
Mike Carey
Information Systems Group
Computer Science Department
UC Irvine

¡ Raising the level: towards declarative tools
§ On saying what, not how!

¡ Systems for declarative data management
§ Database management systems
§ Structured query language (SQL)

¡ Moving from data to Big Data
§ Definition and challenges
§ Current systems (SQL, NoSQL, data analytics platforms)

¡ A bigger picture: the data lifecycle
§ From ingestion to insights and/or production

¡ Suppose we wanted to make a pizza:
¡ Imperative instructions might say...

1. Get a 3” ball of pizza dough.
2. Using a rolling pin, flatten the ball until it is 12” in diameter.
3. Open and spread 4 3oz cans of pizza sauce over the dough.
4. Hand grate 3 oz of mozzarella cheese evenly over the dough.
5. Starting slightly inside the dough, encircle the pizza with

evenly spaced 1” pepperoni slices; repeat again and again,
moving inwards, until you reach the center of the pizza.

6. Preheat the oven to 350F.
7. When the oven is ready, bake the pizza for 25 minutes.

¡ Suppose we wanted to make a pizza:
¡ Declarative instructions would say...

1. Create a pizza with a 12” diameter crust,
2. covered with a 12oz layer of pizza sauce,
3. a 3oz layer of mozzarella cheese,
4. and a layer of 1” pepperoni slices,
5. and baked for 25 minutes at 350F.

¡ Notice how we said what we wanted this time,
but didn’t have to specify how to make it...!

Text
Files

Spread
Sheets

¡ So what’s a database?
§ A (very) large, integrated collection of data

¡ Often a model of a real-world enterprise or a
history of real-world events

§ Entities (e.g., students, courses, Facebook users, …)
§ Relationships (e.g., Susan is taking CS 234, Susan is a

friend of Lynn, Mike filed a grade change for Lynn, …)

¡ What’s a database management system (DBMS)?
§ A software system designed to store, manage, and

provide access to one or more such databases

Files

CODASYL/IMS

Relational

Manual Coding

Byte streams

Majority of application
development effort
goes towards building
and then maintaining
data access logic

Relational DB Systems

Declarative approach
Tables + views bring
“data independence”
Details left to system

Designed to simplify
data-centric application
development

Early DBMS Technologies

Records and pointers

Large, carefully tuned
data access programs
that have dependencies
on physical access
paths, indexes, etc.

New
Data

???
…

…

New
Data

???
…

…

¡ Data independence

¡ Efficient (automatic) data access

¡ Reduced development time

¡ Data integrity and security

¡ Uniform data administration

¡ Concurrent access and recovery from crashes

¡ A data model is a collection of concepts for
describing data (to one another, or to a DBMS)

¡ A schema is a description of a particular collection of
data, using a given data model

¡ The relational model is the most widely used data
model today

§ Relation – basically a table with rows and (named) columns

§ Schema – describes the tables and their columns

¡ Many views of one conceptual
(logical) schema and an
underlying physical schema

§ Views describe how different users
or groups see the data

§ Conceptual schema defines the
logical structure of the database

§ Physical schema describes the files
and indexes used “under the covers”

Physical Schema

Conceptual Schema

View 1 View 2 View 3

Bits

On-Disk
Data

Structures

Logical
Model

Helpful
Lies!

¡ Conceptual schema (a.k.a. stored tables):
§ Students(sid: string, name: string, login: string,

age: integer)
§ Courses(cid: string, cname: string, credits: integer)
§ Enrolled(sid: string, cid: string, grade: string)

¡ Physical schema (a.k.a. storage and indexing):
§ Tables each stored internally as unordered files
§ Have indexes on first and third columns of Students

¡ External schema (a.k.a. views):
§ CourseInfo(cid: string, cname: string,

enrollment: integer)

sid cid grade

22 CS 101 B-

22 CS 103 A-

58 Stat 101 A

29 CS 101 C+

71 CS 103 A+

sid name login age

22 Dustin dusty@aol.com 22

29 Brutus bbrute@gmail.com 19

31 Rusty rust@hotmail.com 23

32 Andrew andyman@aol.com 18

58 Suzy susan@yahoo.com 22

71 Rosie flower@fb.com 20

Students cid cname credits

CS 101 Programming I 6

CS 102 Programming II 6

CS 103 Computer Games 4

Stat 101 Statistics 1 4

Courses

Enrolled

Also
Declarative!

