CS 175, Project in Artificial Intelligence

Introduction

Padhraic Smyth
Department of Computer Science
Bren School of Information and Computer Sciences
University of California, Irvine
Today’s Lecture

• Discuss class schedule and organization

• Applications of text analysis in the real world

• Ideas for possible class projects

• Assignment 1
Course Description for CS 175 (Winter 2017)

Students in this project class will work individually or in small teams to develop artificial intelligence and machine learning algorithms and apply them to a range of different problems related to natural language and text analysis.

These problems can include, for example, document classification and clustering, sentiment analysis, information extraction, word prediction, text synthesis, question-answering systems, and so on.

Projects can make use of real-world publicly-available data from sources such as Twitter, Wikipedia, news articles, product and movie reviews, email data sets, the US patent database, and more.
Class Organization

• Class Website: www.ics.uci.edu/~smyth/courses/cs175
 – This is where to find assignments, links to software, project guidelines, etc

• Piazza Website:
 – https://piazza.com/uci/winter2017/compsci175/home
 – Use this to post questions related to assignments, projects, etc
 – Piazza is where we will post announcements, answers to questions, etc

• My Office Hours
 – Mondays 9:30 to 10:30
 – Tuesdays 10:00 to 11:00
Class Organization (continued)

- **Textbook and Reading Materials**
 - No official textbook
 - NLTK (Natural Language Toolkit): Python platform for text analysis
 - Online text is a very useful reference
 - Note that there is a print version of this book (from 2009), based on Python 2.7 and a little out of date – please use the online text as the primary reference
 - Class Website will contain additional pointers to links and background reading that we will refer to in lectures and that will be useful for project work

- **Discussion Section**
 - No discussions (you can use this time to work on assignments or projects)
Contacting Instructor: use Piazza

• Use Piazza for all offline questions related to the class
 – Assignments, lectures, projects, data sets, ideas, etc

• Instructor will monitor and answer questions
 – Students should also feel free to also answer questions
 – If you wish you can use “private mode” to ask questions that only the Professor will see

• Use direct email only if other options do not work for some reason
Academic Integrity (also on the class Web page)

• Please read the guidelines on academic integrity below. Academic integrity is taken seriously in this class. Failure to adhere to the policies below can result in a student receiving a failing grade in the class.

• **For assignments** you are allowed to discuss the assignments verbally with other class members, but you are not allowed to look at or to copy anyone else's written solutions or code. All problem solutions and code submitted must be material you have personally written during this quarter, except for any standard library or utility functions.

• **For class projects** all reports submitted must be written by you or members of your project team. Code generated for class projects can be a combination of code written by team members and publicly-available code. You should clearly indicate in your reports and in your code documentation which parts of your code was written by you or your team and which parts of your code was written by others.

• It is the responsibility of each student to be familiar with UCI's Academic Integrity Policies and UCI's definitions and examples of academic misconduct.
How this Course will work

• Early Weeks: Lectures and Assignments
 – Learn general principles of automated text analysis
 – Emphasis on machine learning for text, e.g., classifying a document
 – Combination of lectures, assignments (two), and background reading

• Later Weeks: Team Project:
 – build a prototype software system for text analysis (weeks 4 to 10)
 – Propose an idea and plans for your class project
 – Do background research and reading
 – Develop ideas, implement algorithms, make use of libraries and packages
 – Conduct experiments with real data sets
 – Test and evaluate your system in a systematic manner
 – Communicate your results (presentations and reports)
Weekly Schedule (subject to change)

