
Towards Future-Based Explanations for
Deep RL Network Controllers

Sagar Patel1, Sangeetha Abdu Jyothi1,2, and Nina Narodytska2

1University of Califoria, Irvine 2VMware Research

ABSTRACT
Lack of explainability is hindering the practical adoption of
high-performance Deep Reinforcement Learning (DRL) con-
trollers. Prior work focused on explaining the controller by
identifying salient features of the controller’s input. How-
ever, these feature-based methods focus solely on inputs and
do not fully explain the controller’s policy. In this paper, we
put forward future-based explainers as an essential tool for
providing insights into the controller’s decision-making pro-
cess and, thereby, facilitating the practical deployment of
DRL controllers. We highlight two applications of future-
based explainers in the networking domain: online safety
assurance and guided controller design. Finally, we provide
a roadmap for the practical development and deployment of
future-based explainers for DRL network controllers.

1. INTRODUCTION
Deep Reinforcement Learning (DRL), in lab settings, of-

fers state-of-the-art performance in increasingly more prob-
lems in the networking domain, such as load balancing, net-
work traffic engineering, congestion control, and adaptive bi-
trate streaming. However, DRL controllers lack real-world
deployment because operators cannot interpret, debug, or
trust them [5].

The domain of eXplainable Reinforcement Learning (XRL)
has emerged to address this lack of trust. At its core, XRL
aims to explain the decision-making process of a learned con-
troller to humans [1]. Prior work has interpreted the con-
troller’s actions by highlighting the important features given
to the controller. Metis [5] applies the concepts of decision
tree distillation and critical path identification to generate
interpretations. Trustee [3] further builds on the process of
distillation by introducing ways to improve fidelity and gen-
erating an associated trust report. We broadly categorize
these works as feature-based.

Feature-based explainers have proven their effectiveness
in a number of applications. They can identify issues with
the feature set [3], dataset [3], and model architecture [5].
However, they do not capture the forward-looking objective
of the controller’s decision-making process and thus cannot
provide a comprehensive understanding of the controller.

In this work, we present a new perspective on explainabil-
ity that we define as future-based. This approach focuses on
presenting a future-oriented perspective of the controller by
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capturing goals or rewards. In networking applications, fu-
ture rewards, in particular, are human-designed and repre-
sent the key performance metrics of the network application.
In this case, future-based explanations based on reward com-
ponents can provide meaningful insights into future perfor-
mance metrics, which are meaningful to network operators.
For instance, by analyzing future rewards in congestion con-
trol, we can obtain insights into the upcoming performance
of the controller in terms of throughput, latency, and loss.

We highlight two key benefits of gaining a future-based
understanding of DRL network controller behavior. First,
it can provide insights for fine-tuning the algorithm param-
eters and the reward function during DRL controller design,
which is a tedious and resource-inefficient process. Second,
during the practical deployment of DRL controllers, future-
based explainers can enable online safety assurance [6] by
supporting network observability and preemptively trigger-
ing alerts for upcoming performance declines.

Recent work has introduced future-based explainers for
gaming and robotic environments [4, 2]. However, these
solutions are not adopted in practice since they either re-
quire accurately modeling the environment or require sig-
nificant changes to the controller, which is often not feasible
or detrimental to controller’s performance. We outline the
key research challenges towards developing practical future-
based explainability frameworks in the networking domain.
First, the forward-looking view of the controller contains a
vast amount of information; capturing it succinctly and pre-
cisely is crucial for practical adoption. Second, future-based
explainers must have low-latency explanations to spot safety
violations before they happen, which is critical for tasks like
online safety assurance. Third, they must function sepa-
rately from the controller. This ensures they can be broadly
applied without making extensive changes to the controller
that could negatively affect the performance. Fourth, the
explainers should be robust to malicious attacks, noise, and
distribution shifts, thereby avoiding a false sense of security.

2. BACKGROUND
In this section, we provide a background of Reinforcement

Learning and Adaptive Bitrate Streaming.

Reinforcement Learning. In Reinforcement Learning, an
agent interacts with an environment. It is given a state st,
and takes an action at according to its policy π(A|st). The
environment reacts to the agent’s action and gives back to
it the reward rt, along with the next state st+1. The goal
of the agent is to change its policy such as to maximize the
reward over time, defined as the return G =

∑∞
t=0 γ

trt.



(a) A contrastive future-based explanation for actions
within state S1

(b) The contrastive explanation for actions within state S2

Figure 1: We illustrate how future-based explainers can provide insights across states and actions. We consider two seemingly
similar states, S1 and S2, and seek to understand why the controller prefers different actions in them. We query the explainers
with two actions: 1080p and 480p under both state S1 (a) and S2 (b). We can then peek into the future impact of these
actions under both states and understand that 1080p is preferred in S1 because it leads to high QoE, but it is not preferred
in S2 because it causes stalling.

Figure 2: Online Safety Assurance: With the ability to capture the
future performance of the controller, future-based explainers can
be used to raise alerts about safety violations before they occur,
falling back to a safe baseline and guaranteeing tail-ended perfor-
mance.

Figure 3: Guided Controller Design: Future-based explanations
can help tune controller design. For a controller acting aggressively
under poor network conditions, these explanations reveal stalling
as an expected outcome. This insight helps the operator see that
the reward function needs greater penalties for stalling.

