CS 175, Project in Artificial Intelligence

Introduction

Padhraic Smyth
Department of Computer Science
Bren School of Information and Computer Sciences
University of California, Irvine
Today’s Lecture

- Discuss class schedule and organization
- Applications of text analysis in the real world
- Challenges for AI
- Ideas for possible class projects
Course Description for CS 175

Students in this project class will in 2 to 3 person teams to develop artificial intelligence and machine learning algorithms and apply them to a range of different problems related to natural language and text analysis.

These problems can include, for example, document classification and clustering, sentiment analysis, dialog/chatbot systems, information extraction, word prediction, text synthesis, question-answering systems, and so on.

Projects can make use of real-world publicly-available data from sources such as Twitter, Wikipedia, Reddit, news articles, product and movie reviews, email data sets, the US patent database, and more.
The Turing Test for AI

Human or Computer?
Class Organization

- Class Website: www.ics.uci.edu/~smyth/courses/cs175
 - This is where to find assignments, links to software, project guidelines, etc.

- Piazza Website:
 - https://piazza.com/uci/winter2018/compsci175/home
 - Use this to post questions related to assignments, projects, etc.
 - Piazza is where we will post announcements, answers to questions, etc.

- My Office Hours
 - Fridays 9:30 to 11:30

- Teaching Assistant: Eric Nalisnick
 - Office hours weekly, Thursdays 1 to 3, DBH 4228
 - Discussion section this Friday on Python basics
Class Organization (continued)

• Textbook and Reading Materials
 – No official textbook
 – Several useful online texts: see class Webpage
 – Class Website will contain additional pointers to links and background reading that we will refer to in lectures and that will be useful for project work

• Discussion Section, Wed, 12 to 12:50, ICS 174
 – Discussion sections for at least the first few weeks
 • First discussion: this Wednesday, on basics of Python
 – Attendance at discussion is not required

• No final exam (but there is a final report due in finals week)
Contacting Instructor: use Piazza

- Use Piazza for all offline questions related to the class
 - Assignments, lectures, projects, data sets, ideas, etc

- Instructor and TA will monitor and answer questions
 - Students should also feel free to also answer questions
 - If you wish you can use “private mode” to ask questions that only the Professor or TA will see

- Use direct email only if other options do not work for some reason
Academic Integrity (also on the class Web page)

• Please read the guidelines on academic integrity below. Academic integrity is taken seriously in this class. Failure to adhere to the policies below can result in a student receiving a failing grade in the class.

• **For assignments** you are allowed to discuss the assignments verbally with other class members, but you are not allowed to look at or to copy anyone else's written solutions or code. All problem solutions and code submitted must be material you have personally written during this quarter, except for any standard library or utility functions.

• **For class projects** all reports submitted must be written by you or members of your project team. Code generated for class projects can be a combination of code written by team members and publicly-available code. You should clearly indicate in your reports and in your code documentation which parts of your code was written by you or your team and which parts of your code was written by others.

• It is the responsibility of each student to be familiar with UCI's Academic Integrity Policies and UCI's definitions and examples of academic misconduct.
How this Course will work

- Early Weeks: Lectures and Assignments
 - Learn general principles of automated text analysis
 - Emphasis on machine learning for text, e.g., classifying a document
 - Combination of lectures, assignments (two), and background reading

