
CS 274A Homework 1

Probabilistic Learning: Theory and Algorithms, CS 274A, Winter 2023

Due: 11:59pm Tuesday January 17th, submit via Gradescope

Instructions and Guidelines for Homeworks

• Please answer all of the questions and submit your solutions to Gradescope (either hand-written or
typed are fine as long as the writing is legible).

• All problems are worth equal points unless otherwise stated. All homeworks will get equal weight in
computation of the final grade for the class (with lowest-scoring homework being dropped).

• The homeworks are intended to help you better understand the concepts we discuss in class. It is
important that you solve the problems yourself to help you learn and reinforce the material from
class. If you don’t do the homeworks you will likely have difficulty in the exams later in the quarter.

• In problems that ask you to derive or prove a result you should submit a complete mathematical proof
(i.e., each line must follow logically from the preceding one, without “hand-waving”). Be as clear as
possible in explaining your notation and in stating your reasoning as you go from line to line.

• If you can’t solve a problem, you can discuss the high-level concepts verbally with another student
(e.g., what concepts from the lectures or notes or text are relevant to a problem). However, you should
not discuss any of the details of a solution with another student. In particular note that you are not
allowed to view (or show to any other student) any written material directly related to the homeworks,
including other students’ solutions or drafts of solutions, solutions from previous versions of this class,
etc. The work you hand in should be your own original work.

• If you need to you can look up standard results/definition/identities from textbooks, class notes, text-
books, other reference material (e.g., from the Web). If you base any part of your solution on material
that we did not discuss in class, or is not in the class notes, or is not a standard known result, then
you may want to rovide a reference in terms of where the result is from, e.g., “based on material in
Section 2.2 in .....” or a URL.
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Recommended Reading for Homework 1

• Note Sets 1 and 2 from the class Web page, for a review of basic concepts in probability, conditional
independence, Gaussian models, etc.

• Chapter 6.1 to 6.5 in Mathematics for Machine Learning (MML) is recommended for additional
details beyond what is covered in the Note Sets.

Problem 1: Properties of the Uniform Density

Let X be a continuous random variable with uniform density U(a, b), with a < b, i.e.,

p(x) = p(X = x) =
1

b− a

if a ≤ x ≤ b and p(x) = 0 otherwise, where p(x) is the PDF.

1. Derive an expression for the expected value E[X].

2. Derive an expression for the variance var(X), where var(X) = σ2
x = E[(X − µx)

2].

Problem 2: Expectations/Variance with Two Random Variables

The expected value of a real-valued random variable X , taking values x, is defined as µx = E[X] =∫
p(x) x dx where p(x) is the probability density function for X . The variance is defined as σ2

x = var(X) =

E[(X − µx)
2] =

∫
p(x)(x− µx)

2dx. In the questions below a and b are scalar constants (i.e., not random
variables).

1. Prove that var(X) = E[X2]−
(
E[X]

)2.

In the next two questions let X and Y be two real-valued random variables, each one-dimensional
(i.e., scalar-valued). In the equations below the expectation on the left is with respect to the joint
density p(x, y) and the expectations on the right are with respect to p(x) and p(y) respectively. Be
sure to be clear in each line of your derivation and don’t skip steps.

2. Prove that E[aX + bY ] = aE[X] + bE[Y ].

3. Prove that if X and Y are independent that var(aX + bY ) = a2var(X) + b2var(Y ).
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Problem 3: High-dimensional Data

Answer the following problems:

1. Consider a d-dimensional discrete random (vector) variable X = (X1, X2, . . . , Xd), where each
component random variable Xi, 1 ≤ i ≤ d can take one of K values. Let P (x) be a probability
distribution for X where x = (x1, . . . , xd) represents a d-dimensional vector of possible values of X .

Assume we have a data set consisting of N random (independent) samples from P (x). This dataset
can be represented as counts in a d-dimensional table consisting of Kd cells, with one cell for every
possible combination of x1, . . . , xd values. (In practice, for large values of K and d, we would likely
use a sparse matrix/array representation to list the non-zero counts, rather than storing everything with
a full array).

Let j be an index over the Kd cells and let the probability of a particular cell j be Pj = αj/K
d, αj ≥ 0

and
∑

j αj = Kd. For example, if all the αj’s are equal to 1 we get a uniform distribution over the
Kd outcomes. How far the value of αj is from 1 provides an indication of how much more (or less)
likely outcome j is relative to a uniform distribution.

(a) For a particular cell j, and with N independent random samples from P (x), derive an expression
involving αj ,K, d,N for the probability that at least 1 of the N samples lies in cell j.

(b) Let βj =
Nαj

Kd . Prove that if βj ≪ 1 then the probability that cell j has no samples will be
approximately equal to 1− βj . (Hint: a Taylor series approximation using the result from part 1
would be one possible approach here).

