
1

The Mobile Agents Paradigm

Roberto Silveira Silva Filho
Department of Information and Computer Science

University of California, Irvine
rsilvafi@ics.uci.edu

Abstract
A mobile agent is an object that migrates through
many nodes of a heterogeneous network of com-
puters, under its own control, in order to perform
tasks using resources of these nodes. The use of this
technology represents a change in the distributed
programming paradigm. This approach have pro-
vides many benefits to the development of distributed
applications but introduce new requirements to the
engineering of these systems. This paper presents
this paradigms with its issues and benefits, discuss-
ing its use in the development of distributed applica-
tions.

Keywords: Mobile software agents, Distributed Sys-
tems Development, Software Engineering.

1. Introduction

The development of distributed applications is di-

rectly influenced by the choice of an architecture
style or paradigm. The requirements of the system as
scalability, fault tolerance, response time, support
for disconnected operations and so on, are important
point to measured and reasoned before the imple-
mentation of a system.

This paper gives an overview of the mobile agent
paradigm, focusing on the benefits of using this ap-
proach in the development of distributed applica-
tions. It presents the qualities of this approach with
its weaknesses, strengths and requirements. This
information can be used in the decision process of
adoption of this or other approaches during the
specification of a distributed system.

2. Mobile Agents Paradigm

According to Gray et al. [GKRNC96], A soft-

ware agent is “a program that is autonomous
enough to act independently, even when the user or
application that launched it is not available to pro-
vide guidance and handle errors”. In another defini-
tion, using general terms, a software agent is pro-
gram that acts in behalf of its owner (agent owner)
[GHNCSE97].

A mobile software agent, or a software agent for
now on, is an object that migrates through many
nodes of a heterogeneous network of computers,
under its own control, in order to perform tasks us-
ing resources of these nodes [IH99; RGK97]. It trav-
els from node to node of a distributed system per-
forming tasks in behalf of its owner. At the end of
this process, an agent can return to its home site and
report itself to the user who injected this object in
the distributed system [KT98].

Mobile agents are used in the development of dis-
tributed applications. This paradigm differs form the
traditional client/server approach in the following
way.

In the client-server paradigm, resource owners
(servers) are physically distant of their clients (us-
ers). The communication among these parts occurs
through a network of computers, being mediated by
mechanisms as remote procedure calls, message ex-
change, sockets and so on. In this paradigm, the reli-
ability of the communication links and the synchro-
nicity of the remote procedure calls are important
requirements of the majority of such applications.

On the other hand, in the mobile agent paradigm,
the agents migrate to interact locally, at the same
host as the resources. By the moving of location,
agents can dynamically change the interaction qual-

2

ity, reducing these costs [CPV97]. Some examples
of applications that use the mobile agents paradigm
are: The deployment and update of distributed appli-
cations, the customization of services, the support
for applications evolving mobility, the implementa-
tion of fault tolerance polices, workflow manage-
ment systems, and so on.

3. When to Use the Mobile Agent Paradigm

There are many advantages of the mobile agent

paradigm. Some of them include the reduction of the
network bandwidth use, distribution of processing
and loading through the hosts of the network, sup-
port for a more flexible peer-to-peer model, scalabil-
ity and decentralization of control.

In terms of processing and network bandwidth
consumption, the use of the mobile agent paradigm
is justified when the cost of the use of some remote
resource, using traditional approaches as the cli-
ent/server paradigm, overcomes the use of the agent.

Mobile agents can be used to overcome the net-
work latency. Consider a distributed environments
composed by a big number of machines connected
by a slow network, for example, a LAN connected to
another LAN using a slow Internet link. Suppose a
client on one LAN wants to make a complex query
in a Database server in the other LAN. In the mobile
agent paradigm, agents can move to the place where
the data is stored, realizing queries and filtering
relevant information before sending this data to the
client. In this context, it is shipper to transport a
small agent to the source of the data, than to bring
the entire query results back to the node in order to
be processed.