<table>
<thead>
<tr>
<th>Week</th>
<th>Monday</th>
<th>Wednesday</th>
<th>Deadlines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 9</td>
<td>Introduction and course outline</td>
<td>Basic concepts in automated text analysis</td>
<td></td>
</tr>
<tr>
<td>Jan 16</td>
<td>No class (university holiday)</td>
<td>Text classification</td>
<td>Assignment 1 (by Wednesday noon)</td>
</tr>
<tr>
<td>Jan 23</td>
<td>Text classification (continued)</td>
<td>Ideas for class projects</td>
<td>Assignment 2 (by Friday noon)</td>
</tr>
<tr>
<td>Jan 30</td>
<td>Discussion of project proposals</td>
<td>Text clustering algorithms</td>
<td>Project proposal (by Friday noon)</td>
</tr>
<tr>
<td>Feb 6</td>
<td>Evaluation methods</td>
<td>Word prediction methods</td>
<td></td>
</tr>
<tr>
<td>Feb 13</td>
<td>Topic modeling algorithms</td>
<td>Office hours (no lecture)</td>
<td></td>
</tr>
<tr>
<td>Feb 20</td>
<td>No class (university holiday)</td>
<td>Office hours (no lecture)</td>
<td>Progress report (by Friday noon)</td>
</tr>
<tr>
<td>Feb 27</td>
<td>Office hours (no lecture)</td>
<td>Office hours (no lecture)</td>
<td></td>
</tr>
<tr>
<td>Mar 6</td>
<td>Project Presentations (in class)</td>
<td>Project Presentations (in class)</td>
<td></td>
</tr>
<tr>
<td>Mar 13</td>
<td>Office hours (no lecture)</td>
<td>Office hours (no lecture)</td>
<td></td>
</tr>
</tbody>
</table>
Projects

- Individuals or 2-person teams
 - Project grading will be partly team-based and partly on individual contributions
 - Note that Assignments 1 and 2 are *not* team-based – these will be worked on and submitted individually

- Each team will propose its own project
 - Suggestions for multiple different projects will be provided
 - Extensive use of libraries (in addition to writing some of your own code)

- Projects will be graded based on
 - Initial proposal
 - Intermediate and final reports
 - In-class presentation

[We will discuss all of this in more detail in future lectures]
Software Environment for Assignments and Projects

- **Python**
 - Python will be the primary language we will use in this class
 - Assume that all students have a working knowledge of Python 3

- **Packages and Libraries**
 - We will make extensive use of additional packages and libraries in Python
 - NLTK: Natural Language Toolkit
 - Scikit-learn: machine learning library
 - Scientific computing/graphs/etc: matplotlib, numpy, scipy, etc

 You should download and install the Anaconda package: it contains many packages you need for this class (NLTK, scikit-learn, etc)

- **Integrated Development Environment (IDE)**
 - You are free to use whatever IDE you prefer (e.g., PyCharm)
 - In class I will use the Spyder IDE for demos (comes with Anaconda)
Screenshot of the Spyder IDE
Natural Language Toolkit

NLTK is a leading platform for building Python programs to work with human language data. It provides easy-to-use interfaces to over 50 corpora and lexical resources such as WordNet, along with a suite of text processing libraries for classification, tokenization, stemming, tagging, parsing, and semantic reasoning, and an active discussion forum.

Thanks to a hands-on guide introducing programming fundamentals alongside topics in computational linguistics, NLTK is suitable for linguists, engineers, students, educators, researchers, and industry users alike. NLTK is available for Windows, Mac OS X, and Linux. Best of all, NLTK is a free, open source, community-driven project.

NLTK has been called “a wonderful tool for teaching, and working in, computational linguistics using Python,” and “an amazing library to play with natural language.”

Natural Language Processing with Python provides a practical introduction to programming for language processing. Written by the creators of NLTK, it guides the reader through the fundamentals of writing Python programs, working with corpora, categorizing text, analyzing linguistic structure, and more. The book is being updated for Python 3 and NLTK 3. (The original Python 2 version is still available at http://nltk.org/book_1ed.)

Some simple things you can do with NLTK

Tokenize and tag some text:

```python
>>> import nltk
>>> sentence = """At eight o'clock on Thursday morning
... Arthur didn't feel very good."""
>>> tokens = nltk.word_tokenize(sentence)
>>> tokens
```
Natural Language Processing with Python

– Analyzing Text with the Natural Language Toolkit

Steven Bird, Ewan Klein, and Edward Loper

The NLTK book is currently being updated for Python 3 and NLTK 3. This is work in progress; chapters that still need to be updated are indicated. The first edition of the book, published by O'Reilly, is available at http://nltk.org/book_1ed/. A second edition of the book is anticipated in early 2016.

