
Note Set 7: Mixture Models and the EM Algorithm

Padhraic Smyth,
Department of Computer Science
University of California, Irvine

March 2023

1 Finite Mixture Models

Say we have a data set D = {x1, . . . , xN} where xi is a d-dimensional vector measurement. A flexible
model for p(xi) is a finite mixture model with K components:

p(xi|Θ) =
K∑
k=1

αk pk(xi|zik = 1, θk) (1)

where:

• The sum over k above is in effect just an application of the law of total probability where we are
summing out over the K possible values of the random variable zi (but with some extra notation, e.g.,
using binary indicator variables zik for convenience).

• zi = (zi1, . . . , ziK) is a vector of K binary indicator variables that are mutually exclusive and ex-
haustive (i.e., one and only one of the zik’s is equal to 1, and the others are 0). zi plays the role of
an indicator random variable representing the identity (from 1 to K) of the mixture component that
generated xi. In unsupervised learning we observe the x’s and not the z’s: the zi’s are considered to
be hidden or latent.

• The pk(x|zik = 1, θk) are mixture components, 1 ≤ k ≤ K. Each is a density or distribution
defined over p(xi), with parameters θk. For example, each of the components could be a Gaussian
multivariate density function, each with its own mean vector µ

k
and covariance vector Σk. In general

the components can be any distribution or density function defined on x, and the components need
not all have the same functional form.

• When we condition on zik = 1 in each of the components in the sum above we are evaluating the
component density at xi assuming that it was generated by component k. Note that an implicit as-
sumption in finite mixture models, in the generative sense, is that each data point xi was generated by
just one of the K components.

1

Mixture Models and the EM Algorithm: CS 274A, Probabilistic Learning 2

• If we wanted to simulate or generate data from the model it is natural to think of doing this in two
simple sampling steps, per datapoint xi:

1. Sample a component membership: zi ∼ p(z) = (α1, . . . , αK), and (2) xi ∼ pk(xi|zik = 1, θk).

2. Sample an xi value, given the component membership: xi ∼ pk(xi|zik = 1, θk).

(and then repeating this N times if we want to generate N IID samples).

• The αk = p(z = k) = p(zik = 1) are the mixture weights, representing the probability that a ran-
domly selected xi was generated by component k, where

∑K
k=1 αk = 1. Note that p(z = k) =

p(zik = 1) because p(zik = 1) represents the marginal probability that a randomly selected x was
generated by component k, i.e., p(zik) is not conditioned on knowing xi and has no specific informa-
tion about datapoint i to condition on.

The complete set of parameters for a mixture model with K components is

Θ = {α1, . . . , αK , θ1, . . . , θK}

with
∑K

k=1 αk = 1, αk ≥ 0.

Mixture models are generally useful in a few different contexts:

• One general application is in density estimation: they allow us to build complex models out of simple
parts. For example, a mixture of K multivariate Gaussians may have up to K modes, allowing us to
model multimodal densities.

• A second motivation for using mixture models is where there is an underlying true categorical vari-
able z, but we cannot directly measure it. A well-known example in ecology involves pulling fish
from a lake and measuring their weight xi, where there are known to be K groups of fish in the lake.
Each group k = 1, . . . ,K corresponds to a particular year of birth of the fish (or spawning season),
i.e., 1/2/3/. . . /K years ago. Buy these years of birth cannot be observed directly, only the weight xi
of each fish. We model the overall marginal weight distribution as a mixture over K groups (where
generally the older the fish is the larger the weight). In this situation the zi’s correspond to some actual
real-world phenomenon that could in theory be measured (e.g., if we followed each fish from birth)
but that wasn’t.

• A third motivation, is clustering. This is similar to context (2) above, but where we hypothesize
(rather than know for sure) that their might be K underlying groups in the data, each characterized by
different parameters, e.g., K sets of customers which we wish to infer from purchasing data xi. This is
often referred to as model-based clustering: there is not necessarily any true underlying interpretation
to the z’s or components, so this tends to be more exploratory in nature than in the second case.

Mixture Models and the EM Algorithm: CS 274A, Probabilistic Learning 3

2 Gaussian Mixture Models

For xi ∈ Rd we can define a Gaussian mixture model by making each of the K components a Gaussian
density with parameters µ

k
and Σk. Each component is a multivariate Gaussian density

pk(xi|θk) =
1

(2π)d/2|Σk|1/2
e−

1
2
(xi−µk)

tΣ−1
k (xi−µk)

with its own parameters θk = {µk,Σk}.