In general, during the project of software architec-
tures for distributed systems, the interaction among
components is defined in a location independent
form. The CORBA middleware [CORBA98], for
example, allows the abstraction component’s loca-
tion. In this distributed communication framework,
there is no distinction between local or remote inter-
actions. The mobile agent paradigm suggests,
though, a new approach to the project and specifica-
tion of distributed system. This paradigm is usually
necessary in cases where the location and mobility
of the application need to be considered due to reli-
ability and performance requirements. In problems
using the mobile agent paradigm, these requirements

are so important, that they affect the conceptual
structure of the application in the design phase.

Compared to a client-server centralized system,
the use of mobile agents carrying their own data
does not reduce the overall traffic of data in the net-
work. In both cases, data or part of the data must be
copied locally, in the client hosts. The use of a de-
centralized model using mobile agents, however,
distributes the data traffic over the local network,
unloading the central server backbone. The traffic is
not client-server centric but peer-to-peer centric. The
decentralization of data and control also distributes
the server processing and communication among
client hosts [SWME00]. Moreover, as the interaction
between the agent and the resource (after moving) is
performed in the same host, without the transmission
of messages through the network, this paradigm is
indicated for some kinds of real-time distributed ap-
plications.

4. Applications

The literature [CHK94; KT98, RGK97,

GKNRC96, LO99] describes many applications that
can benefit from the use of the mobile agent para-
digm. These are mobile computing, fault tolerance,
load balancing, workflow management and elec-
tronic commerce. Additionally, new applications as
runtime software change and software deployment
can also benefit from this technology. Some of these
applications, with some examples, are listed as fol-
lows.

4.1.1. Mobile computing
In applications evolving mobile devices, the pres-

ence of a network connection is intermittent, or has
variable and low bandwidth rates [RGK97]. In this
context, the independence and autonomy of the mo-
bile agents can be used. Applications can be written
as mobile agents that migrate to mobile hosts, per-
form their activities and move out when the network
connection allows to. A mobile agent is independent
from his origin. The user or host that lunched the
agent in the network does not need to keep a live
connection to this object during his lifecycle. The
mobile agents are also self-sufficient carrying its
code and execution state as it moves. In some cases,

3

it can also be configured to carry all the application
data, which makes it independent form network file
system connections, for example.

4.1.2. Fault tolerance and Load Balancing
Tasks and processes in distributed applications

can be split in small sub-processes in order to per-
form their goal. These subtasks can be configured to
move form host to host in order to distribute
processing load, or also be duplicated (or forked)
providing fault tolerance. The agent can operate in
the host independently form network connection,
allowing temporary absence of it. Notifications are
sent to the agent owner in an asynchronous way. In
the occasion of a network failure, the agent can wait
until the connection is reestablished to migrate or
send data back to its owner.

4.1.3. Electronic Commerce
Mobile agents, acting as customers, can be con-

figured to move through different nodes from a net-
work in order to perform commercial transactions on
behalf of its owner. In a virtual shopping center sce-
nario, stores offer products with different models
and prices. Agents represent the user needs and in-
terests, being equipped with a buying list. The
agents can search for some kind of product or ser-
vice, compare its prices and perform purchases and
orders on behalf of its owner.

4.1.4. Distributed System Management
 In a distributed system management application,

mobile agents can move through hosts in a network,
collecting management data (passive management)
or reconfiguring nodes in order to implement differ-
ent management polices (active management), per-
form specific tasks and apply configurations. A dis-
cussion of the potential uses of mobile agents in
network management is presented by Bieszczad et
al. [BPW98].

4.1.5. Software Deployment
The use of mobile agent paradigm in configura-

tion management, in special, software deployment,
is a new field of study. An example of use of this

paradigm in software deployment is described by
Hall et al. [HHHW97], in the Software Dock system.
This application use mobile agents to coordinate the
software update process of hosts in the Internet.

