
CS 274A Homework 2

Probabilistic Learning: Theory and Algorithms, CS 274A, Winter 2023

Due: 11:59pm Sunday January 29th, submit via Gradescope

Instructions and Guidelines for Homeworks

• Please answer all of the questions and submit your solutions to Gradescope (either hand-written or
typed are fine as long as the writing is legible).

• All problems are worth equal points unless otherwise stated. All homeworks will get equal weight in
computation of the final grade for the class (with lowest-scoring homework being dropped).

• The homeworks are intended to help you better understand the concepts we discuss in class. It is
important that you solve the problems yourself to help you learn and reinforce the material from
class. If you don’t do the homeworks you will likely have difficulty in the exams later in the quarter.

• In problems that ask you to derive or prove a result you should submit a complete mathematical proof
(i.e., each line must follow logically from the preceding one, without “hand-waving”). Be as clear as
possible in explaining your notation and in stating your reasoning as you go from line to line.

• If you can’t solve a problem, you can discuss the high-level concepts verbally with another student
(e.g., what concepts from the lectures or notes or text are relevant to a problem). However, you should
not discuss any of the details of a solution with another student. In particular note that you are not
allowed to view (or show to any other student) any written material directly related to the homeworks,
including other students’ solutions or drafts of solutions, solutions from previous versions of this class,
etc. The work you hand in should be your own original work.

• If you need to you can look up standard results/definition/identities from textbooks, class notes, text-
books, other reference material (e.g., from the Web). If you base any part of your solution on material
that we did not discuss in class, or is not in the class notes, or is not a standard known result, then
you may want to rovide a reference in terms of where the result is from, e.g., “based on material in
Section 2.2 in .....” or a URL.
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Recommended Reading for Homework 2: Note Set 3

Problem 1: Maximum Likelihood for the Multinomial Model

Consider building a probabilistic model for how often words occur in English. Let W be a random variable,
taking values w ∈ {w1, . . . , wM}, where M is the number of words in the vocabulary. In practice M can
be very large, e.g., M = 100, 000 is not unusual (there are more words than this in English, but many
rare words are not modeled). In other words, W is a discrete-valued random variable taking M possible
values, with M probabilities that sum to 1. The parameters of the model are θ = {θ1, . . . , θM}, where
θm = P (W = wm), and where

∑M
m=1 θm = 1. If we generate samples in an IID manner from W then we

refer to this as a multinomial model.

The multinomial likelihood (under the assumptions above) is similar to the binomial likelihood for toss-
ing coins, but instead of two possible outcomes there are now M possible outcomes for each observa-
tion. Let the observed data be D = {r1, . . . , rM}, where rm is the number of times word wm occurred,
m = 1, . . . ,M (these are known as the sufficient statistics for this model).

1. Show how the likelihood function can be defined for this problem

2. Derive the maximum likelihood estimates for each of the θm’s for this model.

Problem 2: Visualization of Likelihoods

Consider a dataset D = {11, 5, 9, 52, 13, 25, 3, 6, 7, 12} assumed to be generated in an IID manner from a
probability density with parameters θ. (Even though these are integer values above, in what follows below
we will investigate probability density functions for the data D, since its easier to specify a set of integers
for this problem than a set of real-valued numbers).

Answer the following questions:

1. Using your favorite computing environment (Python, R, Matlab, etc) generate graphs of the log-
likelihood function l(θ), as a function of θ, for the following models:

(a) an exponential density with a mean (or scale) parameter θ = 1
λ , where p(x) = 1

θe
− 1

θ
x = λe−λx

with λ > 0, x ≥ 0.

(b) a Gaussian density where θ = µ (the unknown mean of the Gaussian). Assume that you know
σ2 and set it equal to the empirical variance defined as 1

n

∑n
i=1(xi−m)2, where m = 1

n

∑n
i=1 xi

is the empirical mean and where each xi is one of the data points in D.

