An Introduction to Cluster Analysis

Zhaoxia Yu Department of Statistics Vice Chair of Undergraduate Affairs zhaoxia@ics.uci.edu

What can you say about the figure?

- ≈ 1500 subjects
- Two measurements per subject

Cluster Analysis

- Seeks rules to group data
 - Large between-cluster difference
 - Small within-cluster difference
- Exploratory

• Aims to understand/learn the unknown substructure of multivariate data

Cluster Analysis vs Classification

- Data are unlabeled
 The labels for training data are known
 The number of classes are unknown
 "Unsupervised"
 "Supervised" learning
- Goal: find unknown structures
- Goal: allocate new observations, whose labels are unknown, to one of the known classes

- It was collected by F. A. Fisher
- A famous data set that has been widely used in textbooks
- Four features:
 - sepal length in cm
 - sepal width in cm
 - petal length in cm
 - petal width in cm

- Three types:
 - Setosa
 - Versicolor

– Virginica

Sepal L. Sepal W. Petal L. Petal W.					Sepal L. Sepal W. Petal L. Petal W.					Sepal L. Sepal W. Petal L. Petal W.				
[1,]	5.1	3.5	1.4	0.2	[1,]	7.0	3.2	4.7	1.4	[1,]	6.3	3.3	6.0	2.5
[2,]	4.9	3.0	1.4	0.2	[2,]	6.4	3.2	4.5	1.5	[2,]	5.8	2.7	5.1	1.9
[3,]	4.7	3.2	1.3	0.2	[3,]	6.9	3.1	4.9	1.5	[3,]	7.1	3.0	5.9	2.1
[4,]	4.6	3.1	1.5	0.2	[4,]	5.5	2.3	4.0	1.3	[4,]	6.3	2.9	5.6	1.8
[5,]	5.0	3.6	1.4	0.2	[5,]	6.5	2.8	4.6	1.5	[5,]	6.5	3.0	5.8	2.2
[6,]	5.4	3.9	1.7	0.4	[6,]	5.7	2.8	4.5	1.3	[6,]	7.6	3.0	6.6	2.1
[7,]	4.6	3.4	1.4	0.3	[7,]	6.3	3.3	4.7	1.6	[7,]	4.9	2.5	4.5	1.7
[8,]	5.0	3.4	1.5	0.2	[8,]	4.9	2.4	3.3	1.0	[8,]	7.3	2.9	6.3	1.8
[9,]	4.4	2.9	1.4	0.2	[9,]	6.6	2.9	4.6	1.3	[9,]	6.7	2.5	5.8	1.8
[45,]	5.1	3.8	1.9	0.4	[45,]	5.6	2.7	4.2	1.3	[45,]	6.7	3.3	5.7	2.5
[46,]	4.8	3.0	1.4	0.3	[46,]	5.7	3.0	4.2	1.2	[46,]	6.7	3.0	5.2	2.3
[47,]	5.1	3.8	1.6	0.2	[47,]	5.7	2.9	4.2	1.3	[47,]	6.3	2.5	5.0	1.9
[48,]	4.6	3.2	1.4	0.2	[48,]	6.2	2.9	4.3	1.3	[48,]	6.5	3.0	5.2	2.0
[49,]	5.3	3.7	1.5	0.2	[49,]	5.1	2.5	3.0	1.1	[49,]	6.2	3.4	5.4	2.3
[50,]	5.0	3.3	1.4	0.2	[50,]	5.7	2.8	4.1	1.3	[50,]	5.9	3.0	5.1	1.8
Iris Setosa					Iris Versicolor					Iris Virginica				

Clustering Methods

- Model-free:
 - Nonhierarchical clustering. K-means.
 - Hierarchical clustering. Based on similarity measures

Model-based clustering

Model-Free Clustering Nonhierarchical Clustering: K-Means

K-Means

 Assign each observation to the cluster with the nearest mean

 "Nearest" is usually defined based on Euclidean distance

K-Means: Algorithm

- Step 0: Preprocess data. Standardize data if appropriate
- Step 1: Partition the observations into *K* initial clusters.
- Step 2
 - 2.a (update step): Calculate the centroids.
 - 2.b (assignment step): Assign each observation to its nearest cluster.
- Repeat step 2 until no more changes in assignments