0. Preface
1. Language Processing and Python
2. Accessing Text Corpora and Lexical Resources
3. Processing Raw Text
4. Writing Structured Programs
5. Categorizing and Tagging Words (minor fixes still required)
6. Learning to Classify Text
7. Extracting Information from Text
8. Analyzing Sentence Structure
9. Building Feature Based Grammars
10. Analyzing the Meaning of Sentences (minor fixes still required)
11. Managing Linguistic Data (minor fixes still required)
12. Afterword: Facing the Language Challenge

Bibliography
Term Index

This book is made available under the terms of the Creative Commons Attribution Noncommercial No-Derivative-Works 3.0 US License. Please post any questions about the materials to the nltk-users mailing list. Please report any errors on the issue tracker.
scikit-learn

Machine Learning in Python

- Simple and efficient tools for data mining and data analysis
- Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
- Open source, commercially usable - BSD license

Classification

Identifying to which set of categories a new observation belong to.

Applications: Spam detection, image recognition.

Algorithms: SVM, nearest neighbors, random forest, ...

Regression

Predicting a continuous value for a new example.

Applications: Drug response, Stock prices.

Algorithms: SVR, ridge regression, Lasso, ...

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes

Algorithms: k-Means, spectral clustering, mean-shift, ...

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency

Algorithms: PCA, Isomap, non-negative matrix factorization.

Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter tuning

Modules: grid search, cross validation, metrics.

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms

Modules: preprocessing, feature extraction

News

On-going development: What's new (changelog)

Community

Questions? See stackoverflow # scikit-learn

Mailing list: scikit-learn-

Who uses scikit-learn?
Assignment 1

Available on the class Web page

Due Wednesday Jan 18th by noon (to dropbox on EEE)

Outline

- Read selected sections of Chapter 1 to 3 of the online NLTK book
- Install Anaconda/NLTK/...
- Write simple functions in Python for text analysis
 - Compute percentage of alphabetic characters in a string
 - Detect the first K words on a Web page
 - Parse text into parts of speech (nouns, verbs, etc)
- Submit your code as a single python file via EEE
Basic Concepts and Terminology

• Document:
 – A book, a news article, a report, a Web page, an email, a tweet, etc
 – Usually contains both text and metadata.
 – Examples of metadata: author name(s), date, where published, etc

Note that the definition of a document is flexible

 e.g., a book could be a single document, or
 each section of a book could be considered a “document”

• Corpus: a collection of documents
 – e.g., all news articles from the New York Times since 1990
 – e.g., all Wikipedia Web pages
Basic Concepts and Terminology

- In its raw format a document is one very long string, e.g.,
 ‘Chapter 1: The Beginning. In the beginning, life was tough!...........

- Word tokens are “words” extracted from the text, e.g.,
 - Punctuation and white spaces are usually ignored

- Vocabulary
 - The unique set of tokens (or words) in a document or corpus, e.g.,

- Bag of Words
 - The number of times each word (unique token) appears, e.g.,
 Bag of Words = { [‘chapter’, 1], [‘1’, 1], [‘the’ 2], [‘beginning’, 2], ...}
APPLICATIONS OF TEXT ANALYSIS
Automated Text Analysis

• Availability of large amounts of text in digital form has led to a huge increase in automated text analysis techniques and applications

• Examples of large text data sets
 – Web pages
 – Emails and text messages
 – Blogs and microblogs
 – Product reviews
 – Search queries
 – Scientific articles, e.g., 20 million Medline articles
 – News articles about companies and products
 – Collections of digitized books and historical documents
 – …and many more….
Who is interested in analyzing such data?

• Web companies
 – Google, Facebook, Twitter, Microsoft, Yahoo!, and many more

• Ecommerce
 – Automated analysis of product reviews + customer text such as emails, search queries, etc
 – eBay, Amazon, plus many “regular” companies that have a Web presence

• Financial industry
 – Automated tracking of news and online blogs about companies and products

• Law enforcement and intelligence agencies
 – Text mining of vast amounts of emails, blogs, etc

• Medical researchers
 – Automated analysis/summarization of publications on diseases, genes, drugs, etc

• Social scientists and humanities researchers
 – Studying history and social science through analysis of large text collections
A Revolution in the Technology of Data

Magnetic Data Storage
(Bits Per Dollar, constant 2000 dollars)

Logarithmic Plot

Graphic from Ray Kurzweil, singularity.com
204 million emails sent

2.5 million search queries issued

350,000 new tweets

500 million 30-day active users

The Friendship graph

Over 30 billion pieces of content shared every month

Over 3 billion photos uploaded each month
Google Search query = “beer”, over time
Google Search query = “beer”, over time
Average Happiness for Twitter