4.1.6. Workflow Management System
Workflows are computer interpretable description

of activities (or tasks), and their execution order.
Workflow Management Systems (WFMS) are used
to automate and coordinate the execution of bureau-
cratic tasks. Tasks can be performed concurrently by
many users and automated applications. These tasks
can be modeled as autonomous agents that move
through the network nodes, carrying the data and
controlling the execution of the activities in a
WFMS. One example of such approach is the
WONDER (Workflow ON Distributed EnviRon-
ment) architecture [SWME00]. This architecture
defines a WFMS that addresses, in special, the scal-
ability and availability issues. The architecture is
based on the mobile agent paradigm. the case is rep-
resented as a mobile agent that migrates from user
host to user host, following the process definition.
The case (instance of a process described by a work-
flow) is implemented as a mobile In the WONDER
architecture, the control, the storage of data, and the
execution of the activities are all distributed over the
hosts of an enterprise computer network.

4.1.7. Runtime Change of Software
Software systems can be specially specified and

configured to be changed at runtime [OMT98]. In
this context, software agents can be deployed con-
veying updates of modules and software configura-
tions. Its intrinsic capability of conveying data and
their ability to execute operations in the current ma-
chine can be used to control and coordinate the pro-
cess of stopping, modifying, and updating a system
at runtime.

5. Mobile Agents Systems

A Mobile Agent System (MAS), or Agency, is a

computational framework that implements the mo-
bile agent paradigm. It provides services and primi-
tives that help in the use, implementation and execu-

4

tion of systems developed using the mobile agents
paradigm.

This generic framework allows the developers to
focus on the logic of the application being imple-
mented, instead of focusing on the implementation
details of the mobile agent system.

In order to host he mobile agents, each involved
in the distributed application must provide a basic
support environment. This environment, called
Agency, supports the creation, activation, deactiva-
tion and management of agents, which include
mechanisms to help in the migration, communica-
tion, persistence, failure recovery, management,
creation and finalization of agents. Additional ser-
vices as naming and object persistence can also be
provided. This environment must also be safe, in
order to protect the resources of the machine from
malicious attacks and possible bugs in the imple-
mentation of the agent code.

The General Magic MAS, developed together
with the Telescript language [White94] in the early
1990, was the first commercial system specially de-
signed to support the development of mobile agents
paradigm applications. This system was followed by
many others as Tacoma [JRS95] and Agent Tcl
[Gray96], in which the agents are described in pro-
prietary script languages. The advent of the Java
programming language [Flanagan99], with its sup-
port for object serialization and mobile code (ap-
plets), fostered the development of new MASs. The
IBM Aglets [KLO97], the ObjectSpace Voyager
[ObjectSpace97], the Concordia [Concordia97] and
the Ajanta [KT98] are some examples. A compari-
son among these systems is described in [KT98].

The first MAS generation implemented their own
migration protocols and mechanisms. The new MAS
middleware based on Java, however, use the passage
of objects by value, a facility provided by the Java
RMI (Remove Method Invocation) API.

Due to the mobility requirement, and the neces-
sity to execute in different operating systems and
hardware architectures, the MAS and the agent are
generally implemented using interpretable pro-
gramming languages. The Voyager MAS, for exam-
ple, uses Java.

MASs support the development of mobile agents
implemented in their specific for programming lan-
guages as TCL, Java and Telescript. Some MAS as
Aglets and Voyager are compatible with the IIOP
protocol from OMG (Object Management Coalition)

OMA (Object Management Architecture). They al-
low the communication of agents written to these
systems, with CORBA servers. The integration of
these systems with CORBA occurs only in this level.

The use of such protocols improves the maintain-
ability and extensibility of the software, which can
intemperate and be integrated with non-agent en-
abled applications more easily.

5.1. Requirements of MAS

In order to facilitate the development of mobile

agents distributed applications, and to overcome
some problems that arise from this approach, some
requirements must be addressed. Systems that sup-
port the use of the mobile agent paradigm have to
provide a basic set of services and characteristics as
follows.

5.1.1. Transportability
A mobile agent must be able to move itself, under

its own decision, from one machine to another in a
heterogeneous network. It is, the program must be
able to suspend its execution in a node, move itself
to another node and start its execution from the point
it stopped, using its own resources. This migration
must happen in an independently of the different
hardware or software platform that may compose the
network. The transportation of the agent (or its state
and code), from one node to the other must be
helped by external entities as message services, mid-
dleware, or e-mail servers. This is the basic require-
ment provided by mobile agent middleware as the
Object Space Voyager [ObjectSpace97], or IBM
Aglets [KLO97].