- Later Weeks: Team Project
 - build a prototype software system for text analysis (weeks 4 to 10)
 - Propose an idea and plans for your class project (written proposal)
 - Do background research and reading
 - Develop ideas, implement algorithms, make use of libraries and packages
 - Conduct experiments with real data sets
 - Test and evaluate your system in a systematic manner
 - Communicate your results (presentations and reports)
<table>
<thead>
<tr>
<th>Week</th>
<th>Monday</th>
<th>Wednesday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 8</td>
<td>Lecture: Introduction and course outline</td>
<td>Lecture: Basic concepts in text analysis</td>
</tr>
</tbody>
</table>
| Jan 15 | No class (university holiday) | Lecture: Text classification, part 1
Assignment 1 due, 5pm |
| Jan 22 | Lecture: Text classification, part 2 | Lecture: Discussion of class projects
Assignment 2 due, 5pm |
| Jan 29 | Lecture: Neural networks for text, part 1 | Lecture: Neural networks for text, part 2
Project proposal due, Friday 6pm |
| Feb 5 | Office hours (no lecture) | Lecture: Algorithm evaluation methods |
| Feb 12 | Office hours (no lecture) | Lecture: Unsupervised learning algorithms |
| Feb 19 | No class (university holiday) | Lecture: Discussion of progress reports
Progress report due, Friday 6pm |
| Feb 26 | Office hours (no lecture) | Office hours (no lecture) |
| Mar 5 | Office hours (no lecture) | Lecture: Discussion of final reports |
| Mar 12 | Project Presentations (in class)
Upload slides by 4pm | Project Presentations (in class)
Upload slides by 4pm |
| Mar 19 | **Final project reports due (day/time TBD)** | |
Projects

• 2-person or 3-person teams
 – Project grading will be partly team-based and partly on individual contributions
 – Note that Assignments 1 and 2 are *not* team-based – these will be worked on and submitted individually
 – 3-person teams expected to do about 50% more than 2 person teams

• Each team will propose its own project
 – Suggestions for multiple different projects will be provided
 – Extensive use of libraries (in addition to writing some of your own code)

• Projects will be graded based on
 – Initial proposal
 – Intermediate and final reports
 – In-class presentation
[We will discuss all of this in more detail in future lectures]
Software Environment for Assignments and Projects

• Python
 – Python will be the primary language we will use in this class
 – Assume that all students have a working knowledge of Python 3

• Packages and Libraries
 – We will make extensive use of additional packages and libraries in Python
 – NLTK: Natural Language Toolkit
 – Scikit-learn: machine learning library
 – Scientific computing/graphs/etc: matplotlib, numpy, scipy, etc

You should download and install the Anaconda package: it contains many packages you need for this class (NLTK, scikit-learn, etc)

• Integrated Development Environment (IDE)
 – You are free to use whatever IDE you prefer
 – The Spyder IDE is a useful option (comes with Anaconda)
Screenshot of the Spyder IDE
Natural Language Toolkit

NLTK is a leading platform for building Python programs to work with human language data. It provides easy-to-use interfaces to over 50 corpora and lexical resources such as WordNet, along with a suite of text processing libraries for classification, tokenization, stemming, tagging, parsing, and semantic reasoning, and an active discussion forum.

Thanks to a hands-on guide introducing programming fundamentals alongside topics in computational linguistics, NLTK is suitable for linguists, engineers, students, educators, researchers, and industry users alike. NLTK is available for Windows, Mac OS X, and Linux. Best of all, NLTK is a free, open source, community-driven project.

NLTK has been called “a wonderful tool for teaching, and working in, computational linguistics using Python,” and “an amazing library to play with natural language.”

Natural Language Processing with Python provides a practical introduction to programming for language processing. Written by the creators of NLTK, it guides the reader through the fundamentals of writing Python programs, working with corpora, categorizing text, analyzing linguistic structure, and more. The book is being updated for Python 3 and NLTK 3. (The original Python 2 version is still available at http://nltk.org/book_1ed.)

Some simple things you can do with NLTK

Tokenize and tag some text:

```python
>>> import nltk
>>> sentence = """At eight o'clock on Thursday morning
... Arthur didn't feel very good."""
>>> tokens = nltk.word_tokenize(sentence)
>>> tokens
```
scikit-learn

Machine Learning in Python

- Simple and efficient tools for data mining and data analysis
- Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
- Open source, commercially usable - BSD license

Classification

Identifying to which set of categories a new observation belong to.

Applications: Spam detection, image recognition.

Algorithms: SVM, nearest neighbors, random forest, ...

Regression

Predicting a continuous value for a new example.

Applications: Drug response, Stock prices.

Algorithms: SVR, ridge regression, Lasso, ...

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes.

Algorithms: k-Means, spectral clustering, mean-shift, ...

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency.

Algorithms: PCA, Isomap, non-negative matrix factorization.

Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter tuning

Modules: grid search, cross validation, metrics.

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms.

Modules: preprocessing, feature extraction.

