4. Suppose that we look at the ten groups of integers in three consecutive locations around the circle (first-second-third, second-third-fourth, third-fourth-fifth, ..., eighth-ninth-tenth, ninth-tenth-first, and tenth-first-second). Since each number from 1 to 10 gets used three times in these groups, the sum of the sums of the ten groups must equal three times the sum of the numbers from 1 to 10, namely $3 \times 55 = 165$. Therefore the average sum is $165/10 = 16.5$. By Exercise 39, at least one of the sums must be greater than or equal to 16.5, and since the sums are whole numbers, this means that at least one of the sums must be greater than or equal to 17.

42. We show that each of these is equivalent to the statement (v) is odd, say $n = 2k+1$. Example 1 showed that (v) implies (i), and Example 8 showed that (i) implies (v). For $(v) \Rightarrow (ii)$ we see that $n = 1 - (2k+1) = 2k - 1$ is even. Conversely, if n were even, say $n = 2m$, then we would have $1 - n = 1 - 2m = 2(1 - m) + 1$, so $1 - n$ would be odd, and this completes the proof by contraposition that $(ii) \Rightarrow (v)$. For $(v) \Rightarrow (ii)$, we see that $n = 2k+1$, so $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k + 1)$ is even. Conversely, if n were even, say $n = 2m$, then we would have $n^2 = 4m^2 + 4m + 1$, so $n^2 + 1$ would be odd, and this completes the proof by contraposition that $(ii) \Rightarrow (v)$.

SECTION 1.7 Proof Methods and Strategy

2. The cubes that might go into the sum are 1, 8, 27, 64, 125, 216, 343, 512, and 729. We must show that no two of these sum to a number on this list. If we try the 45 combinations (1 + 1, 1 + 8, ..., 1 + 729, 8 + 8, 8 + 27, ..., 8 + 729, 27 + 729), we see that none of them works. Having exhausted the possibilities, we conclude that no cube less than 1000 is the sum of two cubes.

4. There are three main cases, depending on which of the three numbers is smallest. If a is smallest (or tied for smallest), then clearly $a \leq \min(b, c)$, and so the left-hand side equals a. On the other hand, for the right-hand side we have $\min(a, c) = a$ as well. In the second case, b is smallest (or tied for smallest). The same reasoning shows us that the right-hand side equals b, and the left-hand side is $\min(a, c) = b$ as well. In the final case, in which c is smallest (or tied for smallest), the left-hand side is $\min(a, c) = c$, whereas the right-hand side is clearly also c. Since one of the three has to be smallest, we have taken care of all the cases.

6. The number 1 has this property, since the only positive integer not exceeding 1 is 1 itself, and therefore the sum is 1. This is a constructive proof.

8. The only perfect squares that differ by 1 are 0 and 1. Therefore these two consecutive integers cannot both be perfect squares. This is a non-constructive proof—we do not know which of them meets the requirement. (In fact, a computer algebra system will tell us that neither of them is a perfect square.)

10. Of these three numbers, at least two must have the same sign (both positive or both negative), since otherwise they are all zero. (It is conceivable that some of them are zero, but we view zero as positive for the purposes of this problem.) The product of two with the same sign is nonnegative. This was a non-constructive proof, since we have not identified which product is nonnegative. (In fact, a computer algebra system will tell us that all three are positive, so all three products are positive.)

12. An assertion like this one is implicitly universally quantified—it means that for all rational numbers a and b, a/b is rational. To disprove such a statement it suffices to provide one counterexample. Take $a = 2$ and $b = 1/2$. Then $a/b = 2^2/(1/2) = 4$, and we know from Example 10 in Section 1.6 that $\sqrt{2}$ is not rational.

14. We know from algebra that the following equations are equivalent: $ax + b = c$, $ax = c - b$, $z = (c - b)/a$. This shows, constructively, what the unique solution of the given equation is.

16. Given a, let a be the closest integer to r less than r, and let b be the closest integer to r greater than r. In the notation to be introduced in Section 2.3, $a = \lfloor r \rfloor$ and $b = \lceil r \rceil$. In fact, $b = r + 1$. Clearly the distance between r and any integer other than a or b is greater than 1 so cannot be less than 1/2. Furthermore, since r is irrational, it cannot be exactly half-way between a and b, so exactly one of $r - a < 1/2$ and $b - r < 1/2$ holds.

18. Given x, let n be the greatest integer less than or equal to x, and let $x = n + z$. In the notation to be introduced in Section 2.3, $n = \lfloor x \rfloor$. Clearly $0 \leq z < 1$, and x is unique for this n. Any other choice of n would cause the required c to be less than 0 or greater than or equal to 1, so n is unique as well.

20. We follow the hint. The square of every real number is nonnegative, so $(x - 1/x^2) \geq 0$. Multiplying this out and simplifying, we obtain $x^2 - 2 + 1/x^2 \geq 0$, so $x^2 + 1/x^2 \geq 2$, as desired.

22. If $a = 5$ and $b = 8$, then the quadratic mean is $\sqrt{(5^2 + 8^2)/2} = 6.07$, and the arithmetic mean is $(5 + 8)/2 = 6.5$. If $a = 10$ and $b = 100$, then the quadratic mean is $\sqrt{(10^2 + 100^2)/2} \approx 71.06$, and the arithmetic mean is $(10 + 100)/2 = 55$. We conjecture that the quadratic mean of a and b is always greater than their arithmetic mean if a and b are distinct positive real numbers (clearly if $a = b$ then both means are this common value). So we want to verify the inequality $\sqrt{a^2 + b^2}/2 > (a + b)/2$. Squaring both sides (this is legal because everything in sight is positive) and multiplying by 4 gives us the equivalent inequality $2a^2 + 2b^2 > a^2 + 2ab + b^2$, which is in turn equivalent to $(a - b)^2 > 0$ after putting everything on the left-hand side and factorizing. This is clearly always true, and our proof is complete.

