
CS 274A Homework 6: Mixture Models and Clustering

Probabilistic Learning: Theory and Algorithms, CS 274A, Winter 2024

Due: Friday March 15th, 6pm, submit via Gradescope

Instructions and Guidelines for Homeworks

• Please answer all of the questions and submit your solutions to Gradescope (either hand-written or
typed are fine as long as the writing is legible).

• All problems are worth equal points (10 points) unless otherwise stated. All homeworks will get equal
weight in computation of the final grade for the class (with lowest-scoring homework being dropped).

• The homeworks are intended to help you better understand the concepts we discuss in class. It is
important that you solve the problems yourself to help you learn and reinforce the material from
class. If you don’t do the homeworks you will likely have difficulty in the exams later in the quarter.

• In problems that ask you to derive or prove a result you should submit a complete mathematical proof
(i.e., each line must follow logically from the preceding one, without “hand-waving”). Be as clear as
possible in explaining your notation and in stating your reasoning as you go from line to line.

• If you can’t solve a problem, you can discuss the high-level concepts verbally with another student
(e.g., what concepts from the lectures or notes or text are relevant to a problem). However, you should
not discuss any of the details of a solution with another student. In particular, do not look at (or show
to any other student) any written material directly related to the homeworks, including other students’
solutions or drafts of solutions, solutions from previous versions of this class, etc. The work you hand
in should be your own original work.

• If you need to you can look up standard results/definition/identities from textbooks, class notes, text-
books, other reference material (e.g., from the Web). If you base any part of your solution on material
that we did not discuss in class, or is not in the class notes, or is not a standard known result, then
you may want to rovide a reference in terms of where the result is from, e.g., “based on material in
Section 2.2 in .....” or a URL (e.g., Wikipedia).
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General Instructions for Homework 6

• Required reading is the Note Set 7 on Mixture Models and the EM Algorithm on the class Web page.
Optional additional reading in the Murphy text (Book 1, 2022) is Chapter 21.3 on K-means, Chapter
8.7.2 on the EM Algorithm in general, and Chapter 8.7.3, on EM for Gaussian mixture models.

• This homework includes quite a bit of programming. If you take it step by step it is straightforward,
but be sure to start working on this well in advance of the deadline. See the last page of the homework
for instructions on what to submit.

• In addition to the data, the homework directory includes two subdirectories with sample code and
templates, one for Python and one for Matlab, to help you get started.

K-Means and Gaussian Mixture Learning

Data Sets

There are 3 data sets for experimentation: all are two-dimensional so that you can visualize the results. The
data format is one data vector per row, each column corresponds to a feature. The data sets are available
from the class Web page. You should read the data into your Python/R/Matlab/etc environment and plot
some scatter plots, before you do any clustering, just so that you have an idea of what the data sets look like
in 2-d. The directory for the homework on the class Web page contains some Python and Matlab scripts for
plotting the data and model parameters to help get you started.

1. Data set 1: this is 2d data simulated from 2 Gaussians, with a fair degree of overlap. The first 800
points belong to 1 Gaussian, the 2nd 800 to the other Gaussian.

2. Data set 2: this is 2d data simulated from 3 Gaussians, with considerable overlap. There are 500
points from each Gaussian, with rows ordered by class in the file.

3. Data set 3: this a real 2d data set from a past collaboration with Professor Christine McLaren, De-
partment of Epidemiology, UCI. Each data point represents an individual person: one group is normal
healthy people, the other has iron deficient anemia (so the true value of K is 2). The two measurements
on each individual are their mean red blood-cell volume and their mean hemoglobin concentration.
Both measurements tend to be lower for anemic individuals. The true class labels are provided in the
file labelset3.

For the data sets above you are to run the clustering algorithms in an unsupervised manner, i.e., without
class labels or knowledge of what the true classes are. You can then use the labels after clustering if
you wish to check to see how well the clustering matches with truth.

4. Image Data: (Optional, this is just for fun if you wish to play with this data—no need to submit
anything related to this data set). This data is contained in the subdirectory for “clown image data”
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and consists of the pixels in a small JPG image clown.jpg. You can convert this to an array where
each row corresponds to a pixel and there are 3 columns, one for the r, g, and b channels of color
information. The image is small to keep the number of pixels to a manageable size—but there are
still over 30,000 pixels in total, so unless your code is fairly efficient it is likely to run slowly on this
data. There are no “true classes” here for the pixels. K-means and/or Gaussian mixtures can be used
to compress the real-values in (r,g,b) into a “dictionary” of K clusters (effectively using clustering to
perform data compression). You could experiment with different values of K and look at the visual
difference between the compressed image (where you replace each pixel by the mean of the cluster it
was assigned to) and the original image, as a function of K. The directory with the data contains a
simple Matlab function to read in and to display the (r,g,b) pixel values (if you are using Matlab).

