

Supporting Concern-Based Regression Testing and Prioritization
in a Model-Driven Environment

Roberto S. Silva Filho, Christof J. Budnik, William M. Hasling, Monica McKenna, Rajesh Subramanyan
Siemens Corporate Research

Software Engineering Department
755 College Road East

Princeton, NJ USA 08540
{Roberto.Silva-Filho.ext, Christof.Budnik, Bill.Hasling, Monica.McKenna, Rajesh.Subramanyan}@siemens.com

Abstract—Traditional regression testing and prioritization
approaches are bottom-up (or white-box). They rely on the
analysis of the impact of changes in source code artifacts,
identifying corresponding parts of software to retest. While
effective in minimizing the amount of testing required to
validate code changes, they do not leverage on specification-
level design and requirements concerns that motivated these
changes. Model-based testing approaches support a top-down
(or black box) testing approach, where design and
requirements models are used in support of test generation.
They augment code-based approaches with the ability to test
from a higher-level design and requirements perspective. In
this paper, we present a model-based regression testing and
prioritization approach that efficiently selects test cases for
regression testing based on different concerns. It relies on
traceability links between models, test cases and code artifacts,
together with user-defined properties associated to model
elements. In particular we describe how to support concern-
based regression testing and prioritization using TDE/UML,
an extensible model-based testing environment.

Keywords- model-driven testing; test development; regression
testing; test prioritization.

I. INTRODUCTION

In current incremental and interactive development
processes [1], tests occur in every stage of software
development process. Every time a program is changed due
to the addition of new features or fixing of existing issues,
tests are run to ensure the quality of the change, and that
other features, not directly related to the change, are still
working as required. The goal is to find, as early as possible,
any defects introduced in the software due to either
corrective or evolutive maintenance activities.

In large software projects, tests account for a great
amount of effort with respect to both their development and
execution. Software quality assurance is many times
supported by exhaustive software testing especially before
major releases.

The goal of regression testing is to minimize the amount
of test cases that need to be executed when a software
change occurs, without jeopardizing the detection of faults
that may have been introduced. The main idea is to prevent
the execution of tests that exercise parts of the code that are
not affected by the software change, thus significantly

reducing the testing effort needed to validate new software
versions, improving the overall productivity of the software
development process.

Two important techniques: change impact analysis and
prioritization are usually combined in the production of
optimal regression test suites [2]. Change impact analysis
approaches apply different strategies in the selection of test
cases to validate the software after an evolution step. They
strive to balance attributes such as inclusiveness, precision,
efficiency and generality, while minimizing the number of
tests to execute [3]. Likewise, prioritization strategies’ goal
is to reorder tests based on different criteria such as their
fault revealing potential [4]. This information can be used to
schedule test execution in order to more effectively reveal
faults in the program.

Code-based (or white-box) prioritization approaches have
focused on ranking tests based on their ability to reveal
errors in the code. A common approach has been to apply
code-level metrics based on test coverage, as criteria for
prioritization [2], [5]. While very effective in selecting a sub-
set of tests that cover specific code changes, these
approaches are agnostic to requirements, organizational and
architectural-level concerns such as: features, non-functional
requirements, risks, and client-base priorities, to cite a few.

Recently specification-based (black-box) approaches as
model-driven engineering (or MDE) [6] have been applied in
the development and testing of complex software systems.
MDE facilitate software development by focusing on the use
of models rather than source code as its primary artifact. By
relying on abstractions that are closer to the problem domain
requirements, MDE helps to bridge the gap between problem
and software implementation domains. MDE achieves this
goal through the automation of the process of transforming
high-level software models into lower-level artifacts,
including tests and reports.

In this context, model-based testing approaches, e.g., [7],
[8], have been developed to simplify the process of test
development and execution. In these approaches, models are
used to describe the system’s expected behavior, while tools
automate the process of test generation and execution.
Models have also been applied in the process of test
prioritization [9] and regression testing [10]. In particular,
model-based integrated development environments such as

TDE/UML [8] provide an extensible platform where these
approaches can be implemented.