Note: for this problem, when computing l(θ) include all terms in the density functions whether they
include θ or not (i.e., don’t drop normalization terms): this is important since you will be comparing
likelihoods for two different densities.
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Plot both functions l(θ) on the same graph, clearly indicating which function is which (e.g., use color,
different linestyles, etc). Plot both functions over the range θ ∈ [3, 40]. Use natural log (i.e., log to
the base e) in your calculations. Put a grid in the background of the plot to make it easier to read (e.g.,
grid on in Matlab).

Also put on your graph the two log-likelihood values for a uniform density U(a, b), with a = 0 and (i)
b = 60, and (ii) b = 100. These are each single numbers so just plot each of them as a flat horizontal
line corresponding to the log-likelihood value on the y-axis. Be sure to clearly indicate which line
corresponds to which value of b.

2. Write a few sentences interpreting what you see in the graphs.

3. Now regenerate the same types of graph (with plots for exponential and Gaussian) for this new dataset
D2 = {11, 33, 19, 44, 13, 25, 31, 26, 37, 22}, computing σ2 now using D2, and again overlaying the
two uniform logL values. Comment briefly on this new graph.

Problem 3: Maximum Likelihood: Geometric Distribution

Consider a data set D = {x1, . . . , xn}, where xi ∈ {1, 2, 3, . . .}. Assume that the integer-valued data xi
were generated in an IID manner from a geometric model, where the geometric distribution with parameter
θ is defined as

P (xi = k) = (1− θ)k−1θ , k = 1, 2, 3, . . . , 0 < θ < 1

1. Define the likelihood function for this problem

2. Derive an equation for the maximum likelihood estimate for θ

3. Now consider a different problem where our data consists of IID samples in the form of pairs (xi, ci)
where ci ∈ {1, 2} are possible values of a discrete random variable. The density for P (x) is a mixture
model: P (x) = P (x|c = 1)P (c = 1) + P (x|c = 2)P (c = 2), where P (x|c = 1) and P (x|c = 2)

are both geometric distributions with parameters λ1 and λ2 respectively. Derive maximum likelihood
estimates for λ1, λ2, and α = P (c = 1).

4. Now consider a different version of the previous problem where the constraint has been added that
λ2 = 2λ1. Derive the maximum likelihood estimates for λ1 for this constrained problem (for this part
of the problem you can assume that α = P (c = 1) is known).

Problem 4: Method of Moments and the Uniform Model

The method of moments is an alternative parameter estimation method to maximum likelihood. Theoreti-
cally its’ properties are not in general as good as maximum likelihood, but it can nonetheless be useful for
some problems (e.g., where the likelihood function is not easy to optimize but the method of moments is
easier to work with).
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The method works as follows: Given a probability model (e.g., a Gaussian, a uniform, etc) with K

parameters we write down K equations that express the first K moments as functions of K parameters.
The moments are defined as E[Xk], k = 1, . . . ,K. Given a data set with N data points x1, . . . , xN , we
then plug in the empirical estimates of these moments (from the data, e.g., the average value of xi, of x2i ,
etc) into these equations and get K equations with K unknown parameters. We can think of this method as
“moment matching,”, i.e., it is trying to find parameters such as the moments of the model (with its estimated
parameters) match the empirical moments in the observed data.

Let X be uniformly distributed with lower limit a and upper limit b, where b > a, i.e.,

p(x) =
1

b− a

for a ≤ x ≤ b and p(x) = 0 otherwise. Assume we have a data set D consisting of n scalar measurements
xi, 1 ≤ i ≤ n, where the xi are conditionally independent given a and b.

1. Derive estimators for a and b using the method of moments. Since there are 2 unknown parameters
you will need two equations, involving the first and second moment.

2. Now derive the maximum likelihood estimators for a and b (think carefully about how to do this: it is
somewhat different conceptually to the examples we did in class).

3. Write 2 or 3 sentences comparing the properties of the maximum likelihood estimates with the method
of moment estimates. You can use the following simple data set D = {12, 4, 4, 10, 7, 5, 9, 10} to
provide some intuition for your answer.

