
ftp://psyche.mit.edu/pub/jordan/uai.psWhy the logistic function? A tutorial discussionon probabilities and neural networksMichael I. JordanMassachusetts Institute of TechnologyComputational Cognitive ScienceTechnical Report 9503August 13, 1995This paper presents a tutorial introduction to the logistic function as astatistical object. Beyond the discussion of the whys and wherefores of thelogistic function, I also hope to illuminate the general distinction between the\generative/causal/class-conditional" and the \discriminative/diagnostic/predictive" directions for the modeling of data. Crudely put, the belief net-work community has tended to focus on the former while the neural networkcommunity has tended to focus on the latter (although there are numerouspapers in both communities going against their respective grains). It is theauthor's view that these two directions are two sides of the same coin, acorollary of which is that the two network-based communities are in closercontact than one might otherwise think. To illustrate some of the issues in-volved, I discuss the simplest nonlinear neural network|a logistic functionof a linear combination of the input variables (also known in statistics as alogistic regression).The logistic function has had a lengthy history in classical statistics andin neural networks. In statistics it plays a leading role in the methodologyof logistic regression, where it makes an important contribution to the lit-erature on classi�cation. The logistic function has also appeared in manyguises in neural network research. In early work, in which continuous timeformalisms tended to dominate, it was justi�ed via its being the solutionto a particular di�erential equation. In later work, with the emphasis ondiscrete time, it was generally used more heuristically as one of the manypossible smooth, monotonic \squashing" functions that map real values intoa bounded interval. More recently, however, with the increasing focus onlearning, the probabilistic properties of the logistic function have begun to1
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A BFigure 1: Two possible belief networks for solving a binary classi�cationproblem. In the remainder of the paper, we refer to network A as beingoriented in the \generative" direction, and network B as oriented in the\diagnostic" direction.be emphasized. This emphasis has led to better learning methods and hashelped to strengthen the links between neural networks and statistics.Binary classi�cationWe consider a simple classi�cation problem in which data are labeled by arandom variable !, which takes its values from a discrete set, ! 2 f!0; !1g.The measured data are in the form of a d-dimensional random vector,x = [x1; x2; : : : ; xd]T . A belief network model for this problem is shownin Figure 1(A), where we show a binary node ! and a directed link from! to the measurement vector x. In this network model, we must specifymarginal probabilities P (!) and conditional probabilities P (xj!).Given a particular vector x, we wish to assign it to one of the twoclasses. To this end we use Bayes' rule and calculate the relevant posterior2



probability: P (!0jx) = P (xj!0)P (!0)P (x) (1)Continuing the derivation, we expand the denominator and (with some fore-sight) introduce an exponential:P (!0jx) = P (xj!0)P (!0)P (xj!0)P (!0) + P (xj!1)P (!1)= 11 + expn� log hP (xj!0)P (xj!1)i� log hP (!0)P (!1)io (2)We see that the posterior probability can be written in the form of thelogistic function: y = 11+ e�� ; (3)where � is a function of the likelihood ratio P (xj!0)=P (xj!1) and the priorratio P (!0)=P (!1). Of course we haven't necessarily achieved anythingin general with this bit of mathematical maneuvering, but we may haveachieved something in particular cases if the likelihood ratio turns out to bea simple function of x.In belief network A in Figure 1, we must choose a particular form forthe conditional probabilities P (xj!) (the class-conditional densities). Letus assume that they are multivariate Gaussians with identical covariancematrices �: P (xj!i) = 1(2�) d2 j�j 12 e� 12 (x��i)T��1(x��i) (4)where �i is the mean vector for class i.Expanding the exponent of the Gaussians, and substituting into theformula for the posterior, we obtain:P (!0jx) = 11 + e�(wTx+b) ; (5)where w = ��1(�0 � �1) (6)and b = 12(�1 + �0)T��1(�1 � �0) + log P (!0)P (!1) : (7)3
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µ0µ1Figure 2: A binary classi�cation problem. The class-conditional densitiesare Gaussians with unit variance. The posterior probability is the logisticfunction y = 1=(1 + exp(�2x)).This function is a ramp varying from zero to one along the direction from�1 to �0. The geometry is summarized in 1-D in Figure 2.Now let us now consider an alternative belief network representation ofour problem. In belief network B in Figure 1, the conditional probabilityP (!jx) must be speci�ed. We already know what form this conditional dis-tribution should take if we wish to be consistent with our earlier assumptionthat the class-conditional densities are Gaussian: The conditional should bea logistic-linear function of x. Our belief network requires n + 1 numberson the link from x to ! to parameterize the linear part of the function (cf.Equation 5).To complete the quantitative speci�cation of network B, we must alsospecify the marginal P (x). In using the network for classi�cation, however,we will be providing it with x values as evidence, thus we will not botherwith modeling P (x).11P (x) is a mixture density and if we did wish to model it we would use the EM algo-4