From "An Introduction to Statistical Learning"

Remarks

 Before convergence, each step is guaranteed to decrease the within-cluster sum of squares objective

• Within a finite number of steps, the algorithm might converge to a (local) minimum

• Use different and random initial values

Different Initial Values

235.8

235.8

310.9

Example: Cluster Analysis of Iris Data (Petal L & W)

- Pretend that the iris types of the observations are unknown => cluster analysis
- As an example, and for illustration purpose, we will use petal length and width
- Choose K=3
- K-means

K-mean Clustering (Iris Data): iteration= 1

Note: the animation in the figure doesn't work appropriately on MAC.

Iteration= 9

21

Note: the animation in the figure doesn't work appropriately on MAC.

Model-Free Clustering: Hierarchical Clustering

Hierarchical Clustering

- The number of clusters is not required
- Gives a tree-based representation of observations - dendrogram

- Each leaf represents an observation
- Leaves similar with each other are fused to branches
- Leaves/branches similar with each other are fused to branches

Cluster Dendrogram

Hierarchical Clustering

- To grow a tree, we need to define dissimilarities (distances) between leaves/branches
 - Two leaves: easy. One can use a dissimilarity measure
 - A leaf and a branch: there are different options
 - Two branches: similar to "a leaf and a branch", there are different options

Distance between Two Branches/Clusters

Many other options!

Model-Based Clustering

Model-Based Clustering: Mixture Model

- Consider a random variable X.
- We say it follows a mixture of K distributions if its distribution can be represented using K distributions:

$$f_{Mix}(\mathbf{x}) = \sum_{k=1}^{K} p_k f_k(\mathbf{x})$$

 The weights p_k, k=1,...,K are nonnegative numbers and they add up to 1

Cluster Analysis Based on Mixture Model

- I present a frequentist version
 - Choose an appropriate model. E.g., A Gaussian mixture model with K=2 clusters
 - Write down the likelihood function
- Find the maximum likelihood estimate of the parameters
 - Calculate the Pr(cluster k | observation x_i) for
 i=1,...,n, k=1,2

The Maximum Likelihood Estimate (MLE) of the Parameters

- An easy-to-implement algorithm to find the MLEs is called the Expectation and Maximization (EM) algorithm
- Initialize parameters
- E step: calculate "conditional" expectation.
 - "conditional" means conditional on current estimate of the parameters
 - This step involves calculating prob(cluster k|obs I, current estimate of para), k=1,...,K, i=1,...,n
 - This step is similar to the assignment step in an Kmeans algorithm

The Maximum Likelihood Estimate (MLE) of the Parameters

 The M step: find the set of values that maximize the conditional expectation calculated in the E step. This step updates the parameter values

• Repeat the E and M steps until convergence

EM vs K-Mean

EM	K-Mean
 Step 1: initialization 	 Step 1: initialization
 E: Calculate conditional	 Step 2a: guess cluster
probabilities	membership
 M step: Find optimal	 Step 2b: find cluster
values for parameters	centers
 Repeat the E and M	 Repeat 2a-2b until
steps until convergence	convergence
• Allows clusters to have	

 Allows clusters to have different shapes

Example: Gaussian Mixture Model

- Observed data (simulated from two normal distributions)
 - 0.37 1.18 0.16 2.60 1.33 0.18 1.49 1.74 3.58 2.69 4.51 3.39 2.38 0.79 4.12 2.96 2.98 3.94 3.82 3.59
- Assuming K=2

• Parameters: μ_1 , μ_0 , σ_1 , σ_0 , p

Example: simulated data

Note: the animation in the figure doesn't work appropriately on MAC.

Example: Cluster Analysis of Iris Data Using Petal Length

Estimated Prob (Iris Data): iteration= 1

Note: the animation in the figure doesn't work appropriately on MAC.

R Package: MCLUST

- Developed by Adrian Raftery and colleagues
- Gaussian mixture model
- EM
- Clustering, classification, density estimation
- Please try it out!

Clustering Analysis For Multidimensional Data

Multidimensional Data

• Human faces, images

• 3D objects

• Text documents

• Brain imaging

Whole Brain Connectivity

Brain Connectivity vs Fingerprint

Some Technical Details