You should randomize the order of the rows for all of these data sets before you run your clustering
algorithms, to avoid any potential bias from your algorithm (e.g, during initialization) due to systematic
effects based on row order.

Algorithm 1: K-means Clustering

Implement the standard version of the algorithm as described in the class notes on mixture models and in
the lectures. The initial starting points for the K cluster means can be K randomly selected data points.
Since K-means can converge to local minima, you should allow an option to run the algorithm r times from
r different randomly chosen initializations (e.g., r = 10 as default), where you then select the solution that
gives the lowest sum of squared error over the r runs.

Algorithm 2: Gaussian Mixture Clustering

Gaussian mixture clustering is a probabilistic approach to clustering where we assume a Gaussian mixture
model of K components for the data and we find the parameters of the model using the EM algorithm as
described in the Note Set on Mixture Models and EM.

You should use the following general outline for your Gaussian mixture code:

• Initialize the algorithm using one of the methods described in the notes.

• Execute E and M steps as long as the convergence condition is not satisfied:

– E-step: compute membership probabilities using the current θcurrent values.

– M-step: compute new parameters θnew using the membership probabilities from the E-step

• After each EM iteration compute the log-likelihood of the data using θnew (see NoteSet 7 for a def-
inition of the log-likelihood for mixture models). This will allow you to print out the log-likelihood
values from each EM iteration, as the algorithm is running, to monitor its convergence.
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• Check for convergence using one of the methods described in the class notes on the EM algorithm (on
the class Web site). A simple and recommended method is to check if the average absolute difference
in membership probabilities (averaged across all entries in the matrix) between iterations is less than
some small number ϵ, e.g, ϵ = 10−6. If the convergence criterion is not satisfied, then execute another
EM iteration.

I also recommend that your algorithm runs this process multiple times from r different randomly-chosen
starting conditions (e.g. r = 10) and pick the solution that results in the highest log-likelihood (since EM in
general only finds local maxima). This will be especially useful in Algorithm 3 when working with larger
values of K.

The EM algorithm for Gaussian mixtures is a non-trivial algorithm to get working properly: please
try and debug it carefully. Check that the likelihood is non-decreasing at each step (i.e., have your code
print it out as it goes through each iteration—if the log-likelihood decreases you likely have a bug in your
code). Another way to check your code is to examine the final estimated parameters for the components (at
convergence) and check that these estimated parameters are roughly equal to the true parameters (obtained
using the labels).

For these data sets you could also impose a maximum number of iterations to halt the algorithm (e.g.,
500) if it gets that far and still has not converged. This is particularly handy when debugging!

Avoiding singular solutions: the likelihood can go to ∞ if the determinant of the covariance matrix for any
component goes to zero (e.g., if any individual σii → 0). This typically doesn’t happen for small values
of K on these data sets but can start to happen for larger K. You will need to implement some scheme to
prevent such singular (and useless) solutions, especially for the BIC part of the assignment where you will
be fitting larger K values. One somewhat ad hoc workaround (that works well in practice) is to constrain
all covariance diagonal terms during the M-step to be greater than some small threshold ϵ (e.g., 10−4 times
the variance for that dimension, as calculated on the whole data). A simple way to do this is to calculate
the Σ’s in the standard M-step manner and then to check each diagonal entry: if any are less than the small
threshold, then replace them with the threshold.

(A more principled way to handle solutions is to do MAP estimation with EM rather than ML estima-
tion, particularly for the covariance matrices (additional details provided in Murphy Book 1 (2022), Chapter
8.7.3.4. However, for simplicity, and to ensure that everyone gets the same numerical results, in this home-
work you can use the more ad hoc approach described above).

General advice on software implementations

In coding your algorithms you should try to make your code as modular as possible, by defining relatively
short general functions that can be used in different places in the code. For example, you can define a simple
function that calculates the Euclidean distance between a single vector x of dimension 1 × d and each row
of a matrix of dimension n × d. This is one of the basic steps that is frequently executed in the K-means
algorithm.
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Similarly you can define specific functions for initialization, the E-step, the M-step, etc., for Gaussian
mixtures below, where each of these functions may call other basic functions, such as a function that eval-
uates the Gaussian density values for all rows of a data matrix given a set of Gaussian parameters. By
making your code modular in this fashion you can test individual functions independently from the rest of
the code, your code will be much easier to read and debug, and you will be able to re-use the same functions
in different places.

You should also write your equations using vector and matrix notation where possible, and then imple-
ment the equations using vector-matrix operations in code. This is often much faster than using for-loops
since vectorized operations tend to be highly optimized for efficiency in most programming languages.