What are the advantages and disadvantages of the two networks? Clearlybelief network A is more \modular" than the second. The class-conditionaldensities are likely to be local, characteristic functions of the objects be-ing classi�ed, invariant to the nature and number of the other classes (cf.Pearl). (Note in particular that network A separates out P (!) from theconditional; in network B P (!) is tangled up with the conditional.) Indeed,we can more easily envision Nature generating objects by �rst deciding whatkind of object to generate and then generating it from a recipe. Going theother direction seems less Natural. Are there any advantages to the x! !direction?Suppose that we investigate class-conditional densities other than Gaus-sians. For example, P (xj!) might be a gamma density, or, if we considerdiscrete measurements, binomial or Poisson. We can redo our calculationof the posterior probability for each of these cases, or alternatively, we cannote that all of these densities (and many others besides, including the neg-ative binomial, the hypergeometric and the exponential), are special casesof a general family of distributions known as the exponential family. Theexponential family densities are all of the following form:P (xj�; �) = expf(�Tx� b(�))=a(�) + c(x; �)g; (8)where � and � are the parameters (� is known as the location parameter,and � is the dispersion parameter).If we now assume that each of our class-conditional densities are mem-bers of the (same) exponential family distribution, with equal dispersionparameters, and substitute this general form into Eq. 2, we �nd that weonce again obtain a linear form for the discriminant �. Thus in all casesthe posterior probability is a logistic function of a linear combination of thecomponents of x.This shows that there is an advantage to specifying our classi�cationproblem in the form of belief network B. This network representation isinvariant to a family of classi�cation problems; those in which the class-conditional densities are in the exponential family (with equal dispersionparameters). In other words, we don't require a particular distribution tobe speci�ed when we use network B. Belief network A, on the other hand,rithm. This might be useful if there were missing components in the x vector. However,modeling the mixture density requires making speci�c assumptions about the form of themixture components and, as will become clear, avoiding having to make such speci�c as-sumptions is one of the advantages of modeling in the diagnostic direction. Missing inputdata, therefore, tempers the advantages associated with diagnostic modeling.5



does require such a speci�cation. If the speci�cation isn't a good match tothe data set, performance will su�er. In statistical language, network B ismore robust than network A.Another advantage of network B is that its parameterization is simplerthan that of network A. In the Gaussian case, network A requires knowl-edge ofO(n2) parameters (the covariance matrix and mean vectors), whereasnetwork B requires only O(n) numbers (the coe�cients of the linear combi-nation). This is often the case for classi�cation problems|generative mod-els typically require many more parameters than are required of diagnosticmodels.Lest the reader begin to feel the pendulum swinging too rapidly in theother direction, let us state our view: neither direction is inherently bet-ter, rather the generative and diagnostic directions are two sides of thesame coin and have complementary advantages and disadvantages. From apurely probabilistic point of view the two networks in Figure 1 are equivalentparameterizations of the joint density. They are not equivalent, however,from a statistical point of view, and in particular situations statistical con-siderations, in conjunction with considerations such as modularity, stability,prototypicality, causality, etc., may lead one to prefer one over the other.The major statistical advantage of network A is that if the model speci�-cation is nearly correct, then estimation in that network structure will bemore e�cient than estimation in B (will require fewer data points to obtaina given level of statistical accuracy). The statistical advantage of networkB, on the other hand, is that it is more robust to uncertainty about the datageneration process. For certain simple models quantitative measures of ef-�ciency and robustness are available (see, e.g., McLachlan, 1992); however,for more complex models the theory is less developed. It may be that thetradeo�s are di�erent for di�erent kinds of nonlinear models. This is a topicthat needs increased research attention.Each diagnostic architecture will have an accompanying family of gen-erative architectures and vice versa. It is important to have some appre-ciation of the family that is being assumed on the other side of the coinwhile working with a particular architecture. For example, to understandthe robustness that one might expect of a particular diagnostic architecture,it is important to know what generative architectures will yield the diag-nostic law being proposed. When studying a generative architecture, it isimportant to understand what form the corresponding diagnostic law willtake; this can help the researcher to focus on the important parts of thegenerative law (e.g., the generative parameters to which the diagnostic law6



