Bias-Variance Tradeoff and Model selection

Aarti Singh and Eric Xing

Machine Learning 10-701/15-781
Oct 1, 2012
True vs. Empirical Risk

True Risk: Target performance measure

- Classification – Probability of misclassification: \(P(f(X) \neq Y) \)
- Regression – Mean Squared Error: \(\mathbb{E}[(f(X) - Y)^2] \)

Performance on a random test point \((X,Y)\)

Empirical Risk: Performance on training data

- Classification – Proportion of misclassified examples: \(\frac{1}{n} \sum_{i=1}^{n} 1_{f(X_i) \neq Y_i} \)
- Regression – Average Squared Error: \(\frac{1}{n} \sum_{i=1}^{n} (f(X_i) - Y_i)^2 \)
Is the following predictor a good one?

\[f(x) = \begin{cases}
Y_i, & x = X_i \text{ for } i = 1, \ldots, n \\
\text{any value,} & \text{otherwise}
\end{cases} \]

What is its empirical risk? (performance on training data)
zero !

What about true risk?
\(> \text{zero} \)

Will predict very poorly on new random test point:
Large generalization error !
Overfitting

If we allow very complicated predictors, we could overfit the training data.

Examples: Classification (0-NN classifier)

Football player?

- No
- Yes
Overfitting

If we allow very complicated predictors, we could overfit the training data.

Examples: Regression (Polynomial of order k – degree up to $k-1$)
Effect of Model Complexity

If we allow very complicated predictors, we could overfit the training data.

Prediction Error

- empirical risk
- true risk

Complexity

- underfitting
- overfitting
- Best Model

Empirical risk is no longer a good indicator of true risk
Behavior of True Risk

Regression

\[Y = f^*(X) + \epsilon \quad \epsilon \sim \mathcal{N}(0, \sigma^2) \]

True Risk

\[R(f) = \mathbb{E}[(f(X) - Y)^2] = \mathbb{E}[(f(X) - \mathbb{E}[f(X)])^2] + \mathbb{E}[(\mathbb{E}[f(X)] - f^*(X))^2] + \sigma^2 \]

Bayes error

\[R(f^*) \]

Graph:
- True risk (Mean Square Error)
- Variance
- Bias
- Complexity of \(F \)
Bias – Variance Tradeoff

Regression: \(Y = f^*(X) + \epsilon \quad \epsilon \sim \mathcal{N}(0, \sigma^2) \)

\[
R(f^*) = \mathbb{E}_{XY}[(f^*(X) - Y)^2] = \mathbb{E}[\epsilon^2] = \sigma^2
\]

\[
R(\hat{f}_n) = \mathbb{E}_{X,Y,D_n}[(\hat{f}_n(X) - Y)^2] = \mathbb{E}_{X,Y,D_n}[(\hat{f}_n(X) - \mathbb{E}_{D_n}[\hat{f}_n(X)])^2] + \mathbb{E}_{X,Y}[(\mathbb{E}_{D_n}[\hat{f}_n(X)] - f^*(X))^2] + \sigma^2
\]

Excess Risk = \(R(\hat{f}_n) - R(f^*) = \text{variance} + \text{bias}^2 \)

Notice: Optimal predictor does not have zero error

\(D_n \) - training data of size \(n \)
Bias – Variance Tradeoff: Derivation

Regression: \(Y = f^*(X) + \epsilon \quad \epsilon \sim \mathcal{N}(0, \sigma^2) \)

\[
R(f^*) = \mathbb{E}_{XY}[(f^*(X) - Y)^2] = \mathbb{E}[\epsilon^2] = \sigma^2
\]

\[
R(\hat{f}_n) = \mathbb{E}_{X,Y,D_n}[(\hat{f}_n(X) - Y)^2]
\]

\[
= \mathbb{E}_{X,Y,D_n}[(\hat{f}_n(X) - \mathbb{E}_{D_n}[\hat{f}_n(X)] + \mathbb{E}_{D_n}[\hat{f}_n(X)] - Y)^2]
\]