(c) Comment briefly (1 or 2 sentences) on the implications of this result for estimation of distribu-
tions as K and/or d grow. For example, for modeling the probabilities of word-level trigrams in
a language model we would have d = 3 and K could be on the order of 105 words.

2. Consider a d-dimensional hypercube whose edges are of length 2r. Now consider a d-dimensional
hypersphere which has radius r and is inscribed within the hypercube. The hypercube and hypersphere
have their centers in the same location.

(a) Derive a general expression for the ratio of the volume of the hypersphere to the volume of
the hypercube. (You don’t need to derive the equation for the volume of a hypersphere in d

dimensions, you can just look it up).

(b) Compute numerically (e.g., using a calculator or computer) the value of this ratio for d =

1, 2, . . . , 10. You won’t need to know the value of r to do this.

(c) Comment briefly on what the numbers in the table tell you about where “data lives” (at least
under a uniform distribution) in high-dimensional spaces.
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Problem 4: Central Limit Theorem

Let X1, . . . , Xn be a set of independent and identically distributed real-valued random variables each with
the same density p(x) where each Xi has mean µ and variance σ2. (Note that the density p(x) could be any
probability density function, it need not be Gaussian).

1. State precisely the central limit theorem as it applies to X1, . . . , Xn (if you don’t know what central
limit theorem is you will need to look it up)

2. Let Y = 1
n

∑n
i=1Xi where each Xi has a uniform distribution U(a, b) with a = 0, b = 1. Simulate

1000 values of Y (using any language such as Python, R, Matlab, C, etc) for each of the following
values of n: n = 102, 103, 104, 105. You should end up with 4 sets of Y values, each with 1000
values. Generate histogram plots of the 4 results for each value of n (this will produce 4 histograms).
Please make sure that all 4 histograms are plotted on a single page (makes it easier for grading). Use√
1000 ≈ 30 bins for each histogram.

3. Based on visual inspection of the histograms, comment on the qualitative nature (e.g., shape, nature
of the distribution) for how your simulated data matches the central limit theorem.

4. Quantitatively evaluate how well your empirically simulated distributions match what the theory pre-
dicts (e.g., compare the mean and variance of the simulated data with that from theory).

Problem 5: Logistic Function

Let X be a d-dimensional real-valued (vector) random variable taking values x and let C be a binary random
variable taking values 1 or 2. Say we would like to model the conditional probability P (C = 1|x) as a
function of x. One well-known approach is to assume that P (C = 1|x) is defined as a logistic function (this
is the basis of the logistic regression classifier):

P (C = 1|x) =
1

1 + exp(−α0 − αTx)

where α0 is a real-valued scalar and αT is the transpose of a d-dimensional vector (d × 1) of real-valued
coefficients α1, . . . , αd. In machine learning C is typically referred to as the “class” variable: its the variable
we want to predict given x.

1. Prove that the definition of the logistic function above implies that the log-odds log P (C=1|x)
P (C=2|x) is an

affine function of x.

2. Say we know that P (x|C = 1) = N(µ
1
,Σ) and P (x|C = 2) = N(µ

2
,Σ) (i.e., we know that the

densities for each class are multivariate Gaussian), where µ
1

and µ
2

are the d-dimensional means for
each class and Σ is a common covariance matrix. Prove that, under these assumptions, P (C = 1|x) is
in the form of a logistic function. (Hint: you may find the algebra to be easier if you utilize the result
from part 1).
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Problem 6: Finite Mixture Models

Finite mixture models show up in a wide variety of contexts in machine learning and statistics (we will
discuss them in more detail in lectures later in the quarter). In this problem consider a real-valued random
variable X taking values x (in general we can define mixtures on vectors, but here we will just consider the
1-dimensional scalar case).

The basic idea is of a mixture model is to define a density (or distribution) p(x) that is a weighted
mixture of K component probability density functions pk(x|Z = k), where the weights are non-negative
and sum to 1, i.e.,

p(x) =
K∑
k=1

pk(x|Z = k)P (Z = k)

where

• Z is a discrete indicator random variable taking values from 1 to K, indicating which of the K mixture
components generated data point x.

• The mixture weights αk = P (Z = k) are the marginal probabilities of data point x being generated
by component k, with

∑K
k=1 αk = 1, 0 ≤ αk ≤ 1.

• for each value of k, pk(x|Z = k) is itself a probability density function with its own parameters θk.
For example, if a component is Gaussian then θk = {µk, σ

2
k}.

The full set of parameters for a mixture model consists of both (a) the K weights, and (b) the K sets of
component parameters θk for each of the K mixture components. (Note that the “finite” in finite mixture
models comes from the fact that K is finite. There are also infinite mixture models where K is unbounded,
but we will not consider those here).