is the most sensitive).It may also be worth considering architectures that explicitly parameter-ize both a generative and a diagnostic law rather than obtaining one fromthe other. For a recent proposal of this kind see Hinton, Dayan, Frey, andNeal (1995).Parameter estimationWe now press on and consider the problem of parameter estimation. Let usassume that we have collected a set of data in the form of fx; !g pairs, andassume that we wish to adjust the parameters in the two networks in Fig-ure 1. For simplicity we will assume uniform priors on all of the parametersand focus on maximizing the likelihood. We also ignore the possibility ofassociating di�erent costs with the di�erent classi�cation decisions.We assume that we have a training set X = fx(p); !(p)gNp=1 and that thegoal is to maximize the log likelihoodlogP (X j�) = NXp=1 logP (x(p); !(p)) (9)with respect to the parameters �.For network A, we need not trouble ourselves to do the derivation|it isclear how to set the parameters from the data. We split the data set intothose pairs for which ! = !0 and those pairs for which ! = !1. We thenestimate the parameters of P (xj!) separately in the two cases. For example,if P (xj!) is a Gaussian model for the two classes, we estimate a mean vec-tor and covariance matrix separately for each of the classes. The maximumlikelihood estimate for the parameters in our model are the correspondingsample mean vectors and a pooled sample covariance matrix that combinesthe sample covariance matrices for the two classes. These estimates maxi-mize the joint likelihood in Equation 9. We also must estimate P (!), butthis is clearly achieved by calculating the proportion of samples in the twoclasses.Estimation for network A will always reduce to separate estimation foreach of the two classes. Since we have speci�ed the class-conditional densi-ties, we simply use standard algorithms for estimation of this density.Estimation for network B requires a bit more work. We factor the loglikelihood into an unconditional term P (x) that we will not bother withand a conditional term P (!jx) that will be our focus. Given that ! is a7



binary random variable, this density is a Bernoulli density. To simplify thenotation, let us de�ne an indicator random variable zp, which is one when!(p) = !0, and zero otherwise. Let us also de�neyp � P (!(p) = !0jx(p));which, as we have seen earlier, is a logistic-linear function of x(p). Using Lto denote the conditional density of the data set, we write:L = NYp=1 yzpp (1� yp)(1�zp): (10)This then yields the following log likelihood:logL = NXp=1[zp log yp + (1� zp) log(1� yp)]; (11)which is the function that we wish to maximize.The negative of the log-likelihood in Equation 11 is a cross entropy be-tween the indicator z variables and the posterior probabilities y. Our deriva-tion shows that the cross entropy is a natural cost function for the binaryclassi�cation problem.We now appeal to standard optimization methods to minimize the crossentropy. Simple gradient descent yields the following update rule for w:�w = � NXp=1(zp � yp)x(p); (12)where � is the step size. Alternatively, taking second derivatives of logLyields the Newton-Raphson update:�w = (XTVrX)�1XTVrz�; (13)where r is the iteration number, X is the matrix whose rows are the vectorsx(p), Vr is a diagonal matrix whose elements are yp(1�yp), and z� is a vectorwhose elements are (zp�yp)=fyp(1�yp)g. This update rule is referred to asIteratively Reweighted Least Squares (IRLS).2 Newton-Raphson takes this2The name comes from noting that Equation 13 is in the form of a set of normalequations for a weighted least squares regression of z� on X. The weights in this regression(the matrix Vr) change at each iteration of the least squares equations; thus the regressionis \iteratively reweighted." 8



