
CS 274A Homework 4

Probabilistic Learning: Theory and Algorithms, CS 274A, Winter 2023

Due: 12 noon, Monday February 27th, submit via Gradescope

Instructions and Guidelines for Homeworks

• Please answer all of the questions and submit your solutions to Gradescope (either hand-written or
typed are fine as long as the writing is legible).

• All problems are worth equal points (10 points) unless otherwise stated. All homeworks will get equal
weight in computation of the final grade for the class (with lowest-scoring homework being dropped).

• The homeworks are intended to help you better understand the concepts we discuss in class. It is
important that you solve the problems yourself to help you learn and reinforce the material from
class. If you don’t do the homeworks you will likely have difficulty in the exams later in the quarter.

• In problems that ask you to derive or prove a result you should submit a complete mathematical proof
(i.e., each line must follow logically from the preceding one, without “hand-waving”). Be as clear as
possible in explaining your notation and in stating your reasoning as you go from line to line.

• If you can’t solve a problem, you can discuss the high-level concepts verbally with another student
(e.g., what concepts from the lectures or notes or text are relevant to a problem). However, you should
not discuss any of the details of a solution with another student. In particular note that you are not
allowed to view (or show to any other student) any written material directly related to the homeworks,
including other students’ solutions or drafts of solutions, solutions from previous versions of this class,
etc. The work you hand in should be your own original work.

• If you need to you can look up standard results/definition/identities from textbooks, class notes, text-
books, other reference material (e.g., from the Web). If you base any part of your solution on material
that we did not discuss in class, or is not in the class notes, or is not a standard known result, then
you may want to rovide a reference in terms of where the result is from, e.g., “based on material in
Section 2.2 in .....” or a URL.
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Recommended Reading for Homework 4: Class Notes on Regression; and from the online Mathematics
for Machine Learning (MML) text; Chapter 7 (Optimization) pages 225-238; Chapter sections 8.1, 8.2; and
Chapter sections 9.1, 9.2.

Note: For this homework its important to go through the MML readings above in particular since they will
cover concepts required for some of the problems below that will not be discussed in any detail in class. Its
fine to use any results from the MML text without citing them (but please cite any other sources you use in
your solutions).

Problem 1: Maximum Likelihood Estimation for Linear Regression

Assume we have IID training data in the form D = {(xi, yi)}, i = 1, . . . , N , where xi and yi are both one-
dimensional and real-valued. Say we assume that y given x is a conditional Gaussian density with mean
E[y|x] = ax + b and with variance σ2 (see example 8.4 in the MML text). Assume that a, b, and σ2 are
unknown.

Show from first principles that the maximum likelihood estimates for each of a, b, and σ2 can be written
as:

â =
xy − x̄ȳ

x2 − (x)2

b̂ = y − âx

σ̂2 =
1

N

∑
i

(
yi − [âxi + b̂]

)2
where terms such as x̄, ȳ represent empirical averages over the N datapoints, and terms like â represent
maximum likelihood estimates.

Problem 2: Normal Equations for Least Squares (MSE) Regression

Assume we have training data in the form D = {(xi, yi)}, i = 1, . . . , N , where each xi is a d-dimensional
real-valued vector (with one component set to the constant 1 to allow for an intercept term) and where each yi
is a real-valued scalar. Assume we wish to fit a linear model of the form θTx where θ is a d-dimensional pa-
rameter vector, where by “fit” we mean here that we want to find θ̂ that minimizes MSE(θ) = 1

N

∑N
i=1

(
yi−

θTxi
)2.

1. Prove that the solution to this problem can be written as the solution of a system of d linear equations
(often referred to as the “normal equations”) that can be written in the form Aθ = b where θ has
dimension d× 1, A is a d× d matrix, and b is a d× 1 vector. Starting from the definition of MSE(θ)

above, carefully write out all steps in your proof, and clearly show how A and b are defined. If you
need to assume as part of your solution that a particular matrix is full rank then assume so and state
that you have assumed this.
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2. Define the time complexity of minimizing MSE(θ) (i.e., solving for argmaxθ MSE(θ)) using the
normal equations given a dataset D = {(xi, yi)}, i = 1, . . . , N . Time complexity is defined as being
“on the order of” (i.e., “big O”) of some function of d and N , e.g., computing a sum of N terms has
time complexity O(N), multiplying a 1×N vector by a N × d matrix has time complexity O(Nd),
etc.

3. Prove that minimizing the MSE is equivalent to maximizing the conditional log-likelihood with a
linear model, Gaussian noise, and IID data.

Problem 3: Computational Complexity for Fitting Linear Models using MSE

Consider the optimization problem in Problem 2: fitting a linear model by minimizing MSE, with d param-
eters and a d-dimensional input x, with N IID data points. Answer the following questions below:

1. Assume we are using gradient descent algorithm (Section 7.1 in MML) to solve this problem. Define
the time complexity of doing one gradient update (using all N data points).

2. Assume that instead of the full gradient method, we use instead the stochastic gradient method (see
Section 7.1.3 in MML) for this problem, where we use M randomly selected datapoints as the mini-
batch size for each stochastic gradient update. Define the time complexity of doing one such stochastic
gradient update.