News

On-going development: What's new (changelog)

Community

Questions? See stackoverflow # scikit-learn

Mailing list: scikit-learn-

Who uses scikit-learn?
An open-source software library for Machine Intelligence

Eager Execution
We're announcing eager execution, an imperative, define-by-run interface to TensorFlow. Check out the README to get started today.

TensorFlow 1.3 has arrived!
We're excited to announce the release of TensorFlow 1.3! Check out the release notes for all the latest.

The 2017 TensorFlow Dev Summit
Thousands of people from the TensorFlow community participated in the first flagship event. Watch the keynote and talks.
Assignment 1

Available on the class Web page

Due Wednesday Jan 17th by 5pm (to dropbox on EEE)

Outline

\begin{itemize}
 \item Read selected sections of Chapter 1 to 3 of the online NLTK book
 \item Install Anaconda/NLTK/…
 \item Write simple functions in Python for text analysis
 \begin{itemize}
 \item Compute percentage of alphabetic characters in a string
 \item Detect the first K words on a Web page
 \item Parse text into parts of speech (nouns, verbs, etc)
 \end{itemize}
 \item Submit your code as a single python file via EEE
\end{itemize}
Natural Language Processing with Python

– Analyzing Text with the Natural Language Toolkit

Steven Bird, Ewan Klein, and Edward Loper

0. Preface
1. Language Processing and Python
2. Accessing Text Corpora and Lexical Resources
3. Processing Raw Text
4. Writing Structured Programs
5. Categorizing and Tagging Words (minor fixes still required)
6. Learning to Classify Text
7. Extracting Information from Text
8. Analyzing Sentence Structure
9. Building Feature Based Grammars
10. Analyzing the Meaning of Sentences (minor fixes still required)
11. Managing Linguistic Data (minor fixes still required)
12. Afterword: Facing the Language Challenge

Bibliography
Term Index

This book is made available under the terms of the Creative Commons Attribution Noncommercial No-Derivative-Works 3.0 US License. Please post any questions about the materials to the nltk-users mailing list. Please report any errors on the issue tracker.
APPLICATIONS OF TEXT ANALYSIS

(Thanks to Prof Sameer Singh for several of the slides in the remainder of this presentation)
Automated Text Analysis

• Very large amounts of text now available in digital form
 huge increase in automated text analysis techniques and applications

• Examples of large text data sets
 – Web pages
 – Emails and text messages
 – Blogs and microblogs
 – Product reviews
 – Search queries
 – Scientific and medical articles
 – Legal cases, patents, government documents
 – News articles about companies and products
 – Collections of digitized books and historical documents
 – ...and many more....
hard drive cost per gigabyte (USD)

1985: ~ $100k per gigabyte

2015: ~ $0.3 cents per gigabyte

source: mkomo.com
From www.internetlivestats.com, 11:50, Mar 9th 2017
Who is interested in analyzing such data?

- **Web companies**
 - Google, Facebook, Twitter, Microsoft, Yahoo!, and many more

- **Ecommerce**
 - Automated analysis of product reviews + customer text such as emails, search queries, etc
 - eBay, Amazon, plus many “regular” companies that have a Web presence

- **Financial industry**
 - Automated tracking of news and online blogs about companies and products

- **Law enforcement and intelligence agencies**
 - Text mining of vast amounts of emails, blogs, etc

- **Medical researchers**
 - Automated analysis/summarization of publications on diseases, genes, drugs, etc

- **Social scientists and humanities researchers**
 - Studying history and social science through analysis of large text collections
Google Search query = “beer”, over time
Google Search query = “beer”, over time
Average Happiness for Twitter

https://hedonometer.org/index.html
Tweets mentioning Coke (green) and Pepsi (red)

from chimpler.wordpress.com
The Google Books Project

- Google has digitized over 8 million books
 - Books from 40 university libraries around the world
 - 4.5 million in English, rest in other languages. 6% of all books ever published.
 - 500 billion words
 - Spans multiple centuries since 1500’s

- Reading the books manually is impossible
 - Reading only English-language entries since 2000, at the pace of 200 words/minute, with no sleep/food interruptions, would take 80 years!
Applications of Text Analysis