form not only for logistic regression problems, but for a family of statisticalmodels known as Generalized Linear Models (McCullagh & Nelder, 1984).3Note that both of the �tting algorithms for Network B are based on the\errors" (zp�yp). This is generally the case|error-based updates generallyarise for �tting algorithms that directly adjust the parameters of diagnosticmodels.Nonlinear discriminant functionsThe derivation that we have presented shows how the logistic function arisesas a natural representation for the posterior probability in a binary classi-�cation problem. The particular derivation also yielded a linear form forthe discriminant surface �. In generalizing to architectures in which thediscriminant surface is nonlinear, there are two possibilities. We can re-tain the logistic function, retain the cross entropy cost function based onthe Bernoulli distribution, and focus on nonlinear representations for thediscriminant surface within the \shell" provided by the logistic regressionmodel. Or we can drop the logistic function altogether and focus on methodsthat alter the discriminant surface directly to minimize some cost functionrelated to classi�cation error. The tendency within the neural network �eldhas been to retain the logistic function and the associated cross entropyfunction. This approach also characterizes related methodologies such as\generalized additive models" (Hastie & Tibshirani, 1990), where the binaryresponse is modeled as the logistic function of the additive combination ofnonlinear functions of the coordinates of x.Methods that retain the logistic function have one natural advantagein the context of the current essay|they provide a probability. We cantherefore easily imagine utilizing a simple neural network (or generalizedadditive model, or some other \
exible" approximator within a logistic shell)to replace the probabilistic tables or linear regressions often used in the beliefnetwork literature. Using a linear network with a logistic function|the focusof this essay|is closely related to the use of the \noisy-OR" approximation(cf. Neal, 1992). But a much wider variety of nonlinear approximations for �are available and can provide a more 
exible approximation to a probability3One important instance of a Generalized Linear Model is the generalization of logisticregression to m > 2 classes. The probabilistic model for the multi-class problem is themultinomial model, and the logistic function is replaced with a normalized exponentialfunction known in the neural network literature as the \softmax" function. See Jordan andJacobs (1994) and Rumelhart, Durbin, Golden and Chauvin (1995) for further discussion.9



table.One �nal issue bears commenting upon. Classical neural networks uti-lize logistic functions not only for the output units of the network but alsofor the \hidden units" of the network. What does our analysis have to sayabout the cascades of logistic functions that arise in layered networks? Infact, within the framework of function approximation theory (which is ofteninvoked to justify neural network architectures; see, e.g., Hornik, Stinch-combe, and White, 1989), there is no compelling reason to use the logisticfunction as compared to any other smooth bounded monotonic nonlinearity(the asymptotic approximation error will scale similarly for essentially anysuch nonlinearity). It is also possible, however|and increasingly a topicof research interest|to take a more thoroughgoing probabilistic stance andtreat layered neural networks as \sigmoid belief networks," in which thelogistic functions are viewed as probabilities associated with latent binaryrandom variables. Such a network is a neural network with belief networksemantics. For recent work in this direction, see Hinton et al. (1995) andSaul, Jaakkola, and Jordan (1995).A large number of more advanced topics take o� from where we are end-ing, including the topic of \discriminative training" (a hybrid methodologythat uses a generative model, but alters the training procedure of the gen-erative model so as to obtain better discriminative behavior), the use of theEM algorithm with binary latent variables, connections to chain graphs andCG distributions, and connections to information theoretic methods. Thedevelopment of these topics and others are left as exercises for the reader!AcknowledgmentsThanks go to Wray Buntine, Peter Dayan, and David Heckerman for theirhelpful comments on the manuscript.BibliographyMost of the material discussed here is available in modern statistics books.A good advanced book on classi�cation is:McLachlan, G. J. (1992). Discriminant Analysis and Statistical PatternRecognition. New York: John Wiley.See, for example, pages 276-279 of McLachlan for discussion of the e�ciencyand robustness of logistic regression vs. linear discriminant analysis.10