\[
= \mathbb{E}_{X,Y,D_n}[(\hat{f}_n(X) - \mathbb{E}_{D_n}[\hat{f}_n(X)])^2 + (\mathbb{E}_{D_n}[\hat{f}_n(X)] - Y)^2
\]

\[
+ 2(\hat{f}_n(X) - \mathbb{E}_{D_n}[\hat{f}_n(X)])(\mathbb{E}_{D_n}[\hat{f}_n(X)] - Y)
\]

\[
= \mathbb{E}_{X,Y,D_n}[(\hat{f}_n(X) - \mathbb{E}_{D_n}[\hat{f}_n(X)])^2 + \mathbb{E}_{X,Y,D_n}[(\mathbb{E}_{D_n}[\hat{f}_n(X)] - Y)^2]
\]

\[
+ \mathbb{E}_{X,Y} [2(\mathbb{E}_{D_n}[\hat{f}_n(X)] - \mathbb{E}_{D_n}[\hat{f}_n(X)])(\mathbb{E}_{D_n}[\hat{f}_n(X)] - Y)]
\]

Notice: Optimal predictor does not have zero error

\(D_n \) - training data of size \(n \)
Bias – Variance Tradeoff: Derivation

Regression: $Y = f^*(X) + \epsilon \quad \epsilon \sim \mathcal{N}(0, \sigma^2)$

$R(f^*) = \mathbb{E}_{XY}[(f^*(X) - Y)^2] = \mathbb{E}[\epsilon^2] = \sigma^2$

$R(\hat{f}_n) = \mathbb{E}_{X,Y,D_n}[(\hat{f}_n(X) - Y)^2]$

$= \mathbb{E}_{X,Y,D_n}[(\hat{f}_n(X) - \mathbb{E}_{D_n}[\hat{f}_n(X)] + \mathbb{E}_{D_n}[\hat{f}_n(X)] - Y)^2]$

$= \mathbb{E}_{X,Y,D_n}[(\hat{f}_n(X) - \mathbb{E}_{D_n}[\hat{f}_n(X)])^2 + (\mathbb{E}_{D_n}[\hat{f}_n(X)] - Y)^2$

$+ 2(\hat{f}_n(X) - \mathbb{E}_{D_n}[\hat{f}_n(X)])(\mathbb{E}_{D_n}[\hat{f}_n(X)] - Y)]$

$= \mathbb{E}_{X,Y,D_n}[(\hat{f}_n(X) - \mathbb{E}_{D_n}[\hat{f}_n(X)])^2] + \mathbb{E}_{X,Y,D_n}[(\mathbb{E}_{D_n}[\hat{f}_n(X)] - Y)^2]$

Notice: Optimal predictor does not have zero error

D_n - training data of size n

variance - how much does the predictor vary about its mean for different training datasets
Bias – Variance Tradeoff: Derivation

Second term:

\[\mathbb{E}_{X,Y} \left[(\mathbb{E}_{D_n}[\hat{f}_n(X)] - Y)^2 \right] = \mathbb{E}_{X,Y} \left[(\mathbb{E}_{D_n}[\hat{f}_n(X)] - f^*(X) - \epsilon)^2 \right] \]

\[= \mathbb{E}_{X,Y} \left[(\mathbb{E}_{D_n}[\hat{f}_n(X)] - f^*(X))^2 + \epsilon^2 \right. \]

\[\left. - 2\epsilon (\mathbb{E}_{D_n}[\hat{f}_n(X)] - f^*(X)) \right] \]

\[= \mathbb{E}_{X,Y} \left[(\mathbb{E}_{D_n}[\hat{f}_n(X)] - f^*(X))^2 \right] + \mathbb{E}_{X,Y} [\epsilon^2] \]

\[- 2\mathbb{E}_{X,Y} \left[\epsilon (\mathbb{E}_{D_n}[\hat{f}_n(X)] - f^*(X)) \right] \]