In this paper, we discuss our approach to model-based
regression testing and selection. Instead of relying on the
analysis of structural model changes alone, our approach
incorporates different user-defined concerns in the process of
selection and prioritization of test cases. In particular, user-
defined concerns, such as last change date, requirements,
risk, and features, are represented as properties in the model.
Moreover, through traceability links between requirements,
model, test cases and code artifacts, these concerns are used
to automatically select and prioritize test procedures, before
they are used for code generation and execution. Finally, our
approach relies on the online monitoring of changes in the
model, identifying model changes without the need for
model differencing that uses a lot of computational power.
We illustrate our approach by showing how TDE/UML [8], a
model-based testing environment for UML, is extended to
support concern-based regression testing and prioritization.
The approach demonstrates how the combined use of:
traceability links, test-driven environments, incremental
change tracking, and extensible architectures can be applied
in support of regression test generation.

This paper is organized as follows: Section II introduces
the model-based testing strategy supported by TDE/UML.
This approach is extended by concern-based regression and
prioritization strategy as described in Section III. Related
work is discussed in Section IV followed by the conclusion
and discussion of future work in Section V.

II. MODEL-BASED TESTING WITH TDE/UML

TDE/UML [8] is a tool suite for model-based test
generation based on UML. Its overall goal is to generate
functional test cases based on use cases, represented as
activity diagrams. TDE/UML was developed at SIEMENS
Corporate Research (SCR) to automate and formalize the
testing process as much as possible, delivering a more
systematic and efficient system and integration level tests.
The tester annotates the diagrams with additional test data
such as coverage requirements, constraints, and
preconditions. TDE/UML provides an integrated
environment supporting model creating and verification, test
suite and test code generation.

A. TDE/UML Characteristics

A distinctive characteristic of TDE/UML is the use of
category partition method [11] for input data generation.
This approach reduces the space of test cases, without
jeopardizing its generality, while keeping the traceability
between UML models and test cases. In TDE/UML, the
category partition method is integrated with UML diagrams
through the use of annotations specified in a language similar
to OCL (Object Constraint Language). These annotations
define constraints connecting the model description to user
defined data categories and choices, prescribed in the
category partition method. An additional advantage of
TDE/UML is its computational power and efficiency in
generating test cases. TDE/UML also provides a plug-in
oriented architecture, supporting different extensions,

including our concern-based regression testing and
prioritization approach.

The benefit is an earliest possible testing in the software
lifecycle, which reduces test cycles and improves product
quality. TDE/UML has been used within SIEMENS on
numerous projects from different domains.

B. TDE/UML Model-Based Approach

The TDE/UML model-based testing approach is
summarized in Figure 1. TDE/UML supports both the
creation of UML models, and the generation of tests and
reports based on these models. TDE/UML is also highly
customizable, supporting plug-ins in different parts of the
test design and generation pipeline. The main components of
the system are summarized as follows.

Figure 1. TDE/UML Model-Based Architecture Overview

UML Model: TDE/UML currently supports UML activity
and sequence diagrams, as well as class diagrams
representing choices and categories in the category partition
method.

Model Importer: The use of UML diagrams allows
TDE/UML to interoperate with existing modeling tools. This
integration is implemented by custom model importers.

Model Editor: Different UML diagrams can be
supported. For such, custom model editors, supporting
specific UML diagrams and their respective editing
commands (e.g. create activity, create note, add guard, etc.)
can be defined.

Model Rule Verification: During its development, models
can be checked for different consistency and style rules. In
particular, TDE/UML supports syntax and semantic
checking of OCL data and control constraints, defined within
notes in the model, that specify data-driven guards and data
input constraints for activity diagram elements.

Model Report Generation: Supports of the process of
exporting UML models to different formats, and the
generation of model documents. For example: HTML and
word processing documents reports, or formats compatible to
other UML tools.

Test Generation: During the test generation, the
annotated UML model is used to produce a Test Suite. This

Model

Import

Model

Editor

Model Rule

Verification

Model

Report

Generation

Test

Generation

Code

Generation

Test suite

modifiers

Language-specific

generators

Custom model

report generators

Custom model

rules

Custom

model editors

Custom model

importers

Test

Suite

Reports

Test

Code
Traceability Links

Traceability Links

Editor

commands

Traceability Links

Model design and checking Test and report generation

UML

Model

Test Report

Generation

Custom test report

generators

Model

elements

process is configurable and supports different data and path
modifiers, which implement coverage algorithms, including
the happy path (user-defined critical path), data coverage,
path coverage, path-data coverage and others.