The migration process of an agent can be imple-
mented in two manners. The agent can create an-
other copy of itself (fork), and follow executing in a
different node of the system in an independent way
or can suspend its execution and move itself to an-
other node in which the execution is restarted.

Most of the implementation of this mechanism in
the literature uses the weak migration. In the weak
migration, the agent moves only its execution state.
As a consequence of this approach, the code of the
agent can come from another site, or be replicated in
the sites in which the agent can execute [IH99].

As mobile agents are autonomous, their migration
occurs under its own command. Due to this charac-

5

teristic, more advanced mechanisms, hat allow the
capture of the execution state using a fine grain
granularity, it is, storing the state of the execution
thread stack, are usually not necessary [KT98]. This
last approach is known as Strong migration.
Telescript is an example of a language that imple-
ments this kind of migration [CPV97].

In a third approach, the agent does not carry its
own code but only a reference to a code base from
which it can be copied on demand.

The choose of one of these approaches depends
on the ability of the mobile agent language in deal-
ing with the agent and code state. The selection of
one of this approaches is though, will depend on the
requirements of the application being built, in spe-
cial, the programming language used.

5.1.2. Autonomy
The agent must be able to decide where and when

to migrate during the accomplishment of its mission.
This move can be performed in a reactive way.
Some applications may require that this decision be
based on dynamic parameters and performance in-
formation of the distributed system, as the example
of management applications. Other applications as
workflow management systems, may require the
following of a pre-established plan (not static se-
quence of resources/nodes that can/have to be vis-
ited, together with tasks to be accomplished in each
host).

To cope with the agent autonomy characteristic,
the communication between the agent and its home
site must be avoided. In order to do so, the agent
must use resources and mechanisms that allow the
decision making related to the migration of the
agent. These mechanisms are usually provided by
sensors that allow the agent to collect data from its
environment, as well as plan interpreters, algorithms
and other mechanisms internal to the agents, that
provide some degree of autonomy to this object.

5.1.3. Navigability
 In order to support the decision making process

of the agent (where and when to migrate), the ob-
jects must have the knowledge of its objectives and
plans, as well as parameters related to its environ-
ment. This knowledge of the environment may vary

according to the application being implemented. In
some cases, the agent can be helped by external ser-
vices, as the example of traders, naming services,
yellow pages and so on.

5.1.4. Security
In a local network, completely isolated, located

uniquely in a single organization, it is possible to
trust in all the hosts and in the software installed in
this distributed system [KT98]. In these systems,
agents can freely migrate among hosts. For applica-
tions that do not need to communicate with the exte-
rior world, executing in this isolated network, the
security is not a big issue.

In applications executing in open networks as the

Internet, however, agents can belong to different
administrative domains, which cannot be trustable.
This characteristic introduces two main problems:
agents must be protected from “malicious” hosts;
and hosts must be protected from malicious agents,
or viruses. An example of the bad use of the mobile
agent paradigm was the “I LOVE YOU” virus, that
infected thousands of computers in May 2000
[Freedman00; IloveYou00]. In order to deal with
these security problems, a MAS must provide the
following security mechanisms:

A) Privacy and integrity.

Agents carry their state and data. These data can

have sensitive information. For example, in the
WONDER distributed workflow architecture
[SWME00], a purchase process can carry forms hav-
ing data of the clients and contracts. The privacy of
these data should be ensured. Moreover, nodes of a
distributed system may not be equally trustworthy.
These matters must considered by the mobile agent
developer. Agents have to be programmed in order
to apply different levels of access to the information
they convey, according to the level of confidentiality
of the host.

The MAS must also provide support for the detec-
tion of attacks, as the change in the source binary
code or the data conveyed by the agents, for exam-
ple. A way to protect this data is use some cryptog-
raphy and algorithms that check the integrity of data
as CRC (Cyclic Redundancy Check).

6

B) Authentication of agents and servers.