Classi�cation ideas have also been developed somewhat separately in thepattern recognition literature. The standard reference is:Duda, R. O. & Hart, P. E. (1973). Pattern Classi�cation and Scene Analysis.New York: John Wiley.and it is still well worth reading. The two directions (generative and diag-nostic) are quite explicit in Duda and Hart, and they have much to say aboutthe relationships. Interestingly, however, the logistic function is nowhere tobe found. It is a major missing component in an otherwise comprehensivetextbook. Duda and Hart do present a theorem that e�ectively shows thatthe terms in the Taylor series expansion for the posterior probability can beestimated by a learning algorithm, but they fail to notice that the Taylorseries in question is the Taylor series of the logistic function!Additional references from the text:Hastie, T. & Tibshirani, R. J. (1990). Generalized Additive Models. London:Chapman and Hall.Hinton, G. E., Dayan, P., Frey, B. J., & Neal, R. M. (1995). The wake-sleepalgorithm for unsupervised neural networks. Science.Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforwardnetworks are universal approximators. Neural Networks, 2, 359-366.Jordan, M. I., & Jacobs, R. A. (1994). Hierarchical mixtures of experts andthe EM algorithm. Neural Computation, 6, 181-214.Neal, R. M. (1992). Connectionist learning of belief networks. Arti�cialIntelligence, 56, 71-113.Rumelhart, D. E., Durbin, R., Golden, R., & Chauvin, Y. (1995). Backprop-agation: The basic theory. In Chauvin, Y., & Rumelhart, D. E. (Eds.),Backpropagation: Theory, Architectures, and Applications. Hillsdale,NJ: Lawrence Erlbaum.Saul, L. K., Jaakkola, T., & Jordan, M. I. (1995). Mean �eld learningtheory for sigmoid belief networks. Computational Cognitive ScienceTech. Rep. 9501, MIT, Cambridge, MA.[ftp://psyche.mit.edu/pub/lksaul/belief.ps.Z]11



AppendixThe exponential family of distributions has a number of useful properties.In this section, we brie
y examine one of these properties in order to providesome additional insight into the role of the logistic function in classi�cationproblems.Recall the form of the Bernoulli distribution for a binary random variablex: P (x) = �x(1� �)1�x;with parameter � (the probability of \success").Recall also the general form of the exponential family:P (xj�; �) = expf(�x� b(�))=a(�) + c(x; �)g;where we have specialized to a scalar random variable x.The Bernoulli distribution can be rewritten in the exponential familyform as follows:P (x) = exp��log� �1� ���x+ log(1� �)� :We see that � and � are alternative parameterizations of the Bernoulli distri-bution. The relationship between these parameterizations can be extractedas follows: � = log� �1� �� ;which is the log odds of \success." Inverting the log odds, we obtain:� = 11 + e�� ;which is the logistic function.In the terminology of Generalized Linear Models (McCullagh & Nelder,1984), we have shown that the logistic function is the (inverse) \canonicallink" for the Bernoulli distribution. Conceptually, this makes the decision ofusing the logistic function in our classi�cation model somewhat subordinateto our decision to use the Bernoulli distribution. Assuming that we havedecided that the Bernoulli distribution is appropriate for our problem (asensible assumption for binary classi�cation), we derive the logistic functionas the inverse canonical link, showing that the logistic function is a sensiblechoice for the nonlinear function linking the predictor (�) to the mean (�)12



(see McCullagh & Nelder, 1984, for discussion of the properties of canonicallinks).This approach can be pursued to provide link functions for the othermembers of the exponential family. One writes the distribution under con-sideration in the exponential family form and reads o� the canonical link.This approach provides natural nonlinear models for many di�erent typesof data formats, including counts, rates, time intervals, etc.
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