Test Suite: Is a data structure representing a set of test
procedures derived from UML models. Test procedures are
the basic product of test generation. They describe a set of
test steps, operating over specific data bindings, as well as
generic template code to be used in code generation.

Traceability Links: are defined between individual test
steps, artifacts and the model. Optionally, traceability links
from generated code to their originating test steps are also
generated. These links help in the process of regression
testing as described in III.E.

Code Generation: The code generation is based on the
test procedures described in Test Suites, and on the
traceability links to the model. Based on that information,
generators (each specific to a programming language) are
used to produce executable test procedures.

Report Generation: Test Suites can also be used as a
basis for generating more detailed test reports, for example,
summarizing coverage information.

Test Suite Modifiers: can be defined to further refine the
generated test procedures and their steps. Modifiers are also
used to filter and reorganize the generated test procedures
within a Test Suite.

In our approach, the Test Suite Modifiers are used to
prioritize test procedures based on different concerns, and to
filter out test procedures that were not affected by changes in
the model. In the next section, we describe our model-based
regression testing and prioritization approach.

III. CONCERN-BASED REGRESSION TESTING AND

PRIORITIZATION

Concern-based regression testing and prioritization
supports users in selecting and reordering sub-sets of test
cases based on different criteria. These criteria include not
only changes in the model but also specification-level

concerns. It is divided in a set of successive steps illustrated
in Figure 2, and summarized as follows:
1. During edit time, the model is monitored for changes as

the users modify, add and remove existing elements in
the UML diagrams. The model is also annotated with
different concerns, represented as element properties.

2. During test generation, and using the timestamps
collected during edit time, both structural and semantic
changes in the model are identified. This information is
used to classify test procedures as re-testable (either new
or impacted by changes) and reusable (not affected by
changes). Obsolete tests are NOT identified during code
generation, but are shown in step 2 of Figure 2 for
illustration purposes.

3. During the filtering step, procedures are selected
according to different attributes. For example, re-
testable procedures are selected for generation based on
timestamps of model elements that originate that
procedure.

4. During prioritization, tests previously selected for
regression testing are reordered based on different
attributes such as: risk, change impact, and other user-
defined properties associated to model elements.

5. Finally, code is generated and executed. Obsolete tests
are deleted, and reusable code is optionally executed.

The key insight of our approach is the use of user-defined
properties to represent design and requirements concerns, the
monitoring of changes as the test model is edited which
produces timestamps, the change impact analysis based on
these timestamps, and the use of traceability links between
different artifacts generated by the model-based
environment. These links are kept consistent as the model is
successively transformed from high-level elements into
intermediate test procedures, and ultimately into code and
report artifacts. By tapping into this process, we can
efficiently streamline the regression testing and prioritization
process in an efficient way, and can possibly apply this
strategy to existing MDE tools.

Figure 2. General example showing the main steps of the approach.

TestProcedure_A_1_a

TestProcedure_A_1_b

TestProcedure_A_1_c

TestProcedure_B_2_a

Use Case A

Use Case B

Use Case C

1. Model

Reusable Procedures
Re-testable (new or modified)

Test Procedures

Obsolete Procedures

3. Filtering 4. Prioritization

TestProcedure_B_2_a

TestProcedure_A_1_c

TestProcedure_A_1_a

TestProcedure_A_1_b

5. Code Generated & Executed

ExecutableTestProcedure_B_2_a

ExecutableTestProcedure_A_1_c

ExecutableTestProcedure_A_1_a

ExecutableTestProcedure_A_1_b

2. Change Impact Analysis

Code Deleted

ExecutableTestProcedure_B_1_a

ExecutableTestProcedure_B_1_b

LEGEND:
Reusable Code

ExecutableTestProcedure_A_2_a

ExecutableTestProcedure_A_2_b

ExecutableTestProcedure_C_1_a

ExecutableTestProcedure_C_2_a

ExecutableTestProcedure_C_2_b

Un-modified UC

Modified UC

TestUseCase_A

TestCase_A_1

TestProcedure_A_1_a

TestProcedure_A_1_b

TestProcedure_A_1_c

TestCase_A_2

TestProcedure_A_2_a

TestProcedure_A_2_b

TestUseCase_B

TestCase_B_1

TestProcedure_B_1_a

TestProcedure_B_1_b

TestCase_B_2

TestProcedure_B_2_a

TestUseCase_C

TestCase_C_1

TestProcedure_C_1_a

TestCase_C_2

TestProcedure_C_2_a

TestProcedure_C_2_b

Model-based regression testing and prioritization

In order to validate our approach, we extended
TDE/UML as illustrated in Figure 4. In the following
sections, we further describe these extensions.