24. We can now end up with nine 0's, then in the step before this we must have had either nine 0's or nine 1's, since each adjacent pair of bits must have been equal and therefore all the bits must have been the same. Thus if we are to start with something other than nine 0's and yet end up with nine 0's, we must have had nine 1's at some point. But in the step before that adjacent pair of bits must have been different; in other words, they must have alternated 0, 1, 0, 1, and so on. This is impossible with an odd number of bits. This contradition shows that we can never get nine 0's.

26. Clearly only the last two digits of n contribute to the last two digits of n^2. So we can compute 0^2, 1^2, 2^2, 3^2, ..., 9^2, and record the last two digits, omitting repetitions. We obtain 00, 01, 04, 09, 16, 25, 36, 49, 63, 64, 44, 36, 69, 64, 56, 89, 72, 24, 64, 41, 84, 29, 76. From this point on, we list repetitions in reverse order (as we take the squares from 252 to 492, and then it all repeats again as we take the squares from 502 to 992). The reason for these last two statements are that $(50 - n)^2 = 2500 - 100n + n^2$, so $(50 - n)^2$ and $(50 + n)^2$ have the same two final digits, and $(50 + n)^2 = 2500 + 100n + n^2$, so $(50 + n)^2$ and n^2 have the same two final digits. Thus our list (which contains 22 numbers) is complete.

28. If $|b| \geq 2$, then $2a^2 + b^2 \geq 2a^2 + 20 \geq 20$, so the only possible values of v to try are 0 and ±1. In the former case we would be looking for solutions to $2x^2 = 14$ and in the latter case to $2x^2 = 0$. Clearly there are no integer solutions to these equations, so there are no solutions to the original equation.

30. Following the hint, we let $x = m^2 - n^2$, $y = 2mn$, and $z = m^2 + n^2$. Then $x^2 + y^2 = (m^2 - n^2)^2 + (2mn)^2 = 3m^4 - 4m^2n^2 + n^4 + 4m^2n^2 + 4m^2 = m^4 + 2m^2n^2 + n^4 = (m^2 + n^2)^2 = z^2$. Thus we have found infinitely many solutions, since m and n can be arbitrarily large.
32. One proof that \(\sqrt{2} \) is irrational is similar to the proof that \(\sqrt{2} \) is irrational, given in Example 10 in Section 1.6. It is a proof by contradiction. Suppose that \(p/q \) (or \(\sqrt{2} \), which is the same thing) is the rational number. Then \(p/q \) is even. Since the product of odd numbers is even, we have that \(p = 2p'q \), or, equivalently, \(p^2 = 2q^2 \). Thus \(p^2 \) is even. Now we say that \(p \) is even, so we can write \(p = 2s \). Substituting into the equation \(p^2 = 2q^2 \), we obtain \(4s^2 = 2q^2 \), which simplifies to \(2s^2 = q^2 \). Now we have the same game with \(q \). Since \(q^2 \) is even, \(q \) must be even. We have now concluded that \(p \) and \(q \) are both even, that is, that \(2 \) is a common divisor of \(p \) and \(q \). This contradicts the choice of \(p/q \) to be in lowest terms. Therefore our original assumption—that \(\sqrt{2} \) is rational—is in error, so we have proved that \(\sqrt{2} \) is irrational.

34. The average of two irrational numbers is certainly always between the two numbers. Furthermore, the average of two irrational numbers must be irrational, because the equation \(a = (x + y)/2 \) leads to \(y = 2a \), which would be rational if \(x \) were rational.

36. The solution is not unique, but here is one way to measure out four gallons. Fill the 5-gallon jug from the 8-gallon jug, leaving the contents \((3, 5) \). Then fill the 3-gallon jug from the 8-gallon jug, leaving \((5, 3) \). Next fill the 3-gallon jug from the 5-gallon jug, leaving \((2, 3) \). Finally, fill the 5-gallon jug from the 3-gallon jug, leaving \((4, 3) \). With four gallons in the 5-gallon jug, we have \((4, 3) \).

38. a) \(16 + 8 = 4 = 2 < 1 \)
 b) \(11 + 34 = 17 = 2 \)
 c) \(35 + 105 = 140 = 20 \)
 d) \(101 + 102 = 203 = 101 \)

40. This is easily done, by laying the dominos horizontally, three in the first and last rows and four in each of the other five rows.

42. Without loss of generality, we number the squares from 1 to 25, starting in the top row and proceeding left to right in each row; and we assume that squares 5 (upper right corner), 21 (lower left corner), and 25 (lower right corner) are the missing ones. We argue that there is no way to cover the remaining squares with dominos.

44. The bars shown in the diagram split the board into one continuous closed path of 64 squares, each adjacent to the next (for example, start at the upper left corner, go all the way to the right, then all the way down, then all the way to the left, and then weave your way back up to the starting point). Because each square is adjacent to its neighbors, the color alternate. Therefore, if we remove one black square and one white square, this closed path decomposes into two paths, each of which starts in one color and ends in the other color (and therefore has even length). Clearly each such path can be covered by dominos by starting at one end. This completes the proof.