• Document classification
 – Spam email classification: email text -> \{spam, not spam\}
 – Sentiment classification: product review text -> \{positive, negative\}
 – Web page classification: Web page text -> \{sports, finance, entertainment,\}

• Machine translation
 – Automated translation of text from one language to another
 – e.g., for Web pages, for mobile phones

• Web search
 – Ranking of Web pages based on matching queries with content

• Web advertising
 – Matching search queries and Web page content to online advertisements
Each ? represents an “ad slot”

In a fraction of a second, algorithms predict which ads you are most likely to click on (from 1000’s of ads)
The ads that are most likely to lead to a click are selected and displayed.
Applications of Text Analysis (continued)

• Personalization
 – Creating customized Web pages, newspapers, interfaces for individuals

• Autocompletion
 – Predicting words to improve user interfaces on smartphones

• Corpus exploration
 – Developing visualization and search tools for researchers and lawyers exploring millions of patents

• Information extraction
 – Extracting mentions of entities (people, places, companies, ...) from text
 • e.g., “Mr. Obama traveled to London to meet Mr. Cameron
 – Extraction of relations
 • e.g., travel_to(Obama, London), meet(Obama, Cameron)
Jacksonville Jaguars
3rd in AFC South
Tomorrow, 10:00 AM on CBS
NRG Stadium, Houston, Texas

Jacksonville Jaguars, Official Site of the Jacksonville Jaguars
www.jaguars.com ▼ Jacksonville Jaguars ▼
The official team site with scores, news items, game schedule, and roster.
Schedule - News - Roster - The Jungle

Jacksonville Jaguars Football News, Schedule, Roster, Stats
www.sbnation.com/nfl/teams/jacksonville-jaguars ▼ SB Nation ▼
Record 5 - 10 - After sustaining a foot injury late in last week’s blowout of the Titans, the first pick of the 2014 NFL Draft is unlikely to play in the Texans’ regular...

Jacksonville Jaguars - Wikipedia, the free encyclopedia
The Jacksonville Jaguars are an American professional football franchise based in

Jacksonville Jaguars
American football franchise · jaguars.com
The Jacksonville Jaguars are an American professional football franchise based in Jacksonville, Florida. They are members of the South Division of the American Football Conference of the National Football League. Wikipedia

Arena/Stadium: EverBank Field
Owners: Shahid Khan
Head coach: Gus Bradley
Location: Jacksonville
Division: AFC South
Mascot: Jaxson de Ville

Roster
Blake Bortles
Quarterback 5
Allen Hurns
Wide receiver 88
Allen Robinson
Wide receiver 15
T. J. Yeldon
Running back 24
Justin Blackmon
Wide receiver 14
Applications of Text Analysis (continued)

• Automated Dialog Agents
 – Bots that can carry on a conversation/dialog with a human via text
 – E.g., applications to answering customer inquiries (e.g., for troubleshooting)

• Text Summarization
 – Automated summaries of text documents
 • In applications such as law, medicine, etc

• Automated Essay Grading
 – E.g., for SAT, AP, GRE exams, or for online courses

• Natural Language Generation (NLG) or Text Synthesis
 – Applications to automated generation of news stories
 – Automatically generating replies to customer emails
Application: Text Synthesis

American Airlines Inc. ranked 8th in on-time performance at Raleigh-Durham International Airport (RDU) in April with 22.9% of flights arriving at least 15 minutes late, up from No. 9 last month. American saw a slight improvement compared to the prior month’s performance in which 25.6% of flights were delayed. The airline also cancelled two flights into Raleigh. Frontier Airlines Inc. ranked first among the 10 airlines flying into RDU in April, while United Air Lines Inc. finished with the worst on-time performance at the airport.

For the last six months, American ranks 7th among airlines flying into RDU with 21.3% of flights delayed. American’s delayed flight percentage over that period has been as high as 25.6% in March and as low as 15.8% in February. Delta holds the top spot over that period at 10.8%, while United once again ranks last at 29.5%.

American’s 81 delays out of 354 flights in April totaled 73.1 hours, down 1.7% from the previous month. The U.S. Department of Transportation divides delays into 5 groups.