0 since noise is independent and zero mean

\[= \mathbb{E}_{X,Y} \left[(\mathbb{E}_{D_n}[\hat{f}_n(X)] - f^*(X))^2 \right] + \mathbb{E}_{X,Y} [\epsilon^2] \]

bias^2 – how much does the mean of the predictor differ from the optimal predictor

noise variance
Bias – Variance Tradeoff

3 Independent training datasets

Large bias, Small variance – poor approximation but robust/stable

Small bias, Large variance – good approximation but unstable
Behavior of True Risk

Want \(\hat{f}_n \) to be as good as optimal predictor \(f^* \)

Excess Risk

\[
R(\hat{f}_n) - R(f^*) = \left(\inf_{f \in \mathcal{F}} R(f) - R(f^*) \right) + \left(\frac{R(\hat{f}_n) - \inf_{f \in \mathcal{F}} R(f)}{\text{estimation error}} \right)
\]

Due to randomness of training data

Due to restriction of model class

\[
\inf_{f \in \mathcal{F}} R(f)
\]

\(R(\hat{f}_n) \)

\(\mathcal{F} \)

\(R^* \)

Estimation error

Excess risk

Approx. error
Behavior of True Risk

\[
R(\hat{f}_n) - R(f^*) = \left(E[R(\hat{f}_n)] - \inf_{f \in \mathcal{F}} R(f) \right) + \left(\inf_{f \in \mathcal{F}} R(f) - R(f^*) \right)
\]

- estimation error
- approximation error

Graph showing the behavior of risk, estimation error, and approximation error with respect to the complexity of \(\mathcal{F} \).
Examples of Model Spaces

Model Spaces with increasing complexity:

• Nearest-Neighbor classifiers with varying neighborhood sizes $k = 1, 2, 3, ...$
 Small neighborhood \Rightarrow Higher complexity

• Decision Trees with depth k or with k leaves
 Higher depth/ More # leaves \Rightarrow Higher complexity

• Regression with polynomials of order $k = 0, 1, 2, ...$
 Higher degree \Rightarrow Higher complexity

• Kernel Regression with bandwidth h
 Small bandwidth \Rightarrow Higher complexity

How can we select the right complexity model?
Model Selection

Setup:
Model Classes $\{\mathcal{F}_\lambda\}_{\lambda \in \Lambda}$ of increasing complexity $\mathcal{F}_1 \prec \mathcal{F}_2 \prec \ldots$

$$\min_{\lambda} \min_{f \in \mathcal{F}_\lambda} R(f)$$

We can select the right complexity model in a data-driven/adaptive way:

- Holdout or Cross-validation
- Structural Risk Minimization
- Complexity Regularization
- \textit{Information Criteria} - AIC, BIC, Minimum Description Length (MDL)
Hold-out method

We would like to pick the model that has smallest generalization error.

Can judge generalization error by using an independent sample of data.

Hold-out procedure:

n data points available \(D \equiv \{X_i, Y_i\}_{i=1}^{n} \)

1) Split into two sets: Training dataset \(D_T = \{X_i, Y_i\}_{i=1}^{m} \) Validation dataset \(D_V = \{X_i, Y_i\}_{i=m+1}^{n} \)

2) Use \(D_T \) for training a predictor from each model class:

\[
\hat{f}_\lambda = \arg \min_{f \in \mathcal{F}_\lambda} \hat{R}_T(f)
\]

Evaluated on training dataset \(D_T \)
Hold-out method

3) Use D_v to select the model class which has smallest empirical error on D_v

$$\hat{\lambda} = \arg \min_{\lambda \in \Lambda} \hat{R}_V(f_\lambda)$$

4) Hold-out predictor

$$\hat{f} = \hat{f}_\lambda$$

Intuition: Small error on one set of data will not imply small error on a randomly sub-sampled second set of data

Ensures method is “stable”
Hold-out method

Drawbacks:

- May not have enough data to afford setting one subset aside for getting a sense of generalization abilities
- Validation error may be misleading (bad estimate of generalization error) if we get an “unfortunate” split

Limitations of hold-out can be overcome by a family of random subsampling methods at the expense of more computation.
Cross-validation

K-fold cross-validation

1) Create K-fold partition of the dataset.
2) Form K hold-out predictors, each time using one partition as validation and rest K-1 as training datasets.