A MAS have to prevent malicious agents from

being confounded as authorized application agents.
Is must also avoid that malicious hosts receive au-
thorized agents from the system.

Mechanisms that allow the identification and cer-
tification of the server, as well as the agent or the
user that the agent represents, have to be supported.
This characteristic is usually provided by digital sig-
nature schemas (public and private keys for exam-
ple). These schemas are usually supported by au-
thentication servers that validate the clients.

C) Authorization and access control.

The access for some resources of the system must

be restricted/limited in a MAS. Agents can, for ex-
ample, be configured to respect polices of quotas of
occupation in the disk and can have the limited ac-
cess of write to disks or to create connections in the
network. This polices are used in virtual machines
like the JVM (Java Virtual Machine). These polices
are usually implemented using the access control
lists and capabilities (tokens that give to their hold-
ers the ability to access a resource).

D) Auditing and Metrics

Agents consume resources as network bandwidth,

disk space and CPU during its life. These resources
have to be monitored in a way to provide informa-
tion to the agents and to the administrators of the
distributed system.

5.1.5. Fault Tolerance
Agents can execute over many nodes of the dis-

tributed system, migrating through many machines,
resources and not reliable network connections. The
shift from the client-server paradigm to the mobile
agent peer-to-peer approach introduces many points
of failure in the distributed system. The MAS must
provide resources to the agent programmers in order
help them in the detection of hardware and software
errors. Once an error is detected, the agent can per-
form the necessary procedures to overcome these
errors as, for example, notify the other agents about
the failures, move to an alternative resource, wait
until a resource become active again, and so on.

5.1.6. Performance
The moving process of an agent must be efficient,

in a way to compensate its use, when compared to
other paradigms as the client/server.

According to the requirements of the application
being developed, the agent need to be small, allow-
ing its fast transfer between nodes of a network. The
agent also may have to be able to execute in machine
with possible memory and processing restrictions, as
the example of mobile computers and handheld
computers.

5.1.7. Multi-platform support
The distributed systems in big organizations are

usually composed by an heterogeneous set of hard-
ware and software platforms. The ability to execute
in these systems usually require that the agents be
able no migrate and execute in different operating
systems and computer architectures. The SAM must
support programming languages that can intemper-
ate and execute in different platforms.

5.1.8. Adaptability
The agent must be sensible to the diverse traffic

conditions, connection and topologies of a computer
network, as well as to the diversity of resources
available in each node. The MAS can provide this
information to the agents. This information is usu-
ally used in the decision making process related to
the migration, fault tolerance, operation mode (con-
nected/disconnected) of the agent and so on. This
resource is helped by the use of information sensors.

5.1.9. Communication
The ability to communicate in a localization inde-

pendent way is another characteristic that must be
provided. Agents constantly migrating and do not
have a fix address in the network. For such, agents
usually need location and tracking mechanisms.
Some examples of such services are the message
services, forwarding or the actualization of the name
service. The communication can be done in an asyn-
chronous way (based on datagrams), synchronously,
using remote procedure calls, or using shared files or

7

resources. The MAS have to cope with this require-
ment. In some cases, group communication primi-
tives can also be provided.

6. Developing With Mobile Agent Paradigm

In order to get the benefits of the mobile agent

paradigm, without incurring in the main problems of
this model, the use of a MAS is essential. In the pre-
sent time, a software engineer can use one of the
many MASs available both in the market and in the
research projects.

The most important requirements presented in

session 5, are implemented in the current main-
stream MASs. For example, the Voyager 4.0 [Voy-
agerRef] implementation support communication
among agents using publish/subscribe events,
CORBA IIOP and RMI protocols, agent persistence,
authentication and authorization of agents, manage-
ment tools, secure communication and so on.

These systems are built on top of widely used
middlewares as CORBA and RMI, providing addi-
tional services and facilities to these communication
frameworks.