A. Integrating Concerns in TDE/UML Model Editor

For every UML element in the model, properties can be
defined to represent different concerns such as risk, features,
requirements, ownership, and so on. A model element can
have different properties, allowing these concerns to overlap
in different ways. Once defined by users, properties can be
modified and viewed, at model edit time, by clicking on the
elements of the model, and using the Properties panel, as
shown in Figure 3.

Figure 3. Setting up and Viewing Properties in TDE/UML

B. Tracking Changes in the Model

Timestamps are regular element properties and can be
inspected at edit time. For example, Figure 3 shows the “Last
Modified” property of the “Set Camera Mode” activity. This
property represents the last time this activity was modified.
Internally, timestamps are strings representing year (YY),
month (MM), day (DD), hour (HH), minute (MM) and
second (SS) according to GMT time zone. It is stored in the
format: YYYYMMDDHHMMSS. Our approach assumes
the local computer clock is regularly updated through an
SNTP server (this feature is standard in modern operating
systems such as UNIX/Linux and Windows). In particular,
we adopted the following time stamping criteria for tracking
changes in the model:

Semantic Element Updates: Updates in existing diagram
elements include modifications of: activity names, decision
nodes expressions, note expressions marked with the
<<TDE/UML>> stereotype, category names and choices, as
well as decision nodes and transition guards. We also

consider changes in any user-defined properties. These
modifications are all considered semantic changes, and result
in the update of their respective elements timestamps.

Structural changes: Upon creation, new activity and
decision nodes, sync points, transitions, as well as initial and
final nodes all have their timestamps updated. The removal
of single nodes in activity diagrams usually result in the
deletion of two transitions, and the creation of a new
transition between adjacent nodes. This new transition is
tagged as changed, as well as the adjacent nodes that it
connects. The special cases of deletion of initial or final
nodes in a diagram results in the deletion of a transition, and
the time stamping of predecessor or successor nodes in the
activity diagram. For example, the deletion of a note results
in the update of its associated diagram element. Non-
semantic changes as the laying out of activities and decision
nodes in the diagram are not considered.

Diagram updates. Whenever elements are removed or
added to an activity diagram, the diagram itself has its
timestamp updated. This approach captures changes such as
the deletion of whole sub-diagrams or individual transitions,
that otherwise would be undetected by our time stamping
approach.

The change tracking feature was implemented by
modifying the UML model elements to support timestamp
properties, and by modifying existing commands in the
activity diagram editor to record changes as the model is
modified.

Figure 4. Extending TDE/UML for Regression Testing and

Concern-Based Prioritization

C. Change Impact Analysis

The change impact analysis used in TDE/UML relies on
the traceability links from generated test procedures and the
model, and the change tracking approach previously
discussed. Using these links, the model elements can be
inspected for their respective properties and timestamps.

Before generating a test suite based on the model,
developers are asked to define different parameters as shown
in Figure 5 for example, the data and path coverage
algorithms. Optionally, they can also specify a time frame
(time range start, time range end) within which changes in
the model are considered for regression testing and/or
prioritization.

Model

Editor

Test

Generation

Code

Generation

Change

impact

analysis

Property-

based filter

and sorting

Custom

model editors

Test

Suite

Test

Code
Traceability Links

Traceability Links

Timestamp-

able

commands

Model design and checking Test and report generation

UML

Model

Property

aware model

elements

Property-aware model

Test suite

modifiers

Language-specific

generators

Embed

traceability in

comments

Figure 5. TDE/UML Test Generator UI

As previously described, the regression test procedure
happens in three steps (steps 2, 3 and 4 of Figure 2). First, a
full Test Suite is generated, according to the selected
coverage algorithm parameters. In a second step, the
resulting Test Suite is filtered. Test procedures that have any
step whose traceability link points to a modified element
within the provided time interval, are selected. Test
procedures not originated from modified model elements are
discarded for the time being. Third, the test procedures are
prioritized according to user-defined criteria. The result is
then presented to the end user as shown in Figure 6.