¡ User query (in SQL, against the view):
§ SELECT c.cid, c.enrollment

FROM CourseInfo c
WHERE c.cname = ‘Computer Games’

¡ Equivalent query (against the stored tables):
§ SELECT e.cid, count(e.*)

FROM Enrolled e, Courses c
WHERE e.cid = c.cid AND c.cname = ‘Computer Games’
GROUP BY c.cid

¡ Under the hood (against the physical schema)
§ Access Courses – first use index on cname to find associated cid
§ Access Enrolled – then use index on cid to count the enrollments

Declarative!

Details...

¡ User query (in SQL, against the view):
§ SELECT c.cid, c.enrollment

FROM CourseInfo c
WHERE c.cname = ‘Computer Games’

cid enrollment

CS 103 2

Result

Declarative!

IBM DB2, Oracle, Microsoft
SQL Server, MySQL, SQLite,
PostgreSQL, and others...

1
5

So what went
on – and why?

What’s going
on right now?

Query Parser

Query Optimizer

Plan Executor

Relational Operators (+ Utilities)

Files
of

Records

Buffer Manager

Access
Methods
(Indices)

Disk Space and I/O Manager
Lock

Manager

Transaction
Manager

Log
Manager

Data
Files

Index
Files

Catalog
Files WAL

SQL

Query plans

API calls

¡ Let’s consider a grocery shopping analogy:
§ List 1 = {milk, cheerios, ice cream, bread}

¡ Continuing our grocery shopping analogy:
§ List 2 = {milk, cheerios, ice cream, bread, cream, cat food,

chicken, coffee, napkins, coke, jelly, kleenex,...(87)..., water}

Think of disk
accesses as
being similar
to aisle visits!

ETC!

Sorting by
aisle could
help a lot!

¡ Enterprises wanted to store and query historical
business data (data warehouses)
§ 1970’s: Relational databases appeared (w/SQL)
§ Late 1970’s: Database machines based on novel

hardware and early (brute force) parallelism
§ 1980’s: Parallel database systems based on “shared-

nothing” architectures (Gamma, GRACE, Teradata)
§ 2000’s: Netezza, Aster Data, DATAllegro, Greenplum,

Vertica, ParAccel, … (Serious “Big $” acquisitions!)

(Each node runs an
instance of an indexed
database data storage
and runtime system)

¡ Late 1990’s brought a need to index and query
the rapidly exploding content of the Web
§ SQL-based databases didn’t fit the problem(s)
§ Google, Yahoo! et al had to do something

¡ Google responded by laying a new foundation
§ Google File System (GFS)

▪ OS-level byte stream files spanning 1000’s of machines
▪ 3-way replication for fault-tolerance (and high availability)

§ MapReduce (MR) programming model
▪ User writes just two simple functions: Map and Reduce
▪ “Parallel programming for dummies” – MR runtime does

all the heavy lifting (using partitioned parallelism)
21

Input Splits
(distributed)

Mapper
Outputs

Reducer
Inputs

Reducer
Outputs

(distributed)

SHUFFLE PHASE
(based on keys)

22

“Partitioned
Parallelism”

(can scale up to
1000’s of nodes)

. . .

. . .

. . .

¡ Inputs and outputs are sets of key/value pairs
¡ Programmers simply provide two functions

§ map(K1, V1) -> list(K2, V2)
▪ Produces list of intermediate key/value pairs for each input

key/value pair

§ reduce(K2, list(V2)) -> list(K3, V3)
▪ Produces a list of result values for all intermediate values that are

associated with the same intermediate key

¡ In our word count example, notice that
§ The keys were the words and the counts were the values
§ We never had to think about parallelism!

¡ Yahoo!, Facebook, and friends cloned Google’s
“Big Data” infrastructure from papers
§ GFS à Hadoop Distributed File System (HDFS)
§ MapReduceà Hadoop MapReduce
§ Widely used for Web indexing, click stream analysis, log

analysis, information extraction, some machine learning
¡ Tired of puzzle-solving with just two moves, higher-

level languages were developed to “hide” MR
§ E.g., Pig (Yahoo!), Hive (Facebook), Jaql (IBM)

¡ Similar happenings at Microsoft
§ Cosmos, Dryad, and SCOPE (which powers Bing)

24

¡ Bulk Synchronous Programming (BSP) platforms, e.g.,
Pregel, Giraph, GraphLab, ..., for doing Big* Graph analysis

¡ Spark for in-memory cluster computing – for repetitive data
analyses, iterative machine learning tasks, ...

25

(* Big is the platform’s problem)

“Think Like a Vertex”
– Receive messages
– Update state
– Send messages

iter. 1 iter. 2 . . .

