
persistent queues. The case data is bundled inssage
that is conveyed from one activity to the otheotlgh a
fault tolerant persistent queue. Neverthelessptoposal
is not very detailed on how to deal with all th&estre-
quirements for a WFMS.

The OMG Workflow Management Facility [10] im-
plements workflow framework that satisfies the basi
workflow management requirements. This specificat®o
based on the WFMC standards and defines a setsaf ba
objects and interfaces. Because of its generalhig
specification was not designed to handle the laggde
workflow specific requirements.

The Mentor Project [11] of the University of Saada
is a scalable, traceable workflow architecture.ltFaler-
ance is achieved by using TP-Monitors and logs. BOR
is used as a communication and integration supfoort

cally deactivated and reactivated, in differentthoerts,
during its lifecycle.

The information about where an activity should be c
ated and executed is an important issue in ouritacch
ture. An application specific naming space was tecka
using persistent location-dependent object namemeS
CORBA services were not used due to simplificatiand
requirements of our architecture.

Future extensions include support for dynamic ckang
of process definitions, andad-hoc workflows. The
WONDER distributed and autonomous approach facili-
tates the change of the plan during the case dracut
since the workflow activities and user allocatiendione
on demand, at runtime, using the process definiéinn
acted by the mobile object.
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8. Web References

Annex A

|E.lona.OrbixWeb.Features.LoaderClass

1

<<interface>>
WonderObject

+wonderObjectName()
+wonderObjectName() Loa
<<interface>> +Loa()
TaskList Joad: +Loa()
0ads | 4|0ad()
+user() +save()
" +user() <<interface>> db +rename()
TEPresents | | addActivity() WorkflowObjectFactory s saved by +record()
+sugg! y() <<interface>> -serializeWorkflowObject
1 |+removeActivity() +oreateActivityManager() creates WorkflowObject -readWorkflowObject()
+finishActivity() +createSynchronizationActivity() 1 forkflowObjec! FparseName
“+startActivity() +createGatewayActivity() +state()
+finishh 1) +state()
+init() <<interface>>
<<interface>> +pause() Wrapper
. RoleCoordinator /v +restart() creates
Registers with +exit() +runApplication()
. 7 +role() +reset() +_deref()
+role()
User / +registerUser()
1 / +unregisterUser()
+User() / +listUsers()
+User() +listRoles()
is represented by | +clone() / +addRole() <<interface>> «| s created by <<interface>>
/ +removeRole() Repository SynchronizationActivity
/ +queryUsers() Is stored <<interface>>
+newData() Activity +type()
- +getData() 1 +type()
Wonder.RoleCoordinator Role +removeData() +caseCoordinator() < +logicalExpression()
+role: string +caseCoordinator() +logicalExpression()
+getData() +fanin()
% stores +setData() +fanin()
<<interface>> +externalSignal()
+synchronize
WorkflowCoordinator <<interface>> <<interface>> « Y/ 0
HistoryServer BackupServer
Managed
+processDef() —— -
+processDef() queryData() +"6V:ObJeCt()
+setConfirmation() +rea ISE 0 "
+setEvent() removeObject()
+getLastEvent()
+registerRoleCoordinator() <<interface>>
+unregisterRoleCoordinator() ActivityManager

Manages Sends +getUser(

)
1 +getTaskList()
/
/ Receives | *
/
/

S 1

<<interface>>
CaseCoordinator

<<interface>>

ProcessCoordinator

+listActiveCaseCoordinators() +processCoordinator()

+setlnitialState()
+createNewCase()
+getCaseCoordinator()

1

+processCoordinator()
+releCoordinatorNamesList()

manages

/

+releCoordinatorNamesList() Wonder.ActivityManager.DataContainer
+setData() Link
+getData() +caseState[]: byte
is managed | +listActiveActivities() +DataContainer() +Link()
| +garbageCollect() +DataContainer() +Link)
+getActivity() +clone() Q—‘ +clone()
<f ¢
-imprime: boolean = false
Data
+datal]: byte +CaseState()
+C; )
+Data() +getPlaninterpreter()
+Data() +setPlaninterpreter()
+clone() +getRoleCoordinatorResolver()
+setRoleCoordinatorResolver()

Figure A.1. The WONDER Interface (and classes) rdiag