Problem 5: Maximum Likelihood for a Simple Model of Graphs

Consider an undirected graph G with N > 1 nodes (or vertices) and with r undirected edges. Note: in
this problem the graph is not a graphical model, just a standard graph. The edges in G are denoted by
ei,j = ej,i, 1 ≤ i, j ≤ N . If ei,j = 1 there is an edge between nodes i and j, and if ei,j = 0 there is no edge
between i and j. You can assume there are no self-edges, i.e., that ei,i = 0, for 1 ≤ i ≤ N . We can think of
the graph as being represented by an N ×N binary adjacency matrix D = {ei,j}, 1 ≤ i ≤ N, 1 ≤ j ≤ N

where D is the data representing relations between N nodes.

We would like to fit a probabilistic model to this data D where we have a single parameter θ = p(ei,j =

1). In terms of a generative model, edges ei,j in the graph are generated independently with probability θ.

1. Precisely define the likelihood p(D|θ) for this problem in terms of the information provided above.
Try to reduce the likelihood to as simple an expression as possible.

2. Derive the maximum likelihood estimate for θ using the information provided above.

3. Briefly mention one significant limitation of this graph model if we wanted to use it to model real-
world graphs.
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4. Now say we have K different graphs, where the data for each graph is assumed to be generated
independently with a single parameter θ in the same manner as above. Each graph Gk has Nk nodes
and rk edges, k = 1, . . . ,K, and each Gk has its own adjacency matrix Dk. Note that Nk is allowed
to be different for different graphs. Our data is now the set D = {D1, . . . , DK} and we have a single
parameter θ.

Consider the following estimator for θ, θ̂ = 1
K

∑K
k=1 θ̂

(k), where θ̂(k) is a maximum likelihood
estimate defined for each graph separately (i.e., just using data Dk for each graph), using your answer
from part 1. Is this the maximum likelihood estimator of θ or not? Provide a justification of your
answer.

Problem 6: Markov Chains with Missing Data

Consider the following problem. We have 3 binary random variables A,B,C with the following graphical
model: A → B → C, i.e., the 3 variables form a Markov chain of length 3.

Each variable takes values 0 or 1. Assume that the conditional probability table (CPT) for P (B|A) and
P (C|B) are the same, i.e., the entries are the same. (This is known as a homogeneous Markov chain). These
CPTs are often referred to as “transition matrices” when discussing Markov chains.

In addition we will assume that each CPT (or transition matrix) is such that P (B = 0|A = 0) = α,
P (B = 1|A = 1) = α, i.e., the “self-transition” probabilities conditioned on A = 0 or A = 1 are the
same and equal to α. And because the chain is homogeneous, we also have that P (C = 0|B = 0) = α,
P (C = 1|B = 1) = α. To complete our notation let P (A = 0) = ϕ. So, for this simple special case, our
Markov chain with 3 variables just has 2 parameters ϕ and α.

Assume that we have observed data D consisting of n independently drawn random samples from the
chain, i.e., D = {ai, bi, ci}ni=1. Now, further assume that the bi’s have all been removed from the dataset,
resulting in a dataset D′ = {ai, ci}ni=1 that only has the ai and ci observations and the corresponding bi
values are missing. (This problem is motivated by a real-world problem involving missing data, in the
context of remote-sensing and satellite data).

1. Show step by step how the log-likelihood L(ϕ, α) = P (D′|ϕ, α) for this problem can be defined as
a function of ϕ, α, and nS and n. Here nS ≤ n is defined as

∑n
i=1 I(ai, ci) where I(ai, ci) = 1 if

ai = ci and I(ai, ci) = 0 if ai ̸= ci: in other words, nS counts the number of samples (out of n)
where the values of ai and ci are the same (i.e., the chain starts and ends with the same value).

2. Now assume that ϕ = 0.5 (and everything else is the same as before). Derive a closed form expression
for finding a maximum likelihood estimate α̂ML. Note that there need not be a unique solution.

3. Letting n = 100, plot the log-likelihood (with ϕ fixed at 0.5) as a function of α on the x-axis, with
1000 values of α uniformly spaced between 0 and 1. Generate a separate graph for each of the
following values of nS : nS = 90, nS = 70, nS = 50, nS = 10. Comment on the shapes that you see
for the 4 plots. Please put all 4 plots on a single page to help with grading and a standard grid in the
background of your plot.