In special the OMG (Object Management Group)
a consortium responsible for the standardization of
CORBA, also provided his own set of extensions to
the OMA architecture. As part of the Common Fa-
cilities of the OMA architecture, the OMG defines a
Facility for Mobile Agents Systems Interoperability
[OMG-MASIF98]. Its main goal is to define a com-
mon framework, based on the CORBA middleware,
to the interoperability of the MASs. This specifica-
tion is very generic and does not consider mobile
agents as first-class CORBA objects. Moreover, it
does not define mechanisms to transport these agents
through the ORB. This last requirement is addressed,
however, in another OMG specification, the Object
by Value RFP [OMG-OBV96]. This specification
defines a generic mechanism that allows the imple-
mentation of a MAS using CORBA. This facility is
available in the CORBA 3.0 standard [Vinoski 98].

7. Discussion
In this paper there were presented the mobile

agents paradigm, highlighting its main characteris-

tics and benefits to the development of distributed
applications. Some requirements and issues that this
paradigm introduces to the distributed applications
were pointed. The MAS were presented as a mid-
dleware to provide these requirements and make the
use of these applications easier. Some examples of
the user of this technology were also presented,
some of them as workflow management system, run-
time change and software deployment are still not
very well solved problems, that can benefit for the
use of this approach.

There is no “killer” application that can only be
implemented with this paradigm, however, there are
many benefits in the adoption of this approach, spe-
cially in the development of distributed and
decentralized applications.

In this sense, Harrison et al. [CHK94] argues that
the ability to migrate through distributed systems
hosts provide many benefits to the applications that
use this paradigm. Among them we can list:

• Local agent-host interaction, reducing the band-

width use of the network;
• Support for thin clients, with short computa-

tional power, or with scarce resources;
• Parallel processing though the distribution of the

control and processing.
• Facility to implement semantic routing, as the

example of workflow applications;
• Support for scalable applications ; and
• Improvement of fault tolerance to network link

failures.

On the other hand, the mobile agent paradigm has

some disadvantages, which introduces some extra
requirements to the applications that use this ap-
proach, as follows:

• The need for secure execution environments,

with more severe access restrictions, in order to
prevent malicious agents detection (virus);

• Performance limitations due to the use of secu-
rity polices and interpreted languages;

• The communication and processing overhead
associated to the migration of the agents.

• The introduction of many points of failure

However, if considered all positive and negative
points of this approach, the mobile agent paradigm

8

provides an open and generic framework for distrib-
uted application development. Even though none of
these characteristics is exclusive from the mobile
agent paradigm, these aggregate set of benefits are
hardly implemented alone by other paradigms as the
client-server.

8. References

[BPW98] A. Bieszczad, B. Pagurek, and T. White. Mo-

bile agents for network management. IEEE Commu-
nications Surveys, September 1998.

[CHK94] D. Chess, C. Harrison, and A. Kershenbaum.
Mobile Agents: are they a good idea?. IBM Research
Report, IBM T. J. Watson Research Center, Yourk-
town Heights, N.Y. RC 19887, December 1994.
http://www.research.ibm.com/massdist/mobag.ps

[Concordia97] Mitsubishi Electric. Concordia: An Infra-
structure for Collaborating Mobile Agents. In Pro-
ceedings of the 1st International Workshop on Mo-
bile Agents (MA ’97), April 1997.

[CORBA98] The Common Object Request Broker: Ar-
chitecture and Specification. Object Management
Group, Framingham, MA, 1998.

[CPV97] A. Carzaniga, G. P. Picco and G. Vigna. De-
signing distributed applications with mobile code
paradigms. Proceedings of the 1997 international
conference on Software engineering, 1997, pp. 22 –
32.

[DLMM93] M. Day, B. Liskov, U. Maheshwari and A. C.
Myers. References to remote mobile objects in Thor.
ACM Letters on Programming Languages and Sys-
tems 2, 1-4 (Mar. 1993), pp. 115- 126.

[Flanagan99] D. Flanagan. Java in a Nutshell. O'Reilly &
Associates, 3rd. Edition. December 1999. ISBN
1565924878.

[Fowler85] R. J. Fowler. Decentralized object finding
using forwarding addresses. Tech. Rep. 85-12-1,
Dept. of Computer Science, Univ. of Washington,
Dec. 1985.