Graphic from: https://automatedinsights.com/examples/
Application: Text Synthesis

Credit Card Account Summary

<table>
<thead>
<tr>
<th>Month</th>
<th>Start Period</th>
<th>End Period</th>
<th>Merchandise</th>
</tr>
</thead>
<tbody>
<tr>
<td>December</td>
<td>12/6/2013</td>
<td>1/5/2014</td>
<td>893.22</td>
</tr>
<tr>
<td>January</td>
<td>1/6/2014</td>
<td>2/5/2014</td>
<td>104.9</td>
</tr>
<tr>
<td>February</td>
<td>2/6/2014</td>
<td>3/5/2014</td>
<td>90.17</td>
</tr>
<tr>
<td>March</td>
<td>3/6/2014</td>
<td>4/5/2014</td>
<td>332.74</td>
</tr>
<tr>
<td>April</td>
<td>4/6/2014</td>
<td>5/5/2014</td>
<td>500.23</td>
</tr>
<tr>
<td>May</td>
<td>5/6/2014</td>
<td>6/5/2014</td>
<td>325.48</td>
</tr>
<tr>
<td>June</td>
<td>6/6/2014</td>
<td>7/5/2014</td>
<td>283.92</td>
</tr>
<tr>
<td>July</td>
<td>7/6/2014</td>
<td>8/5/2014</td>
<td>142.43</td>
</tr>
<tr>
<td>August</td>
<td>8/6/2014</td>
<td>9/5/2014</td>
<td>309.36</td>
</tr>
<tr>
<td>September</td>
<td>9/6/2014</td>
<td>10/5/2014</td>
<td>575.1</td>
</tr>
<tr>
<td>October</td>
<td>10/6/2014</td>
<td>11/5/2014</td>
<td>192.3</td>
</tr>
</tbody>
</table>

May Account Summary

Account Summary
For the period between 5/6/15 and 6/5/15, you accumulated $1,944 worth of charges. A payment of $1,800.00 was processed during the month. A credit of $31.99 was issued to your account. Your current balance is $432.25 and a minimum payment of $35 is due on 7/2/15.

Breakdown
Restaurants were where you spent the most money this month, accounting for $572.33. Two categories set 12-month highs this period, restaurants and gasoline. Five categories exceeded their 12-month average with travel and entertainment showing the largest increase at 83%.

Rewards
Way to go! You earned $38.63 in Rewards. Cash this month.

Graphic from: https://automatedinsights.com/examples/
CHALLENGES FROM AN AI PERSPECTIVE
Ambiguity in Human Language

She saw the man with the telescope.
Another Example

One morning I shot an elephant in my pajamas.
How he got into my pajamas I'll never know.

- Groucho Marx
And many more....

- Enraged Cow Injures Farmer with Ax
- Ban on Nude Dancing on Governor’s Desk
- Teacher Strikes Idle Kids
- Hospitals Are Sued by 7 Foot Doctors
- Iraqi Head Seeks Arms
- Kids Make Nutritious Snacks
- Local HS Dropouts Cut in Half
Many ways to say the same thing

She gave the book to Tom vs. She gave Tom the book

Some kids popped by vs. A few children visited

Is that window still open? vs Please close the window
Language understanding is far from a solved problem....

“You need to start understanding me Siri”

I’ll make a note of that.

“Yeah you better make a note of that”

Got it:

Of that
Word Sparsity

The graph shows the distribution of word frequency versus rank. Words like "the", "of", "to", and "and" have lower frequencies compared to other words like "cornflakes", "mathematicians", "fuzziness", and "jumbling". These latter words are more frequent and occur more than once. Words such as "Lycketoft", "UNCITRAL", "H-0695", "policy", and "Commissioner" are also frequent and occur more than once. The word ">1/3" indicates that some words occur only once, with a rank of around 1,000,000.
Language Technology

making good progress

mostly solved

Sentiment analysis
- Best roast chicken in San Francisco!
- The waiter ignored us for 20 minutes.

Coreference resolution
- Carter told Mubarak he shouldn’t run again.

Word sense disambiguation (WSD)
- I need new batteries for my mouse.