K predictors for each model class: \(\{ \hat{f}_1, \hat{f}_2, \ldots, \hat{f}_K \} \)

<table>
<thead>
<tr>
<th>Run 1</th>
<th>Run 2</th>
<th>Run K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\Rightarrow \hat{f}_1 \)
\(\Rightarrow \hat{f}_2 \)
\(\Rightarrow \hat{f}_K \)
Cross-validation

Leave-one-out (LOO) cross-validation

1) Special case of K-fold with K=n partitions
2) Equivalently, train on n-1 samples and validate on only one sample per run for n runs
K predictors for each model class: \(\{ \hat{f}_1, \hat{f}_2, \ldots, \hat{f}_K \} \)

\[
\begin{align*}
\text{Total number of examples} & \quad \text{training} \quad \text{validation} \\
\text{Run 1} & \quad \Rightarrow \hat{f}_1 \\
\text{Run 2} & \quad \Rightarrow \hat{f}_2 \\
& \quad \ldots \\
\text{Run K} & \quad \Rightarrow \hat{f}_K
\end{align*}
\]
Cross-validation

Random subsampling

1) Randomly subsample a fixed fraction αn ($0 < \alpha < 1$) of the dataset for validation.
2) Form hold-out predictor with remaining data as training data.

Repeat K times
K predictors for each model class: $\{ \hat{f}_1, \hat{f}_2, \ldots, \hat{f}_K \}_\lambda$
Model selection by Cross-validation

3) Use D_v to select the model class which has smallest empirical error on D_v

$$\hat{\lambda} = \arg \min_{\lambda \in \Lambda} \frac{1}{K} \sum_{k=1}^{K} \hat{R}_{V_k}(\hat{f}_k, \lambda)$$

Evaluated on validation dataset D_v

4) Cross-validated predictor

Final predictor \hat{f} is average/majority vote over the K hold-out estimates

$$\{ \hat{f}_1, \hat{f}_2, \ldots, \hat{f}_K \}_{\lambda}$$
Estimating generalization error

Hold-out \equiv 1-fold:
Error estimate = $\hat{R}_V(\hat{f}_\lambda)$

K-fold/LOO/random sub-sampling:
Error estimate = $\frac{1}{K} \sum_{k=1}^{K} \hat{R}_{V_k}(\hat{f}_k, \lambda)$

We want to estimate the error of a predictor based on n data points.

If K is large (close to n), bias of error estimate is small since each training set has close to n data points.

However, variance of error estimate is high since each validation set has fewer data points and \hat{R}_{V_k} might deviate a lot from the mean.
Practical Issues in Cross-validation

How to decide the values for K and α?

- Large K
 - The bias of the error estimate will be small (many training pts)
 - The variance of the error estimate will be large (few validation pts)
 - The computational time will be very large as well (many experiments)

- Small K
 - The # experiments and, therefore, computation time are reduced
 - The variance of the error estimate will be small (many validation pts)
 - The bias of the error estimate will be large (few training pts)

Common choice: $K = 10$, $\alpha = 0.1$ 😊
Structural Risk Minimization

Penalize models using bound on deviation of true and empirical risks.

\[\hat{f}_n = \arg \min_{f \in \mathcal{F}} \left\{ \hat{R}_n(f) + C(f) \right\} \]

With high probability, \(|R(f) - \hat{R}_n(f)| \leq C(f) \) \(\forall f \in \mathcal{F} \)

Concentration bounds (later)

High probability
Upper bound on true risk

C(f) - large for complex models

Prediction Error

empirical risk

underfitting

Best Model

overfitting

Complexity
Structural Risk Minimization

Deviation bounds are typically pretty loose, for small sample sizes. In practice,

\[
\hat{f}_n = \arg \min_{f \in \mathcal{F}} \left\{ \hat{R}_n(f) + \lambda C(f) \right\}
\]

Choose by cross-validation!