Graphics from hedonometer.org
The Google Books Project

- Google has digitized over 8 million books
 - Books from 40 university libraries around the world
 - 4.5 million in English, rest in other languages. 6% of all books ever published.
 - 500 billion words
 - Spans multiple centuries since 1500’s

- Reading the books manually is impossible
 - Reading only English-language entries since 2000, at the pace of 200 words/minute, with no sleep/food interruptions, would take 80 years!
Detecting of Linguistic Usage and Change over Time

Political Analysis

Differences in mentions of Tiananmen after 1976 and 1989 incidents, in Chinese (blue) and English (green)

Applications of Text Analysis

• Document classification
 – Spam email classification: email text -> \{spam, not spam\}
 – Sentiment classification: product review text -> \{positive, negative\}
 – Web page classification: Web page text -> \{sports, finance, entertainment,\}

• Machine translation
 – Automated translation of text from one language to another
 – e.g., for Web pages, for mobile phones

• Web search
 – Ranking of Web pages based on matching queries with content

• Web advertising
 – Matching search queries and Web page content to online advertisements
Each ? represents an “ad slot”

In a fraction of a second, algorithms predict which ads you are most likely to click on (from 1000’s of ads)
The ads that are most likely to lead to a click are selected and displayed.
Applications of Text Analysis (continued)

- Personalization
 - Creating customized Web pages, newspapers, interfaces for individuals

- Autocompletion
 - Predicting words to improve user interfaces on smartphones

- Corpus exploration
 - Developing visualization and search tools for researchers and lawyers exploring millions of patents

- Information extraction
 - Extracting mentions of entities (people, places, companies, ...) from text
 - e.g., “Mr. Obama traveled to London to meet Mr. Cameron
 - Extraction of relations
 - e.g., travel_to(Obama, London), meet(Obama, Cameron)
Applications of Text Analysis (continued)

- **Automated Dialog Agents**
 - Bots that can carry on a conversation/dialog with a human via text
 - E.g., applications to answering customer inquiries (e.g., for troubleshooting)

- **Text Summarization**
 - Automated summaries of text documents
 - In applications such as law, medicine, etc

- **Automated Essay Grading**
 - E.g., for SAT, AP, GRE exams, or for online courses

- **Natural Language Generation (NLG) or Text Synthesis**
 - Applications to automated generation of news stories
 - Automatically generating replies to customer emails
Application: Text Synthesis

Airline Delays

<table>
<thead>
<tr>
<th>airline</th>
<th>airline_short</th>
<th>recent_flights</th>
<th>month_current</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Airlines Inc.</td>
<td>American</td>
<td>354</td>
<td>4</td>
</tr>
<tr>
<td>JetBlue Airways</td>
<td>JetBlue</td>
<td>233</td>
<td>4</td>
</tr>
<tr>
<td>Delta Air Lines Inc.</td>
<td>Delta</td>
<td>446</td>
<td>4</td>
</tr>
<tr>
<td>ExpressJet Airlines Inc.</td>
<td>ExpressJet</td>
<td>242</td>
<td>4</td>
</tr>
<tr>
<td>Frontier Airlines Inc.</td>
<td>Frontier</td>
<td>19</td>
<td>4</td>
</tr>
<tr>
<td>Envoy Air</td>
<td>Envoy</td>
<td>344</td>
<td>4</td>
</tr>
<tr>
<td>SkyWest Airlines Inc.</td>
<td>SkyWest</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td>United Air Lines Inc.</td>
<td>United</td>
<td>75</td>
<td>4</td>
</tr>
<tr>
<td>US Airways Inc.</td>
<td>US Air</td>
<td>276</td>
<td>4</td>
</tr>
<tr>
<td>Southwest Airlines Co.</td>
<td>Southwest</td>
<td>844</td>
<td>4</td>
</tr>
<tr>
<td>British Airways</td>
<td>BA</td>
<td>340</td>
<td>4</td>
</tr>
<tr>
<td>Alaska Airlines</td>
<td>Alaska</td>
<td>240</td>
<td>4</td>
</tr>
</tbody>
</table>

American Airlines

American Airlines Inc. ranked 8th in on-time performance at Raleigh-Durham International Airport (RDU) in April with 22.9% of flights arriving at least 15 minutes late, up from No. 9 last month. American saw a slight improvement compared to the prior month's performance in which 25.6% of flights were delayed. The airline also cancelled two flights into Raleigh. Frontier Airlines Inc. ranked first among the 10 airlines flying into RDU in April, while United Air Lines Inc. finished with the worst on-time performance at the airport.