Parsing
- I can see Alcatraz from the window!

Machine translation (MT)
- The 13th Shanghai International Film Festival...

Information extraction (IE)
- You’re invited to our dinner party, Friday May 27 at 8:30

still really hard

Question answering (QA)
- Q. How effective is ibuprofen in reducing fever in patients with acute febrile illness?

Paraphrase
- XYZ acquired ABC yesterday
- ABC has been taken over by XYZ

Summarization
- The Dow Jones is up
- The S&P500 jumped
- Housing prices rose
- Economy is good

Dialog
- Where is Citizen Kane playing in SF?
- Castro Theatre at 7:30. Do you want a ticket?

Part-of-speech (POS) tagging
- ADJ
- ADJ
- NOUN
- VERB
- ADV
- Colorless green ideas sleep furiously.

Named entity recognition (NER)
- PERSON
- ORG
- LOC
- Einstein met with UN officials in Princeton

Spam detection
- Let’s go to Agra!
- Buy V1AGRA ...
- ✔
- ✗
EXAMPLES OF POSSIBLE CLASS PROJECTS
Examples of Past CS 175 Student Projects

<table>
<thead>
<tr>
<th>Description</th>
<th>Data Sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentiment analysis</td>
<td>Twitter (text + sentiment labels)</td>
</tr>
<tr>
<td>Star/score prediction from text</td>
<td>Yelp, Movie Reviews: text + scores</td>
</tr>
<tr>
<td>Predict number of upvotes for a Reddit post</td>
<td>Reddit posts + votes + timestamps</td>
</tr>
<tr>
<td>Predict if a restaurant will close in the next month</td>
<td>Yelp reviews (text, timestamps, metadata)</td>
</tr>
<tr>
<td>Simulate realistic text from an author/speaker/character</td>
<td>Gutenberg books, tweets, movie scripts</td>
</tr>
<tr>
<td>Automated poetry or song lyrics generation</td>
<td>Text from song lyrics or poetry</td>
</tr>
<tr>
<td>Automated essay grading</td>
<td>Text for student essays with human scores</td>
</tr>
</tbody>
</table>
Possible Projects: Document Classification

Original document

[(NBA, 7), (Lakers, 3), basket (2)....]
Document features (e.g., a “bag of words”)
Label = basketball
Class label
Possible Projects: Document Classification

Original document

[(NBA, 7), (Lakers, 3), basket (2)....]
Document features
(e.g., a “bag of words”)

Label = basketball
Class label

Classification model, e.g.,
- naïve Bayes
- logistic regression
- neural network
(Assignment 2 and next week’s lectures)

Tokenization,
Stemming,
Part of Speech Tagging, etc
(Wednesday’s lecture)
Possible Projects using Document Classification

- Use Wikipedia pages and categories as training data and build a classification algorithm that can classify news articles.

- Build a sentiment classification algorithm that can predict if a product or movie review is positive or negative.

- Develop an algorithm that can automatically classify emails into an appropriate folder (e.g., for Gmail).

- Conduct a systematic study of how document length, sample size, or other factors affect the accuracy of document classifiers on standard data sets.
Possible Projects using Document Clustering

• Clustering of Documents:
 – Takes a set of documents (each represented as a bag of words) and automatically clusters/groups the documents

• Build an algorithm that can cluster news articles so that articles about the same news story end up in the same cluster
 – Note that to do this well may require extraction of information about people and places and time from the articles

• Develop a tool to download an individual’s email history (e.g., from Gmail) and to group emails into clusters on similar topics
Other Ideas for Projects

(this is just a small partial list...there are many other possibilities!)

- **Information Extraction:**
 - Extract names of products and companies from news articles
 - Extract names of actors and directors from movie reviews

- **Change in Language over Time:**
 - Develop an algorithm that can automatically identify key topics in US Patent data and track how these topics change over time
Examples of large text data sets that could be used for projects

Text from 4 million Wikipedia articles

PubMed: 20 million abstracts of biomedical research papers

Enron emails: 250,000 company emails

Twitter data: large streams of tweets via Twitter API
IMDb Datasets

Subsets of IMDb data are available for access to customers for personal and non-commercial use. You can hold local copies of this data, and it is subject to our terms and conditions. Please refer to the Non-Commercial Licensing and copyright/license and verify compliance.