Problem: Identify flood plain from noisy satellite images

Noiseless image Noisy image True Flood plain (elevation level > x)
Structural Risk Minimization

Deviation bounds are typically pretty loose, for small sample sizes. In practice,

\[\hat{f}_n = \arg \min_{f \in \mathcal{F}} \left\{ \hat{R}_n(f) + \lambda C(f) \right\} \]

Choose by cross-validation!

Problem: Identify flood plain from noisy satellite images

True Flood plain (elevation level > x) Zero penalty CV penalty Theoretical penalty
Occam’s Razor

William of Ockham (1285-1349) Principle of Parsimony:

“One should not increase, beyond what is necessary, the number of entities required to explain anything.”

Alternatively, seek the simplest explanation.

Penalize complex models based on

- Prior information (bias)
- Information Criterion (MDL, AIC, BIC)
Importance of Domain knowledge

\[f(x) \]

Distribution of photon arrivals

\[f(x) \]

Compton Gamma-Ray Observatory Burst and Transient Source Experiment (BATSE)

Oil Spill Contamination
Complexity Regularization

Penalize complex models using **prior knowledge**.

\[\hat{f}_n = \arg \min_{f \in F} \left\{ \hat{R}_n(f) + C(f) \right\} \]

Bayesian viewpoint:

prior probability of \(f \), \(p(f) \) ≡ \(e^{-C(f)} \)

cost is small if \(f \) is highly probable, cost is large if \(f \) is improbable

ERM (empirical risk minimization) over a restricted class \(F \)
≡ uniform prior on \(f \in F \), zero probability for other predictors

\[\hat{f}_n = \arg \min_{f \in F_L} \hat{R}_n(f) \]
Complexity Regularization

Penalize complex models using prior knowledge.

\[\hat{f}_n = \arg \min_{f \in \mathcal{F}} \left\{ \hat{R}_n(f) + C(f) \right\} \]

Examples: MAP estimators
Regularized Linear Regression - Ridge Regression, Lasso

\[\hat{\theta}_{MAP} = \arg \max_{\theta} \log p(D|\theta) + \log p(\theta) \]

\[\hat{\beta}_{MAP} = \arg \min_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \lambda ||\beta|| \]

How to choose tuning parameter \(\lambda \)? Cross-validation

Cost of model (log prior)

Penalize models based on some norm of regression coefficients
Information Criteria – AIC, BIC

Penalize complex models based on their information content.

\[
\hat{f}_n = \arg \min_{f \in \mathcal{F}} \left\{ \hat{R}_n(f) + C(f) \right\}
\]

AIC (Akiake IC) \(C(f) = \# \text{ parameters} \)

BIC (Bayesian IC) \(C(f) = \# \text{ parameters} \times \log n \)

Penalizes complex models more heavily – limits complexity of models as \# training data \(n \) become large
Information Criteria - MDL

Penalize complex models based on their information content.

\[\hat{f}_n = \arg \min_{f \in \mathcal{F}} \left\{ \hat{R}_n(f) + C(f) \right\} \]

MDL (Minimum Description Length)

Example: Binary Dyadic Decision trees

\[\mathcal{F}_T^k = \{ \text{tree classifiers with } k \text{ leaves} \} \]

\[\mathcal{F}_T = \bigcup_{k \geq 1} \mathcal{F}_k^T \]

Prefix encode each element \(f \) of \(\mathcal{F}_T \)

\[C(f) = 3k - 1 \text{ bits} \]

k leaves => 2k – 1 nodes

2k – 1 bits to encode tree structure
+ k bits to encode label of each leaf (0/1)

bits needed to describe \(f \) (description length)

5 leaves => 9 bits to encode structure
Summary

True and Empirical Risk

Over-fitting

Bias vs Variance tradeoff, Approx err vs Estimation err

Model Selection, Estimating Generalization Error

- Hold-out, K-fold cross-validation
- Structural Risk Minimization
- Complexity Regularization
- Information Criteria – AIC, BIC, MDL