For the last six months, American ranks 7th among airlines flying in to RDU with 21.3% of flights delayed. American's delayed flight percentage over that period has been as high as 25.6% in March and as low as 15.8% in February. Delta holds the top spot over that period at 10.8%, while United once again ranks last at 29.5%.

American's 81 delays out of 354 flights in April totaled 73.1 hours, down 1.7% from the previous month. The U.S. Department of Transportation divides delays into five categories.

Graphic from: https://automatedinsights.com/examples/
Application: Text Synthesis

Credit Card Account Summary

<table>
<thead>
<tr>
<th>Month</th>
<th>Start Period</th>
<th>End Period</th>
<th>Merchandise</th>
</tr>
</thead>
<tbody>
<tr>
<td>December</td>
<td>12/6/2013</td>
<td>1/5/2014</td>
<td>893.22</td>
</tr>
<tr>
<td>January</td>
<td>1/6/2014</td>
<td>2/5/2014</td>
<td>104.9</td>
</tr>
<tr>
<td>February</td>
<td>2/6/2014</td>
<td>3/5/2014</td>
<td>90.17</td>
</tr>
<tr>
<td>March</td>
<td>3/6/2014</td>
<td>4/5/2014</td>
<td>332.74</td>
</tr>
<tr>
<td>April</td>
<td>4/6/2014</td>
<td>5/5/2014</td>
<td>500.23</td>
</tr>
</tbody>
</table>

May Account Summary

Account Summary
For the period between 5/6/15 and 6/5/15, you accumulated $1,944 worth of charges. A payment of $1,800.00 was processed during the month. A credit of $31.99 was issued to your account. Your current balance is $432.25 and a minimum payment of $35 is due on 7/2/15.

Breakdown
Restaurants were where you spent the most money this month, accounting for $572.33. Two categories set 12-month highs this period, restaurants and gasoline. Five categories exceeded their 12-month average with travel and entertainment showing the largest increase at 83%.

Rewards
Way to go! You earned $38.63 in Rewards Cash this month.

Graphic from: https://automatedinsights.com/examples/
IDEAS FOR POSSIBLE CLASS PROJECTS
Possible Projects: Document Classification

Original document

[(NBA, 7), (Lakers, 3), basket (2), ...]

Document features (e.g., a “bag of words”)

Label = basketball
Class label
Possible Projects: Document Classification

Original document

- Tokenization,
- Stemming,
- Part of Speech Tagging, etc
(Wednesday’s lecture)

Document features
(e.g., a “bag of words”)

- [(NBA, 7), (Lakers, 3), basketball (2)....]

Label = basketball
Class label

Classification model, e.g.,
- naïve Bayes
- logistic regression
- neural network
(Assignment 2 and next week’s lectures)
Possible Projects using Document Classification

• Use Wikipedia pages and categories as training data and build a classification algorithm that can classify news articles

• Build a sentiment classification algorithm that can predict if a product or movie review is positive or negative

• Develop an algorithm that can automatically classify emails into an appropriate folder (e.g., for Gmail)

• Conduct a systematic study of how document length, sample size, or other factors affect the accuracy of document classifiers on standard data sets
Sentiment analysis of Trump’s tweets with R

August 18, 2016
By David Smith

Data Scientist David Robinson caused a bit of a stir in the media when he analyzed Donald Trump's tweets and revealed that those sent from an Android device were likely sent by the candidate himself, while those sent from an iPhone were likely sent by campaign staffers. The difference? As seen in the chart below, Android-based tweets used angrier, negative words while iPhone-based tweets tended be straightforward campaign announcements and hashtag promotions. The news was reported in Scientific American, the LA Times, PC Magazine and David even gave an interview with Time magazine.