Data Location

The dataset files can be accessed and downloaded from https://datasets.imdbws.com/. The data is refreshed daily.

IMDb Dataset Details

Each dataset is contained in a gzipped, tab-separated-values (TSV) formatted file in the UTF-8 character set. The first line in each file contains headers that describe what is in each column. A `\N` is used to denote that a particular field is missing or null for that title/name. The available datasets are as follows:

title.basics.tsv.gz - Contains the following information for titles:

- tconst (string) - alphanumeric unique identifier of the title
- titleType (string) – the type/format of the title (e.g. movie, short, tvseries, tvepisode, video, etc)
- primaryTitle (string) – the more popular title / the title used by the filmmakers on promotional materials at the point of release
- originalTitle (string) - original title, in the original language
- isAdult (boolean) - 0: non-adult title; 1: adult title.
- startYear (YYYY) – represents the release year of a title. In the case of TV Series, it is the series start year.
- endYear (YYYY) – TV Series end year. `\N` for all other title types
- runtimeMinutes – primary runtime of the title, in minutes
Yelp Dataset Challenge

Round 8 Of The Yelp Dataset Challenge: Now With Photos!
We’ve had 7 rounds, over $45,000 in cash prizes awarded, hundreds of academic papers written, and we are excited to see round 8.

Our dataset has been updated for this iteration of the challenge - we’re sure there are plenty of interesting insights waiting there for you. This set includes information about local businesses in 10 cities across 4 countries.

This round also includes a new type of data - photos! These photos nicely complement reviews, business attributes, check-ins, and tips, and open the door to even more exciting research. An auxiliary file has been provided for download (see the "Get the Data" link on this page), containing 200,000 pictures from 85,901 businesses described in the main dataset. The photo archive includes a json file linking each photo to its corresponding business in the dataset, and listing its caption (if any), and type of content as determined by our image classifier (we currently only list labels for some restaurants).

This treasure trove of local business data is waiting to be mined and we can’t wait to see you push the frontiers of data science research with our data.
Inside Airbnb

Adding data to the debate

INDEPENDENT, NON-COMMERCIAL, OPEN SOURCE DATA TOOL

How is Airbnb really being used in and affecting your neighborhood?

OUT OF MORE THAN 27,000 LISTINGS:

16k are for the entire home (58%)

87% highly available (more than 60 days/year)

29% multi-listings (where the host has other listings)

FILTER by Neighborhood

Chelsea

50+ data points per listing

HOst “JOHN D”
17 listings

SEE Airbnb ACTIVITY OVER TIME IN YOUR NEIGHBORHOOD

2012

2013

2014

VIEW TOP HOSTS’ MULTIPLE LISTINGS

The data Airbnb doesn’t want you to see!

NEXT...

• VISIT insideairbnb.com
• SHARE it widely
 #insideairbnb #illegalhotels
 #affordablehousing #nyc
• DOWNLOAD the data
 (open source; 50+ data points per listing)
Reddit Statistics 2015

- total # posts: 668M
- total # users posting: 8.2M
- # words per post: 30.6
- total # words: >20 billion

By Max Woolf — minimaxir.com
Made using R and ggplot2
Data via Reddit
The DBpedia Data Set (2015-04)

we are happy to announce the release of DBpedia 2015-04 (also known as: 2015 A). The new release is based on updated Wikipedia dumps dating from February/March 2015 and features an enlarged DBpedia ontology with more infobox to ontology mappings, leading to richer and cleaner data.

The English version of the DBpedia knowledge base currently describes 5.9M things out of which 4.3M resources have abstracts, 452K geo coordinates and 1.45M depictions. In total, 4 million resources are classified in a consistent ontology and consists of 2,06M persons, 682K places (including 455K populated places), 376K creative works (including 92K music albums, 90K films and 17K video games), 188K organizations (including 51K companies and 33K educational institutions), 278K species and 5K diseases. The total number of resources in English DBpedia is 15.3M that, besides the 5.9M resources, includes 1.2M skos concepts (categories), 6.83M redirect pages, 259K disambiguation pages and 1.13M intermediate nodes.