For exchanging information about parameters between functions (e.g., sending the parameters learned
by the EM learning algorithm to a different function to plot them) you may want to use a data structure that
contains all the parameter information, e.g., in MATLAB you can use a structure array with fields such as
gparams(k).mean, gparams(k).covariance, etc.

The Python and MATLAB directories for this homework each contain a simple template for Python and
MATLAB code to run Gaussian mixtures—you do not need to necessarily use this, it is just provided here
to give you an idea of how you might set up your code.

Finally, you may want to simulate a simple dataset with two well-separated Gaussian components (in 1d
or 2d), maybe with 50 or 100 points in each, and use this to test your code, before moving on to the datasets
in the homework. If the Gaussians are well-separated (e.g., difference between the two means is roughly
3 sigma apart say) then the EM algorithm should converge quickly—and you can check that the solutions
match the true solutions (parameter values) that were used to simulate data.

Algorithm 3: Automatically Selecting K for Gaussian Mixture Clustering

There are a number of different methods for trying to find K automatically from the data. A very simple
approach (but useful) for doing this is the BIC criterion, i.e, choose K such that

l(D|θ̂)− pK
2

logN

is maximized, where l(D|θ̂) is the maximizing value of the log-likelihood1 as found by EM using data D

with K components (this value of the log-likelihood can be returned by your Gaussian mixture code), pK
is the total number of parameters in mixture model K (you will need to compute this for each K), and N

is the number of data points in D. There is a rather general theoretical justification for this BIC criterion
which loosely speaking says that as K increases we should penalize the log-likelihood of the model with K

components according to its increased complexity, and pK
2 logN can be shown theoretically to be a good

approximation to a true Bayesian penalty term. The theory doesn’t strictly apply to mixture models, but
nonetheless it can be a reasonable approximate technique for model selection in practice.

1For all log-likelihoods mentioned in this homework (computing BIC, plotting, etc) use the full log-likelihood, i.e., sum over
the N data points, no division by N . Also use natural log (log to the base e) for all logs in this homework.



Homework 6: CS 274A, Probabilistic Learning: Winter 2024 6

To write a program to do this is straightforward once you have your EM Algorithm working. You just
need to implement a loop2, where the EM algorithm is run inside each iteration of the loop with a fixed
value of K, with values of K going from 1 to some Kmax, where Kmax is selected by the user. Note that
K = 1 is important: it might be the case that the data are best explained by a single Gaussian! (for the case
of K = 1 you obviously don’t need to run EM).

Your code should return a list, for each value of K, of both the log-likelihood (which should increase
monotonically as K increases), the BIC criterion as defined above, and the K value that maximizes the BIC
criterion. For some of the smaller data sets (e.g., data set 3) you may find that as K increases you run into
more problems both with local maxima of the likelihood function and with singular solutions (so you may
need to either make Kmax smaller, and/or run a larger number of random restarts).

2This is one of those cases where a for-loop can’t be avoided, there is no way “vectorize across K”.
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What to Submit

1. Code:

• Submit your code for all the functions you have written to the Homework 6 dropbox in Canvas.

• Also include a script called assignment6.py (for Python), or something similarly named for
another language), that loads each data set and generates the plots requested below. This script
should also run your BIC code to find the best value for K for the data set. If you are using
something other than Python or R or Matlab please also provide a README file to explain to
us how to use your code.

2. Written Solutions: Submit to Gradescope a PDF copy of your answers and graphs for the questions
below. For each data set, and using the true K value for each data set for parts (a) to (d) below, show
the following

(a) The K-means solution (scatter plot in two dimensions illustrating the location of the solution
(i.e., the cluster means), and plotting the data from different clusters with different symbols
(and/or in color if you would like to use color).

(b) A plot of the sum-squared-error (no division by N ) as a function of iteration number in the
K-means algorithm.

(c) The initial parameter values and the final parameter values (2 plots, each showing means and
covariances for each cluster) for the EM/Gaussian mixtures code for the highest-likelihood so-
lution.

(d) A plot of the log-likelihood (for one run of your algorithm) as a function of iteration number
during EM. Please use natural logs, i.e., log base e, in all your calculations and plots so that
everyone’s results are on the same scale. Also please use the “unnormalized” log-likelihood
with no division by N .

(e) Add some brief comments (1 paragraph) on the difference between K-means and EM for each
data set.

(f) Generate a table of unnormalized log-likelihood and the BIC scores for K going from K = 1 to
some maximum value (e.g., K = 5, 10). Comment briefly on the results.

In your solutions please try to put multiple plots for the same data set and the same algorithm on the
same page (where different pages could correspond to different data sets and different algorithms), to make
it easier for us to read your report.