From https://www.r-bloggers.com/
Possible Projects using Document Clustering

• Clustering of Documents:
 – Takes a set of documents (each represented as a bag of words) and automatically clusters/groups the documents

• Build an algorithm that can cluster news articles so that articles about the same news story end up in the same cluster
 – Note that to do this well may require extraction of information about people and places and time from the articles

• Develop a tool to download an individual’s email history (e.g., from Gmail) and to group emails into clusters on similar topics
Other Ideas for Projects

(this is just a small partial list...there are many other possibilities!)

• Information Extraction:
 – Extract names of products and companies from news articles
 – Extract names of actors and directors from movie reviews

• Change in Language over Time:
 – Develop an algorithm that can automatically identify key topics in US Patent data and track how these topics change over time
Examples of large text data sets that could be used for projects

Text from 4 million Wikipedia articles

PubMed: 20 million abstracts of biomedical research papers

Enron emails: 250,000 company emails

Twitter data: large streams of tweets via Twitter API
The Google N-grams Corpus

N-grams

- 1-gram: a string of characters with no spaces, e.g., “dog”, “NFL”, “3.142”
 - In effect 1grams are “words”
- N-gram: a sequence of N 1-grams, e.g.,
 - Bigram = sequence of pairs of 1-grams, e.g., “big dog”, “New York”
 - Trigram = sequence of triples of 1 grams, e.g., “New York City”

Google N-grams corpus allows us to see how individual words (1-grams) and N-grams have changed in usage over the years

Usage frequency =

(number of instances of an N-gram per year)/(total number of words in the collection that year)
Yelp Dataset Challenge

Round 8 Of The Yelp Dataset Challenge: Now With Photos!
We’ve had 7 rounds, over $45,000 in cash prizes awarded, hundreds of academic papers written, and we are excited to see round 8.

Our dataset has been updated for this iteration of the challenge - we’re sure there are plenty of interesting insights waiting there for you. This set includes information about local businesses in 10 cities across 4 countries.

This round also includes a new type of data - photos! These photos nicely complement reviews, business attributes, check-ins, and tips, and open the door to even more exciting research. An auxiliary file has been provided for download (see the "Get the Data" link on this page), containing 200,000 pictures from 85,901 businesses described in the main dataset. The photo archive includes a json file linking each photo to its corresponding business in the dataset, and listing its caption (if any), and type of content as determined by our image classifier (we currently only list labels for some restaurants).

This treasure trove of local business data is waiting to be mined and we can’t wait to see you push the frontiers of data science research with our data.
The DBpedia Data Set (2015-04)

we are happy to announce the release of DBpedia 2015-04 (also known as '2015 A'). The new release is based on updated Wikipedia dumps dating from February/March 2015 and features an enlarged DBpedia ontology with more infobox to ontology mappings, leading to richer and cleaner data.

The English version of the DBpedia knowledge base currently describes 5.9M things out of which 4.3M resources have abstracts, 452K geo coordinates and 1.45M depictions. In total, 4 million resources are classified in a consistent ontology and consists of 2,06M persons, 682K places (including 455K populated places), 376K creative works (including 92K music albums, 90K films and 17K video games), 188K organizations (including 51K companies and 33K educational institutions), 278K species and 5K diseases. The total number of resources in English DBpedia is 15.3M that, besides the 5.9M resources, includes 1.2M skos concepts (categories), 6.83M redirect pages, 259K disambiguation pages and 1.13M intermediate nodes.

We provide localized versions of DBpedia in 128 languages. All these versions together describe 38.3 million things, out of which 23.8 million are localized descriptions of things that also exist in the English version of DBpedia. The full DBpedia data set features 38 million labels and abstracts in 128 different languages, 25.2 million links to images and 29.3 million links to external web pages; 80.9 million links to Wikipedia categories, and 41.2 million links to YAGO categories. DBpedia is connected with other Linked Datasets by around 50 million RDF links. In addition we provide DBpedia datasets for Wikimedia Commons and Wikidata.
Assignment 1

Available on the class Web page

Due Wednesday Jan 18th by noon (to dropbox on EEE)

Outline

– Read Sections of Chapter 1 and 3 of the online NLTK book
– Install Anaconda/NLTK/…
– Write simple functions in Python for text analysis
 • Compute percentage of alphabetic characters in a string
 • Detect the first K words on a Web page
 • Parse text into parts of speech (nouns, verbs, etc)
– Submit your code as a single python file via EEE