304

Chapter 12 Modeling Computation

CHAPTER 12
Modeling Computation

SECTION 12.1 Languages and Grammars

2.

10.

There are of course a large number of possible answers. Five of them are the sleepy hare runs quickly, the
hare passes the tortoise, the happy hare runs slowly, the happy tortoise passes the hare, and the hare passes
the happy hare.

a) It suffices to give a derivation of this string. We write the derivation in the obvious way. S = 15 = 115 =
1115 = 11100A = 111000.

b) Every production results in a string that ends in S, A, or 0. Therefore this string, which ends with a 1,
cannot be generated.

inning of the string (including none) by iterating i’ﬁw

=]

¢} Notice that we can have any number of 1’s at the be

production S — 15. Eventually the S must turn into 00A, so at least two 0’s must come next. We can then
have as many 0’s as we like by using the production A — 0A repeatedly. We must end up with at least one
more 0 (and therefore a total of at least three 0's) at the right end of the string, because the A disappears
only upon using 4 — 0. So the language generated by G is the set of all strings consisting of zero or more

n>0andm>3}.

1’s followed by three or more 0’s. We can write this as {071™

a) There is only one terminal string possible here, namely abbb. Therefore the language is {abbb}.
b) This time there are only two possible strings, so the answer is {aba, aa}.
J I 55 L)

i
f

c) Note that A must eventually turn into ab. Therefore the answer is {abb, abab}

d) If the rule S — AA is applied first, then the string that results must be N 55757 wh N is
number greater than or equal to 4, since each A becomes a positive even number of a’s. 1If i} S — B a

applied first, then a string of one or more b’s results. Therefore the language is {a?n | 7 2} {0 | n
e) The rules imply that the string will consist of some a’s, followed by some b’s, followed by some more a’s
(“some” might be none, though). Furthermore, the total number of a’s equals the total number of b’s. Thus

n4-m a

we can write the answer as { a”b

If we apply the rule S — 051 n times, followed by the rule S — X, then the string 01" results. On the
other hand, no other derivations are possible, since once the rule S — X is used, the derivation stops. This

proves the given statement.

a) It follows by induction that unless the derivation has stopped, the string generated by any sequence of
applications of the rules must be of the form 0™51™ for some nonnegative integers n and m. Conversely,
every string of this form can be obtained. Since the only other rule is S — A, the only terminal strings
generated by this grammar are 071",

b) A derivation consists of some applications of the rules until the S disappears, followed, perhaps, by some
more applications of the rules. First let us see what can happen up to the point at which the S disappears.
The first rule adds 0’s to the left of the S. The last rule makes the S disappear, whereas rules two and three

turn the S into 14 or 1. Therefore the possible strings generated at the point the S disappears are 0™, 0"1

Section 12.1 Languages and Grammars 305

and 0714, where n is a nonnegative integer. By rules four and five, the A eventually turns into one or more
1’s. Therefore the possible strings are 0"1™ for nonnegative integers n and m.

4 12. By following the pattern given in the solution to Exercise 11, we can certainly generate all the strings 0"172™,
for n > 0. We must show that no other terminal strings are possible. First, the number of 0's, A’s, and B’s
i must be equal at the point at which S disappears, with all the 0’s on the left (where they must stay). The
rule BA — BA tells us the A’s can only move left across the B’s, not conversely. Furthermore, A’s turn
into 1’s, but only if connected by 1’s to a 0; therefore the only way to get rid of the A’s is for them all to
move to the left of the B’s and then turn into 1’s. Finally, the B’s can only turn into 2’s, and they are all
on the right.

14. In each case we will list only the productions, because V and 7' will be obvious from the context, and §
speaks for itself.
a) For this finite set of strings, we can simi)lv have § — 10, S — 01, and S — 101,

this gives us the two 0’s at the start of each string in the language.

b) To get started we can have
After that we can have anything we want in the §llld(”.%7 so we want A — 0A and 4 — 14. Finally we insist
on ending with a 1, so we have A — 1. '

c) The even number of 1’s can be accomplished with § — 115, and the final 0 tells us to include S — 0 as

the only other production. Note that zero is an even number, so the string 0 is in the language.

d) If there are not two consecutive 0's or two congsecutive 1’s, the symbols must alternate. We can acc -omplish
) ;

. the

,.._

this by having an optional 0 to start, then any number of repetitions of 10, and then an optional 1
end. One way to do this is with these productions: S — ABC, A — 0, A— A\, B— 10B, B — X, C’ » 1,

O — A

16. In each case we will list only the productions, because V and T will be obvious from the context, and §

speaks for itself.

v Y
- AL

a) It suffices to have S — 15 and

U

b) We let A represent the string of 0’s. Thus we take S — 14, A — 04, and A — . (Here 4 — A0 works
just as well as A — 0A, so either one is fine.)
c) It suffices to have § — 115 and S —).