3. In the context of this problem (i.e., linear model, MSE loss, IID data) write a few sentences (or
bullet points) comparing the strengths and weaknesses of the following optimization methods: Normal
Equations, gradient descent, stochastic gradient. Focus specifically on the computational complexity
and numerical stability of each method, as d increases relative to fixed N and fixed M . Since the
number of iterations before convergence for the iterative methods will depend on the data D, on
learning rates, on batch sizes, on convergence criteria, etc, its difficult to make any precise statements
involving the number of iterations to convergence for these methods: instead its fine in your comments
to focus primarily just on computational complexity and numerical stability per iteration.

Problem 4: Gradients for MAP Gaussian Regression

Consider a regression problem with data D = {(xi, yi)}, i = 1, . . . , N , where x is a d-dimensional real-
valued vector (where one component is set to the constant 1 to allow for an intercept term). Consider a
linear model in the form f(x; θ) = θTx where θ is a d-dimensional parameter vector with one weight for
each component of x. Consider a Gaussian regression model of the form y|x ∼ N(θTx, σ2) where σ2 is
assumed known. Assume that we have independent priors on each weight of the form θj ∼ N(θ; 0, s2) with
prior mean 0 and where the prior variance s2 is assumed known.

1. Define the posterior logP (θ|D) for this problem
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2. Derive the gradient ∇θ with respect to the parameters θ for this problem.

3. Prove that minimizing − logP (θ|D) is a convex optimization problem.

Problem 5: L1 or Lasso Regression

Consider a squared error loss function MSE(θ) = 1
N

∑N
i=1(yi−f(xi; θ)

2 with training data D = {(xi, yi)}, i =
1, . . . , N and where f is some prediction model with unknown parameters θ = (θ1, . . . , θp). A popular
regularization method takes the form r(θ) =

∑p
j=1 |θj |, resulting in an optimization problem where we

minimize MSE(θ) + λr(θ), where λ is the relative weight of the regularization term (this is known as L1
or Lasso regularization).

Clearly show how we can interpret L1 regularization in terms of a prior on θ (by viewing this optimiza-
tion problem from a Bayesian MAP perspective). Be sure to state clearly what distributional form this prior
is, i.e., what name it has.

Problem 6: Poisson Regression

Consider a problem where we have a data set D = {(xi, yi)}, i = 1, . . . , N where xi are real-valued
d-dimensional vectors and yi ∈ {0, 1, 2, . . . , }, i.e., the yi’s are non-negative integers, e.g., a count of
the number of purchases an individual i makes on a Website given that they visit the site. In a Poisson
regression model we build a model where the conditional distribution of y, P (y|x; θ), is assumed to be a
Poisson distribution with mean E[y|x] = λ(x) = f(x; θ) where the mean varies as a function of x, for
some fixed value of parameters θ, rather than being having a fixed mean value λ. To ensure that λ(x) > 0,
a common parametrization is λ(x) = exp(θTx), which is what we will use in this problem.

1. Derive the log-likelihood for this problem

2. Derive the gradient of the log-likelihood with respect to θ for this problem

Problem 7: Convexity for Logistic Classifiers

Consider a classification problem where we have training data D = {(xi, yi)}, 1 . . . , i, . . . , N where xi are
real-valued d-dimensional vectors and yi ∈ {0, 1} are binary class labels. We will assume for convenience
that the first component of x always takes value 1, allowing us to have an intercept (or bias) term in our
model. Let f(x; θ) be a logistic regression model, where θ is a d-dimensional parameter vector (set of
weights), and our predictive model is

f(x; θ) =
1

1 + exp(−θTx)
.

where f(x; θ) is our estimate of p(y = 1|x).
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Let the objective function (that we want to minimize) be the cross-entropy loss (also known as the
log-loss), defined as

CE(θ) = − 1

N

N∑
i=1

yi log f(xi; θ) + (1− yi) log
(
1− f(xi; θ)

)
.

1. Derive the equation for the gradient for θ for this optimization problem

2. Prove that CE(θ) has a single global minimum and no local minima by proving that it is a convex
function of θ.

3. Consider a second-order (Newton) method for optimization of the cross-entropy loss with a logistic
model. Let Hθ be the Hessian matrix, defined as the d×d of partial second derivatives of the objective
function evaluated at the current parameter values θ(t). Each second-order iteration is defined as

θ(t+1) = θ(t) − H−1
θ ∇θ t = 1, 2, . . .

where ∇θ is the gradient of the cross-entropy loss evaluated at the current parameter values θ(t).

• Derive an expression for the i, j th element, hi,j , of the Hessian matrix Hθ for this problem,
1 ≤ i, j,≤ d.

• Define the time complexity of doing one such second order update and write a sentence or two
comparing the computational efficiency of this second-order Newton method with first-order
gradient descent.

4. Prove from first principles that the CE(θ) function above, corresponds to a negative conditional log-
likelihood L(θ) = p(Dy|Dx, θ) for an IID dataset D = {(xi, yi)}. Here the model f(xi; θ) can be
any model where f(xi; θ) is bounded between 0 and 1, e.g., a neural network with logistic function at
the output.