1. Given the definition above for a finite mixture model, prove that a finite mixture p(x) is itself a density
function, i.e., it obeys all the necessary properties needed to be a density function.

2. Derive general expressions for the (a) mean µ of p(x), and (b) the variance σ2 of p(x), as a function
of the component weights, means and variances αk, µk, σ

2
k, 1 ≤ k ≤ K.

For each of µ and σ2 provide an intuitive interpretation in words of your final expression for each of
the mean and the variance.

3. If we now assume that K = 2 where both components are Gaussian densities and µ1 = 0 and µ2 = 5,
plot the density of p(x) (e.g., with isocontours) as a function of x for each of the following cases:

(a) α1 = 0.5, σ1 = 3, σ2 = 3

(b) α1 = 0.5, σ1 = 2, σ2 = 2

(c) α1 = 0.5, σ1 = 2, σ2 = 1

(d) α1 = 0.1, σ1 = 2, σ2 = 2
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Let x range from -5 to 10 in your plots. Its fine to write some code to generate the plots (in fact this is
preferred since generating these plots accurately by hand would be tricky to do).

Problem 7: Conditionally Independent Experts

Let Y be a binary class variable taking values y ∈ {0, 1}. Let Xi be a feature taking feature values xi
(potentially vector-valued) with i = 1, . . . ,M . Associated with each of the M features Xi is an “expert”
that given a feature value xi produces a prediction P (y = 1|xi). Individual experts could for example
correspond to machine learning models or humans.

Now consider a decision-maker that wishes to compute P (y = 1|x1, . . . , xM ) but that doesn’t know
the xi values directly. Instead the decision-maker is only given the expert predictions P (y = 1|xi), i =

1, . . . ,M . In addition the decision-maker knows the marginal probability P (y = 1). This could model
a situation for example where there are multiple different pieces of medical information xi relevant to
predicting disease status Y for a patient, but the information xi can’t be provided to the decision-maker
for privacy reasons—however, all the individual expert predictions P (y = 1|xi) can be provided.

We will analyze the case where the decision maker assumes that the Xi variables are conditionally
independent given Y . Also say that the decision maker assumes that each expert i is providing the true
probability P (y = 1|xi) rather than an estimate of this probability.

1. Derive an equation that shows how the decision-maker can compute the odds, P (y=1|x1,...,xM )
P (y=0|x1,...,xM ) based

on the information provided above.

2. Show that the log-odds in part (1) can be written as a linear function of the log-odds from the individual
experts, plus an additional term that depends on the marginal probability of Y .

3. Interpret your result for the case M = 1 and explain in words what is qualitatively different to the
case for M > 1.

4. There are multiple other ways the decision-maker could combine information from the M experts
(such as averaging the predictions or using voting). For example, say the decision-maker were to
threshold the individual probabilities of each expert, i.e., zi = 1 if P (y = 1|xi) ≥ 0.5 and zi = 0

otherwise (so the zi in effect correspond to the votes of individual experts), and the decision maker
then computes P (y = 1|x1, . . . , xM ) ≈ 1

M

∑
i zi, i.e., takes the average of the votes. Provide an

example for M = 3 that shows that illustrates clearly why this strategy of combining information
(given the assumptions above) is suboptimal compared to the solution you derived in part 1 above.
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Problem 8: Inference in Graphical Models

Consider the directed graphical model in the figure below. All variables are discrete and all take K ≥ 2

values.

Answer the following questions:

1. Write an equation for the joint probability, P (a, b, c, d, e, f, g) that represents the conditional inde-
pendence relations in this graphical model.

2. Precisely how many parameters are required to specify this graphical model? Express your answer
as a function of K. Take into account the fact that distributions sum to 1. “Parameter” here means a
probability in a probability table. Express your final answer in the form of a polynomial in K.

3. Consider the probability P (d∗|a∗), where d∗ and a∗ are specific values of D and A respectively.
Describe (step by step, for all steps) the most efficient way to compute this conditional probability,
starting from the marginal and conditional probability tables that are specified in the graphical model.
You can interpret “most efficient” to mean a method that requires the least number of summations as
a function of K, e.g.,

∑
x,y P (x, y, z∗) would involve a sum over the values x and y with the number

of summations being of order O(K2).

4. Now consider the probability P (d∗|a∗, g∗), where g∗ is a specific value of G. As in the last question,
describe the most efficient way to compute this conditional probability. The most straightforward way
to do this is to first compute the joint probability P (d, g∗|a∗) for each value of d; and to then compute
the conditional probability of interest, P (d∗|a∗, g∗), from the joint probability via Bayes rule.