D. Concern-based Prioritization

Prioritization consists on selecting and reordering test
procedures based on a priority function. This function is
based on the values of one or more model or test procedure
properties. For example, a prioritization approach can be
defined to reorder test procedures based on the number of re-
testable steps they have. Another prioritization schema may
consider the average risk of all the steps in each test
procedure. Prioritization can also be performed
independently from change impact analysis, and may involve
different properties at a time.

Test prioritization is implemented by test suite modifiers,
installed in the test generation pipeline (see Figure 4). These
modifiers reorganize test procedures according to different
criteria. For example, test procedures can be sorted based on
the number of steps originated in modified elements in the
model. This heuristic allows test procedures that cover the
highest number of changed model elements (and therefore
may have the highest fault reveling potential), to be executed
first.

We also support prioritization by other properties. For
example, risk. Users can define individual risks for each
activity, or may program the system to calculate these risks.
Test procedures with steps originated on activities with high

risks are ranked higher than those testing lower risk
activities.

Hence, the approach allows the combination of different
prioritization and regression testing approaches, generating
different test suites. The key to this feature is the support for
test suite modifiers in TDE/UML, and the ability of the UI in
supporting the customization of these policies.

Figure 6. TDE/UML Test Suite Browser

E. Code Generation

After classifying, selecting and prioritizing test
procedures, executable tests (code) and reports can be
generated. In particular, we assume two different scenarios
supporting the generation of executable tests. In the first
scenario, only the filtered and prioritized test procedures are
used. This allows the fast generation of executable tests for
new and modified features, introduced within a time period.
This strategy can also be used for generation of executable
tests for specific concerns. In a second scenario, during a
major software release, for example, a more complete test
generation is performed. In that case, re-testable and reusable
tests are both generated and executed. Test procedures are
generated into individual executable test files as shown in the
example of Figure 2.

In both scenarios, obsolete tests are identified by
comparing the reusable and re-testable executable tests with
the existing executable test code base. This process is
automated by the use of test signatures, stored as comments
in each executable test source file.

Test signatures are strings derived by composing the full
test procedure path. They combine the test use case, test
case, test procedure and individual test steps names,
including their corresponding data bindings. For example,
the signature of ExecutableTestProcedureA_2_a of Figure 2
will be the string:

TestUseCaseA/TestCaseA_2/TestProcedureA_2_
a/Step1[data1],Step2[data2],…,StepN[dataN]

This signature name uniquely identifies executable test
cases. By comparing these signatures against generated test

procedures, obsolete tests can be efficiently identified and
removed from the code base.

IV. RELATED WORK

In both industry and the research literature, there is an
increasing interest in model-based regression testing and
prioritization. This section discusses current work in the area,
comparing them to our approach.

An analysis of existing code-based regression testing and
prioritization approaches is presented at [13] and [14]. In all
these approaches, code is the main artifact being analyzed.
Code-based regression testing is time consuming. It usually
requires testers to access and understand the code, or when
automation is used, requires the parsing of the whole
program code base. An approach for regression test selection
where requirements are represented as comments in the code
is proposed by [15]. This approach, however, lacks adequate
automation to manage requirements changes.

Different model-based prioritization approaches have
been proposed in the literature [9], [4] including risk-based
approaches such as [16] and [17]. Our work builds upon
existing approaches by supporting the combination of
prioritization and regression testing based on different user-
defined concerns.

Recent developments in model-based regression testing
include: model-based test prioritization heuristics [10],[7]
that focus on model-based change impact analysis, and the
use of traceability information [12] in support of automatic
test generation based on UML sequence diagrams. In
particular, the work of [12] and [7] perform change impact
analysis based on the differentiating of model diagrams. This
approach is very costly and time consuming since it requires
the compilation of two or more models in a single step. A big
advantage of our approach is the minimization of these costs
through the tracking of model changes at edit-time, recording
change timestamps, as the model evolves, and the ability to
combine specification-based concerns with model changes.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we described an approach for model-based
regression testing and prioritization that leverages user-
defined properties and traceability links. We discussed our
approach showing its integration with TDE/UML.