3 Learning Mixture Models from Data

To fit a mixture model to data we can use maximum likelihood (we can also be Bayesian if we wish, but its
simpler to start with maximum likelihood). Assuming for simplicity that the data points xi are conditionally
independent given the model and its parameters Θ, we have

l(Θ) = P (D|Θ) =
N∑
i=1

log

(K∑
k=1

αk pk(xi|zik = 1, θk)

)
where αk = p(zik = 1) is the marginal (unconditional) probability that a randomly selected x was generated
by component k. If we take partial derivatives of this log-likelihood and set them to 0 we get a set of coupled
non-linear equations. For example, if the component parameters θk were known and we were just learning
the αk’s, we have

∂l(Θ)

∂αj
=

N∑
i=1

pj(xi|zij = 1, θj)∑K
k=1 pj(xi|zij = 1, θk)αk)

, 1 ≤ j ≤ K.

Setting these to 0, we get K non-linear equations (and since the α’s sum to 1 there we would also need a
Lagrangian term here to enforce this constraint). We could try to solve these equations directly, for example
by using iterative local gradient ascent. Gradient-based methods are certainly a valid approach for learning
the parameters of mixture models, but comes with the cost of having to set learning rates, etc.

A widely-used alternative in this context for maximizing log-likelihood is the Expectation-Maximization
(EM) algorithm. The EM algorithm is an iterative algorithm for doing “local ascent” of the likelihood (or
log-likelihood) function. It is usually easy to implement, it enforces parameter constraints automatically,
and it does not require the specification of a step-size (in some sense the step-size is implicit at each it-
eration of the algorithm). Below we discuss the EM algorithm for mixture models, focusing primarily on
Gaussian mixtures. It is important to note however that EM is a much more general procedure and is broadly
applicable to maximizing the likelihood in any problems where there is missing data (for mixture models
the missing data are the zi indicators for component membership for each data point xi).

Mixture Models and the EM Algorithm: CS 274A, Probabilistic Learning 4

4 The EM Algorithm for Mixture Models

4.1 Outline of the EM Algorithm for Mixture Models

The EM algorithm is an iterative algorithm that starts from some initial estimate of the parameter set Θ or
the membership weights (e.g., random initialization) and then proceed to iteratively update the parameter
estimates until convergence is detected. Each iteration consists of an E-step and an M-step.

In the E-step the algorithm computes the expected log-likelihood with respect to the probability of the
zi’s conditioned on the xi’s and the current values of the parameters. For mixture models the expected value
E[zik] = p(zik = 1|xi,Θ) (since the zik’s are binary). This is computed for all N data points for each of
the K components, using Bayes rule (more details below).

In the M-step the algorithm computes new parameter values that maximize the expected log-likelihood,
given the N ×K matrix of p(zik = 1|xi, θk) values produced by the E-Step.

Both the E-step and M-Step are usually straightforward to compute for mixture models, typically scaling
linearly in both N and K. The fact that the E and M steps can be computed and implemented in code in
a straightforward manner is an appealing property of the EM algorithm and is one of the reasons it is very
popular in practice for fitting mixture models.

4.2 The E-Step for Mixture Models

In the E-Step, given a current set of parameters Θ, we compute the “membership weight” of data point xi in
component k as

wik = p(zik = 1|xi,Θ) =
αk · pk(xi|zk, θk)∑K

m=1 αm · pm(xi|zm, θm)
, 1 ≤ k ≤ K, 1 ≤ i ≤ N.

This follows from a direct application of Bayes rule in the context of Equation 1. For Gaussian mixture
models the component density functions pk(xi| . . .) are Gaussian multivariate densities—if we were using
a mixture model with different components, the components would have different functional forms, but the
general equation above for computing mixture weights has the same general form.

These membership weights can be stored as an N ×K matrix where each row sums to 1 and contains
the membership weights for data vector xi.

The membership weights reflect our uncertainty, given xi and Θ, about which of the K components
generated vector xi. Note that we are assuming in our generative mixture model that each xi was generated
by a single component—so these probabilities reflect our uncertainty about which component xi came from,
not any “mixing” in the generative process (there is a different type of mixture model that allows for such
mixing, referred to as “admixture models”, which have been adapted in machine learning as topic models,
used for modeling documents as combinations of components consisting of multinomial distributions over
a vocabulary of words).

Mixture Models and the EM Algorithm: CS 274A, Probabilistic Learning 5

It can be shown theoretically that each iteration of the EM algorithm always either (i) increases the
log-likelihood, or (ii) doesn’t change its value. In the second case, the algorithm has reached a fixed point,
specifically a maximum of the log-likelihood (possibly local rather than global). Otherwise it always in-
creases the log-likelihood at each step. In particular, it can never decrease the log-likelihood (which is a
very useful feature of the method, compared to say gradient ascent, which could decrease the log-likelihood
if the step-size is too large).

4.3 The M-Step for Gaussian Mixture Models

Given the membership weights from the E-step we can use the membership weights and the data to cal-
culate new parameter values. Let Nk =

∑N
i=1wik, i.e., the sum of the membership weights for the kth

component—this is the effective number of data points assigned to component k.

Our new estimate of the mixture weights is

αnew
k =

Nk

N
, 1 ≤ k ≤ K.