We provide localized versions of DBpedia in 128 languages. All these versions together describe 38.3 million things, out of which 23.8 million are localized descriptions of things that also exist in the English version of DBpedia. The full DBpedia data set features 38 million labels and abstracts in 128 different languages, 25.2 million links to images and 29.8 million links to external web pages; 80.9 million links to Wikipedia categories, and 41.2 million links to YAGO categories. DBpedia is connected with other Linked Datasets by around 50 million RDF links.

In addition we provide DBpedia datasets for Wikimedia Commons and Wikidata
KING LEAR:

O, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods
With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO: Well, your wit is in the care of side and that.

Examples from “The Unreasonable Effectiveness of Recurrent Neural Networks”,
Andrej Karpathy, blog, http://karpathy.github.io/2015/05/21/rnn-effectiveness/
Output from a Neural Network Model Trained on Cooking Recipes

Recipe via Meal-Master (tm) v8.05

Title: CARAMEL CORN GARLIC BEEF
Categories: Soups, Desserts
Yield: 10 Servings

- 2 tb Parmesan cheese, ground
- 1/4 ts Ground cloves
 -- diced
- 1 ts Cayenne pepper

Cook it with the batter. Set aside to cool. Remove the peanut oil in a small saucepan and pour into the margarine until they are soft. Stir in a mixer (dough). Add the chestnuts, beaten egg whites, oil, and salt and brown sugar and sugar; stir onto the boil and brown it.

The recipe from an oiled by fried and can. Beans, by Judil Cookbook, Source: Pintore, October, by Chocolates, Breammons of Jozen, Empt.com

From https://gist.github.com/nylki/1efbaa36635956d35bcc
<table>
<thead>
<tr>
<th>Week</th>
<th>Monday</th>
<th>Wednesday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 8</td>
<td>Lecture: Introduction and course outline</td>
<td>Lecture: Basic concepts in text analysis</td>
</tr>
<tr>
<td>Jan 15</td>
<td>No class (university holiday)</td>
<td>Lecture: Text classification, part 1 Assignment 1 due, 5pm</td>
</tr>
<tr>
<td>Jan 22</td>
<td>Lecture: Text classification, part 2</td>
<td>Lecture: Discussion of class projects Assignment 2 due, 5pm</td>
</tr>
<tr>
<td>Jan 29</td>
<td>Lecture: Neural networks for text, part 1</td>
<td>Lecture: Neural networks for text, part 2 Project proposal due, Friday 6pm</td>
</tr>
<tr>
<td>Feb 5</td>
<td>Office hours (no lecture)</td>
<td>Lecture: Algorithm evaluation methods</td>
</tr>
<tr>
<td>Feb 12</td>
<td>Office hours (no lecture)</td>
<td>Lecture: Unsupervised learning algorithms</td>
</tr>
<tr>
<td>Feb 19</td>
<td>No class (university holiday)</td>
<td>Lecture: Discussion of progress reports Progress report due, Friday 6pm</td>
</tr>
<tr>
<td>Feb 26</td>
<td>Office hours (no lecture)</td>
<td>Office hours (no lecture)</td>
</tr>
<tr>
<td>Mar 5</td>
<td>Office hours (no lecture)</td>
<td>Lecture: Discussion of final reports</td>
</tr>
<tr>
<td>Mar 12</td>
<td>Project Presentations (in class) Upload slides by 4pm</td>
<td>Project Presentations (in class) Upload slides by 4pm</td>
</tr>
<tr>
<td>Mar 19</td>
<td>Final project reports due (day/time TBD)</td>
<td></td>
</tr>
</tbody>
</table>
Assignment 1

Available on the class Web page

Due Wednesday Jan 17th by 4pm (to dropbox on EEE)

Outline

– Read Sections of Chapter 1 and 3 of the online NLTK book
– Install Anaconda/NLTK/…
– Write simple functions in Python for text analysis
 • Compute percentage of alphabetic characters in a string
 • Detect the first K words on a Web page
 • Parse text into parts of speech (nouns, verbs, etc)
– Submit your code as a single python file via EEE