Adaptive Bitrate Streaming. Adaptive Bitrate Stream-
ing (ABR) works by dividing the video into chunks and en-
coding them at various discrete bit rates. During streaming,
the most suitable bit rate for each chunk is chosen based on
network conditions. The client also has a short buffer that
can hold chunks yet to be seen. The ABR controller sequen-
tially selects the bitrate to maximize the client’s Quality of
Experience (QoE), a numerical measure that awards high
quality, and penalizes both changes in quality and stalling.

3. FUTURE-BASED EXPLAINERS
In this section, we first provide an overview of future-

based explainers and how they can concretely enhance ex-
plainability. Next, we highlight two key applications of
future-based explainers in the networking domain towards
facilitating practical deployment of DRL controllers.

3.1 Overview
Future-based explainers shed light on the future goals or

performance of the DRL controller. To train a future-based
explainer, we take three inputs: the DRL controller, the sim-
ulation environment, and the training traces. We then roll
out the controller, collecting the states, actions, and rewards
the controller gets while interacting with the simulation en-
vironment. Finally, we use this interaction data to train the
future-based explainer.

During inference, we can query the future-based explainer
with a state and action to obtain a view into the impact of
that action—getting explanations built around future states
or rewards.

As a concrete example, let us consider a future-based ex-
plainer of an ABR controller that captures future perfor-
mance through rewards and a scenario where the operator
is looking to understand why the controller chooses different
actions under seemingly similar network conditions. The
operator selects the states representing this scenario and
queries the explainer for the different actions it takes. In
Figure 1, we visualize this scenario. We want to understand
why the controller prefers to send a 1080p video chunk in S1

while a 480p chunk in S2, despite both of them having un-
stable throughput and similar buffer occupancy. We query
a future-based explainer with both actions in both states.
We can see that in S2, the 1080p action is likely to lead to
stalling and is thus avoided. Meanwhile, because the same
is not expected in S1, the 1080p action provides a higher
quality of experience.

Thus, future-based explanations offer a medium to com-
pare the impact of different actions from within and across
multiple states.

3.2 Applications
Next, we discuss how insights offered by future-based ex-

planations can be leveraged in the design and deployment of
DRL controllers. We highlight two key applications: guided
controller design and online safety assurance.

Guided Controller Design. Implementing practical DRL
solutions demands various design choices. These range from
selecting the feature set, picking the DRL algorithm and
its hyperparameters to designing the reward function and
learning parameters. Tuning of these design parameters is



a tedious and resource-inefficient process in practice, even
for DRL experts. Typically, these parameters are tuned
through a trial-and-error process.

Future-based explainers can aid in this design process.
They offer insight into the exact factor the DRL algorithm
optimizes: future performance. To demonstrate their utility
in identifying DRL algorithm issues, we examine an exam-
ple. In Figure 3, we debug an aggressive controller under
poor network conditions. Using a future-based explainer,
we find that the controller, despite anticipating long stalls
due to its actions, still opts for them. This discovery sug-
gests to the operator the need to increase the penalty for
the stalling reward component.

Online Safety Assurance. Online Safety Assurance poses
the challenge of detecting when the learning-based policy is
likely to reach an unsafe state and avoiding it by falling back
to a reliable and extensively tested baseline policy. This
fallback mechanism acts as a “safety net” for learning-based
systems, designed to facilitate high-performance outcomes
under ideal circumstances while also offering minimum per-
formance guarantees under less than perfect conditions [6].
Existing research has suggested that the problem can be ad-
dressed by quantifying uncertainty within the learning pol-
icy [6], where uncertainty serves as an indirect measure of
potential unsafe states. This has been accomplished either
through an ensemble method or novelty detection.

In this context, future-based explainers can be applied di-
rectly to foresee and alert for possible unsafe behavior with-
out the need for a proxy. Figure 2 illustrates how such a sys-
tem would work. The future-based explainer would receive
the current state as input, predict the controller’s future
behavior, and issue warnings for potential safety violations.
In response to these warnings, a fallback to a safe baseline
can be triggered. This ensures the overall system maintains
compliance with safety requirements and performance com-
mitments.

4. KEY CHALLENGES
In this section, we describe the main research challenges

in developing practical future-based explainers.

Concise Explanations. Future-based explainers must cre-
ate their explanations by considering the future: a series of
states, actions, and rewards. The challenge lies in convert-
ing this complex information into a format that humans can
easily understand.

Low-Latency Inference. To support real-time applica-
tions such as online safety assurance, future-based explainers
must provide explanations promptly. Moreover, this process
should not disrupt the primary operations of the controller.
In short, generating explanations must add minimal cost to
the controller’s decision latency. Fortunately, future-based
explainers can offer insights beyond a single step in the fu-
ture. Thus, they can function in parallel without being on
the critical path of the controller.

Separation from the Controller. To ensure broad ap-
plicability, future-based explainers should not require signif-
icant modifications to the controller. Such changes can harm
the controller’s performance, introducing a performance and
explainability trade-off. Instead, explainers should leverage
the controller’s inner workings, such as its learned features,
without altering them.

Robustness of Explanations. The ability to create ex-
planations that are robust to malicious attacks, noise, and
shifts in distribution is a significant, unresolved challenge.
Notably, even several widely-used feature-based explainers
have proven susceptible to these threats [8]. However, build-
ing on early intuitions [7] and addressing this issue is critical
to support trust-sensitive applications such as online safety
assurance.

5. CONCLUSION
In this paper, we present an initial perspective on a new

angle of explainability with future-based or forward-looking
explainers. We highlight their ability to power guided con-
troller design and enable online safety assurance. We then
provided a road map for practically implementing future-
based explainers by detailing key open research challenges.
We envision this work to lay the foundation for a broad ap-
plication of future-based explainers.
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