Section 1.1, problem 62

Let’s denote:

\[K = \text{“Kevin is chatting”} \]
\[A = \text{“Abby is chatting”} \]
\[H = \text{“Heather is chatting”} \]
\[R = \text{“Randy is chatting”} \]
\[V = \text{“Vijay is chatting”} \]

Here’s what we know about the world (in the order as they are stated in this exercise):

1. \(K \lor H \)
2. \(R \oplus V \)
3. \(A \rightarrow R \)
4. \((V \land K) \lor (\neg V \land \neg K)\)
5. \(H \rightarrow (A \land K) \)

So how do we know which combination is true? We have five variables here and 5 logical formulas which impose relations between these variables. So what we can do is to do a series of transformations which would simplify these relations:

2’. We can replace (2) by equation \(R = \neg V \).

3’. Therefore we can replace (3) by \(A \rightarrow \neg V \).

4’. Also we can replace (4) by an equivalent expression \(V \leftrightarrow K \)

Now let’s pick some variable on which lots of other variables seem to depend. For example pick \(H \), set it to true, and see what happens to the other variables:

If \(H \) then by (5) we immediately get \(A \) and \(K \). (1) is true. By (3’) from \(A \) we get \(\neg V \). However, by (4’) from \(\neg V \) we get \(\neg K \). But that’s a contradiction, because we cannot have both \(K \) and \(\neg K \).

What does this mean? Well, it means that \(H \) cannot be true, because that assumption led to a contradiction which violated the set of facts 1-5 we were told about the world. (In particular it led to a contradictory statement that \(K \land \neg K \). Therefore we can conclude that \(\neg H \). Assuming \(\neg H \), by (1) we get \(K \). By (4’) we get \(V \). By (3’) we get \(\neg A \). By (2’) we get \(\neg R \). And the only constraint left, (5), is satisfied because \(\neg H \).

This leads us to a solution \((K, \neg A, \neg H, \neg R, V)\) which, you can check, does satisfy all the criteria 1-5.

It is also a unique solution because we showed two things: First, that \(H \) cannot happen. Second, that if \(\neg H \) then the other four variables have uniquely assigned values, which are all a consequence of \(\neg H \) and facts 1-5. Therefore this is also the only solution.