[Freedman00] D. H. Freedman. Attack of the Killer Vi-
ruses. The New York Times - Editorial Desk. May 6,
2000, Saturday Edition.

[GKNRC96] Kotz D., R. Gray, D. Rus, S. Nog and G.
Cybenko, Mobile Agents for Mobile Computing. In
Technical Report PCS-TR96-285, Computer Science
Department, Dartmouth College, May 1996.

[Gray96] R. S. Gray. Agent Tcl: A flexible and secure
mobile-agent system. In Proceedings of the 4th An-
nual Tcl/Tk Workshop (TCL '96), July 1996.

[IH99] L. Ismail, D. Hagimont. A Performance Evalua-
tion of the Mobile Agent Paradigm. Proc. Of the

1999 ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and
Applications. November 1-5, 1999, Denver, CO
USA.

[IloveYou00] I Love You Virus in News. CNET.com
News – Enterprise Computing. May 16, 2000.
http://news.cnet.com/news/0-1003-201-1826257-
0.html?tag=st.cn.sr1.ssr.ne_virus .

[JRS95] D. Johansen, R. van Renesse, and F. B. Schnei-
der. Operating System Support for Mobile Agents. In
Proceedings of the 5th IEEE Workshop on Hot Top-
ics in Operating Systems (HotOS-V), pages 42--45,
May 1995.

[KLO97] G. Karjoth, D. Lange, and M. Oshima. A seci-
ruty Model for Aglets. IEEE Internet Computing,
Vol. 1. No. 4, July-Aug. 1997. pp. 68-77.

[KLO97] G. Karjoth, D. Lange, and M. Oshima. A Secu-
rity Model for Aglets. IEEE Internet Computing,
pages 68--77, July-August 1997.

[KT98] N. Karnik and A. Tripathi. Agent Server Archi-
tecture for the Ajanta Mobile-Agent System. In Pro-
ceedings of the 1998 International Conference on
Parallel and Distributed Processing Techniques and
Applications (PDPTA'98), July 1998.

[KT98] N. M. Karnik and A. R. Tripathi. Design Issues in
Mobile-Agent Programming Systems. IEEE Concur-
rency, July-September, 1998.

[LO99] D. B. Lange and M. Oshima. Seven good reasons
for mobile agents. Communications of the ACM,
42(3): 88-89, March 1999.

[ObjectSpace97] ObjectSpace: ObjectSpace Voyager
Core Package Technical Overview. Tech. Repot. Ob-
jectSpace Inc. Dallas, 1997.

[OMG-MASIF98] OMG doc orbos/98-03-09 - Evaluation
Report on the Mobile Agent Facility Joint Submis-
sion. Revised Version.

[OMG-OBV96] OMG doc orbos/96-06-14 - Ob-
jects-By-Value RFP

[OMT98] P. Oreizy, N. Medvidovic, and R. N. Taylor.
Architecture-based runtime software evolution. In
Proceedings of the International Conference on Soft-
ware Engineering 1998 (ICSE'98), Kyoto, Japan,
April 1998.

[RGK97] D. Rus, R. Gray, and D. Kotz. Transportable
Information Agents. Proceedings of the First ACM
International Conference on Autonomous Agents ,
1997, pp. 228 – 236.

[SWME00] R. S. Silva Filho, J. Wainer, E. R. M. Ma-
deira, C. Ellis – CORBA Based Architecture for
Large Scale Workflow. Special Issue on Autono-
mous Decentralized Systems of the IEICE Transac-
tions on Communications, Tokyo, Japan, Vol. E83-
B, No. 5. May 2000, pp.988-998.

[Vinoski 98] S. Vinoski. New features for CORBA 3.0.

9

Communications of the ACM, Volume 41, Num. 10.
ACM Press. October 1998. pp 44 - 52.

[VoyagerRef]
http://www.objectspace.com/products/voyager/

[White94] J.E. White. Telescript Technology: The Foun-
dation for the Electronic Marketplace. Whitepaper by
General Magic, Inc, Sunnyvale, CA, USA, 1994.