Input

Distributed
memory

Input

query 1

query 2

query 3

. . .

one-time processing

iterative processing

Disk

Main
Memory

Disk

CPU(s)

ADM
Data

Main
Memory

Disk

CPU(s)

ADM
Data

ADM
Data

Hi-Speed Interconnect

Data loads & feeds
from external sources
(ADM, JSON, CSV, …)

SQL++ queries &
update requests

and programs

Data publishing
to external

sources and apps

ASTERIX Goal:
Ingest, digest,
persist, index,
manage, query,
analyze, and
publish massive
quantities of
semi-structured
information…

(ADM = ASTERIX
Data Model,

SQL++ = ASTERIX
Query Language)

Main
Memory

CPU(s)

26

27

“NoSQL” characteristics include...
• Objects can be nested
• Fields can be multivalued (plural)
• Content can vary from object to object
• Schemas are not mandatory

(Other examples: MongoDB, Couchbase,...)

CREATE DATAVERSE TinySocial;
USE TinySocial;

CREATE TYPE GleambookUserTypeAS {
id: int,
alias: string,
name: string,
userSince: datetime,
friendIds: {{ int }},
employment: [EmploymentType]};

CREATE TYPE GleambookMessageType
AS {

messageId: int,
authorId: int,
inResponseTo: int?,
senderLocation: point?,
message: string

};

CREATE DATASET GleambookUsers
(GleambookUserType)

PRIMARY KEY id;

CREATE DATASET GleambookMessages

(GleambookMessageType)
PRIMARY KEY messageId;

CREATE TYPE EmploymentTypeAS {
organizationName: string,
startDate: date,
endDate: date?

};

{"id”:1, "alias":"Margarita", "name":"MargaritaStoddard", "nickname":"Mags”,
"userSince":datetime("2012-08-20T10:10:00"), "friendIds":{{2,3,6,10}},
"employment": [{"organizationName":"Codetechno”, "startDate":date("2006-08-06")},

{"organizationName":"geomedia" , "startDate":date("2010-06-17"),
"endDate":date("2010-01-26")}],

"gender":"F”
},

{"id":2, "alias":"Isbel”, "name":"IsbelDull", "nickname":"Izzy",
"userSince":datetime("2011-01-22T10:10:00"), "friendIds":{{1,4}},
"employment": [{"organizationName":"Hexviafind", "startDate":date("2010-04-27")}]

},

{"id":3, "alias":"Emory", "name":"EmoryUnk”,
"userSince":datetime("2012-07-10T10:10:00"), "friendIds":{{1,5,8,9}},
"employment": [{"organizationName":"geomedia”, "startDate":date("2010-06-17"),

"endDate":date("2010-01-26")}]
},

.

29

¡ Q1: List the user names and messages sent by Gleambook social network
users with less than 3 friends:

SELECT user.name AS uname,
(SELECT VALUE msg.message
FROM GleambookMessages msg
WHERE msg.authorId = user.id) AS messages

FROM GleambookUsers user
WHERE COLL_COUNT(user.friendIds) < 3;

{ "uname": "NilaMilliron", "messages": [] }
{ "uname": "WoodrowNehling", "messages": [" love acast its 3G is good:)"] }
{ "uname": "IsbelDull", "messages": [" like product-y the plan is amazing", " like

product-z its platform is mind-blowing"] }
. . .

¡ 4 year initial NSF project (250+ KLOC @ UCI+UCR)
¡ AsterixDB BDMS! (First shared June 6th, 2013)

§ Semistructured “NoSQL” style data model
§ Declarative parallel queries, inserts, deletes, …
§ LSM-based storage/indexes (primary & secondary)
§ Internal and external datasets both supported
§ Rich set of data types (including text, time, location)
§ Fuzzy and spatial query processing
§ NoSQL-like transactions (for inserts/deletes)
§ Data feeds and external indexes in next release

¡ Performance competitive w/parallel relational DBMS,
MongoDB, and Hive (see papers)

¡ Now in Apache!

30

¡ Recent or projected use case areas include...
§ Behavioral science (at UCI)
§ Social data analytics
§ Cell phone event analytics
§ Power usage monitoring
§ Public health (joint effort with UCIPT@UCLA)
§ Cluster management log analytics
§ Your future use cases go here... (J)

31

¡ I’ve just described one piece of the Data Science
“Big Data puzzle”...

¡ Raising the level: towards declarative tools
§ It’s all about saying what, not how!

¡ Systems for declarative data management
§ Database management systems
§ Structured query language (SQL) in particular

¡ Moving from data to Big Data
§ Definition of “big” and some of the challenges
§ Current systems (SQL, NoSQL, data analytics platforms)

¡ The bigger picture: the data lifecycle
§ From ingestion to insights and production (and repeat!)