Our new estimates of the component means are

µnew
k =

1

Nk

N∑
i=1

wik · xi 1 ≤ k ≤ K.

The updated mean is calculated in a manner similar to how we could compute a standard empirical average,
except that the ith data vector xi has a fractional weight wik. Note that this is a vector equation since µnew

k

and xi are both d-dimensional vectors.

Finally, the new estimates of the component covariances are

Σnew
k =

1

Nk

N∑
i=1

wik · (xi − µnew
k)(xi − µnew

k)t 1 ≤ k ≤ K.

Again we get an equation that is similar in form to how we would normally compute an empirical covariance
matrix, except that the contribution of each data point is weighted by wik. Note that this is a matrix equation
of dimensionality d× d on each side.

After we have computed all of the new parameters, the M-step is complete and we can now go back
and recompute the membership weights in the E-step, then recompute the parameters again in the E-step,
and continue updating the parameters in this manner. Each pair of E and M steps is considered to be one
iteration.

5 Initialization and Convergence Issues for EM

The EM algorithm can be started by either initializing the algorithm with a set of initial parameters and then
conducting an E-step, or by starting with a set of initial weights and then doing a first M-step. The initial

Mixture Models and the EM Algorithm: CS 274A, Probabilistic Learning 6

parameters or weights can be chosen randomly (e.g. select K random data points as initial means and select
the covariance matrix of the whole data set for each of the initial K covariance matrices) or could be chosen
via some heuristic method (such as by using the k-means algorithm to cluster the data first and then defining
weights based on k-means memberships).

The algorithm can be halted by detecting convergence (or at least trying to detect convergence given that
there is no 100 percent guaranteed robust way to do this). One practical convergence detection method is to
halt when the average of the membership weights (across all N ×K weights) is changing by less than some
amount (e.g., by 10−6) from one iteration to the next. Another option would be to halt when the value of the
log-likelihood appears not to be changing in a significant manner from one iteration to the next (but defining
“significant” can be tricky). Note that the log-likelihood (under the IID assumption) is defined as follows:

log l(Θ) =

N∑
i=1

log p(xi|Θ) =

N∑
i=1

(
log

K∑
k=1

αkpk(xi|zk, θk)
)

where pk(xi|zk, θk) is the Gaussian density for the kth mixture component.

6 The K-means Algorithm

The K-means algorithm is another algorithm for clustering real-valued data. It is based on minimizing the
sum of Euclidean distances between each point and its assigned cluster, rather than on a probabilistic model.
The algorithm takes as input an N × d data matrix (with real-valued entries), a value for K, and operates as
follows:

1. Initialize by randomly selecting K mean vectors, e.g., pick K data vectors (rows) randomly from the
input data matrix

2. Assign each of the N data vectors to the cluster corresponding to which of the K clusters means it is
closest to, where distance is measured as Euclidean distance in the d-dimensional input space.

3. For each cluster k, compute its new mean as the mean (average) of all the data vectors that were
assigned to this cluster in Step 2.

4. Check for convergence. An easy way to determine convergence is to execute Step 2 and check if any
of the data points change cluster assignments relative to their assignment on the previous iteration. If
not, exit; if 1 or more points change cluster assignment, continue to Step 3.

The K-means algorithm can be viewed as a greedy heuristic search algorithm for finding the cluster
assignments that minimize the total sum of squares, namely the sum of the squared Euclidean distances
from each of the N data points to a cluster center. Finding the optimal solution is NP-hard, so K-means
may converge to local minima. For this reason it can be useful to start the algorithm with multiple random
starting conditions, and select the solution with the minimum sum of squares score over different runs.

Mixture Models and the EM Algorithm: CS 274A, Probabilistic Learning 7

The K-means algorithm can also be thought of as a simpler non-probabilistic alternative to Gaussian
mixtures. K-means has no explicit notion of cluster covariances. One can “reduce” Gaussian mixture
clustering to K-means if one were to (a) fix a priori all the covariances for the K components to be the
identity matrix (and not update them during the M-step), and (b) during the E-step, for each data vector,
assign a membership probability of 1 for the component it is most likely to belong to, and 0 for all the other
memberships (in effect make a “hard decision” on component membership at each iteration).

Additional Reading

The Kevin Murphy text (Book1, 2022) provides additional (optional) reading material in Chapter 3.5 on
Mixture models, Chapter 8.7 on bound optimization and the EM Algorithm, and Chapter 21.3 on the K-
means algorithm and Chapter 21.4 on clustering using mixture models.

	Finite Mixture Models
	Gaussian Mixture Models
	Learning Mixture Models from Data
	The EM Algorithm for Mixture Models
	Outline of the EM Algorithm for Mixture Models
	The E-Step for Mixture Models
	The M-Step for Gaussian Mixture Models

	Initialization and Convergence Issues for EM
	The K-means Algorithm