Currently, we support change-based regression testing
based on timestamps, and property-based prioritization. The
implementation, however, is batch-based. I.e. the
prioritization and filtering is performed as part of the test
generation process, using test suite modifiers as shown in
Figure 4. We are currently working on a user interface to
better support test developers in defining and analyzing
alterative prioritization and regression testing scenarios
before generating code.

Future work includes the refinement of the change
impact algorithms in order to minimize the set of test
procedures to be regenerated. The current change impact
analysis algorithm employs a best-effort strategy that while
guarantees coverage of all changes, is not optimal. We also
plan on optimizing the use of traceability links in code
generation. Finally, we plan on validating our approach by

applying it in different business units at SIEMENS, thus
refining our design to meet individual project needs, and by
comparing it with existing approaches.

REFERENCES

[1] C. Larman and V. R. Basili, "Iterative and Incremental
Development: A Brief History," in IEEE Computer. vol. 36,
2003, pp. 47-56.

[2] G. Rothermel, R. H. Untch, C. Chengyun, and M. J. Harrold,
"Prioritizing Test Cases for Regression Testing," in IEEE
TSE, vol. 27, pp. 929-948, 2001.

[3] G. Rothermel and M. J. Harrold, "Analyzing regression test
selection techniques," IEEE Transactions on Software
Engineering, vol. 22, pp. 529-551, 1996.

[4] A. Srivastava and J. Thiagarajan, "Effectively Prioritizing
Tests in Development Environment," in Intl. Symposium on
Software Testing and Analysis Roma, Italy: 2002.

[5] S. Elbaum, G. Rothermel, S. Kanduri, and A. G. Malishevsky,
"Selecting a Cost-Effective Test Case Prioritization
Technique " Software Quality Journal, vol. 12, pp. 185-210,
September 2004.

[6] R. France and B. Rumpe, "Model-driven Development of
Complex Software: A Research Roadmap," in Future of
Software Engineering: IEEE Computer Society, 2007.

[7] L. C. Briand, Y. Labiche, and S. He, "Automating regression
test selection based on UML designs," Inf. Softw. Technol.,
vol. 51, pp. 16-30, 2009.

[8] B. Hasling, H. Goetz, and K. Beetz, "Model Based Testing of
System Requirements using UML Use Case Models," in Intl.
Conf. on Software Testing, Verification, and Validation, 2008.

[9] B. Korel, L. H. Tahat, and M. Harman, "Test Prioritization
Using System Models," in 21st IEEE Intl. Conference on
Software Maintenance. 2005.

[10] O. Pilskalns, G. Uyan, and A. Andrews, "Regression Testing
UML Designs," in 22nd IEEE International Conference on
Software Maintenance: IEEE Computer Society, 2006.

[11] T. J. Ostrand and M. J. Balcer, "The Category-partition
Method for Specifying and Generating Fuctional Tests,"
Commun. ACM, vol. 31, pp. 676-686, 1988.

[12] L. Naslavsky, H. Ziv, and D. J. Richardson, "A Model-based
Regression Test Selection Technique," in IEEE International
Conference on Software Maintenance, 2009, pp. 515-518.

[13] S. Elbaum, A. G. Malishevsky, and G. Rothermel,
"Prioritizing test cases for regression testing," in ACM
SIGSOFT International Symposium on Software testing and
analysis Portland, Oregon, United States: ACM, 2000.

[14] G. Rothermel, S. Elbaum, A. G. Malishevsky, P. Kallakuri,
and X. Qiu, "On Test Suite Composition and Cost-effective
Regression Testing," ACM Trans. Software Engineering
Methodology, vol. 13, pp. 277-331, 2004.

[15] P. K. Chittimalli and M. J. Harrold, "Regression test selection
on system requirements," in 1st India Software Engineering
Conference Hyderabad, India: ACM, 2008.

[16] R. Subramanyan and C. J. Budnik, "Test Selection
Prioritization Strategy," in 33rd IEEE International Computer
Software and Applications Conference - Vol 02. 2009.

[17] Y. Chen, R. L. Probert, and D. P. Sims, "Specification-based
Regression Test Selection with Risk Analysis," in 2002
Conference of the Centre for Advanced Studies on
Collaborative Research Toronto, Ontario, Canada: IBM
Press, 2002.