Il

18. a) We want exactly one 0 and an even number of 1's to its right. Thus we can use the rules S
A—114, and A — .

b) We can have the new symbols grow out from the center, using the rules S — 0511 and S —).

— 0A,

c) We can have the 0’s grow out from the center, and then have the center turn into a 1-making machine

The rules we propose are S — 050, § — A, A — 14, and A — X

20. We can simply have identical symbols grow out from the center, with an optional final symbol in the center
itself. Thus we use the rules § — 050, § — 151, S — A, S — 0, and S — 1. Note that this grammar is

context-free since each left-hand side is a single nonterminal symbol.

22. a) The string is the leaves of the tree, read from left to right. Thus the string is “a large mathematician hops
wildly.”
b) Again, the string is the leaves from left to right, namely +-987.

24. a) If we look at the beginning of the string, we see that we can use the rule § — beS first. Then since the
remainder of the string (after the initial be) starts with bb, we can use the rule S — bbS. Finally, we can use

the rule S — a. We therefore obtain the first tree shown below.

e

306 Chapter 12 Modeling Computation

b) This is similar to part (a), using three rules to take care of the first six characters, two by two.
¢) Again we work two by two from the left, producing the tree shown.

S

A N AN
AR A4
IS A
(a) | //\

a

(b) c/\b

(c)

26. a) Since the string starts with a b, we might have either Baba = baba or Caba = baba as the last step in
the derivation. The latter looks more hopeful, since the C'e could have come from the rule 4 — Ca, meaning
that the derivation ended Aba = Caba = baba. Now we see that since B — Ba and B — b are rules, the
derivation could have been S = AB = ABa = Aba = Caba = baba.

b) There is no way to have obtained an @ on the left, since every rule has every a preceded by another symbol
(which does not ever turn into A).

¢} This is just like part (a), since we could have used the rule C' — ¢b instead of the rule C' — b, obtaining
the extra ¢ on the left. Thus the derivation is S = AB = ABa = Aba = Caba = chaba.

(without

d) The only way for the symbol ¢ to have rough the rule C' — ¢b. Thus we may assume

ation was bbbCa = bbbcba. Now the only way for Ca to |

loss of generality) that the last step in the de c
occurred is from the rule A — Ca. Thus we can assume that the derivation ends bbbA = bbbCa = bbbcha.
But there is no way for the A to appear at the end (the only rule producing an A puts a B after it). Therefore
this string is not in the language

\

for (expression)

T

28. a) We just translate mechanically from the Backus-Naur form to the productions. Let us use F

(which we assume is the starting symbol), and V' for (variable) for convenience. The rules are E — (F),
0

E—-FE+EBE, E—EsFE, and E— V (fron

second).

the first form), together with V' — x and V — y (from the

b) The tree is easy to construct. The outermost operation is -, so the top part of the tree shows F becoming

Inl

E 4+ E. The right E now is the variable x. The left F is an expression in parentheses, which is

itself 1
product of two variables.

E
L~ E e
E + \“gf:
PN l
« E) v
/1IN !
E * E ¥
E I
v v
| I
% y

30. a) We first incorporate all the rules from the solution to Exercise 29a except the first two. Then we simply
add the rule S — (sign)(integer)/(positive integer).
b) We incorporate all of the solution to Exercise 29b except for the first line, together with a rule (fraction) =
(sign)(integer) /(positive integer).

c) The tree practically draws itself from the rules.

on Section 12.1 Languages and Grammars 307
<fraction>
-
e
<sign> <integer> / <positive integer>
+ <integer> <digit> <nonzero digit> <integer>
|
<integer> «digit> 1 1 <digit>
|
<digit> i 7

I
3

32. We ignore the need for spaces between the names, and we assume that names need to be nonempty. We also

. do not assume anything more than was given in the statement of the exercise.
. (person) = (firstname) (middleinitial) (lastname)

lastname

(= (letterstring)
(middleinitial) ::= (letter)
V (firstname) ::= (ucletter) | (ucletter)letterstring
he (letterstring) ::= (letter) | (letterstring) (letter)
’ (
{
(

letter) ::= (lcletter) | (ucletter)
leletier) = a
ucletter) == A|B|C|...| Z

I

& 34. a) Strings in this set consist of one or more letters followed by an optional binary digit, followed by one
more letters. Only the letters a, b, and ¢ are used, however.
out b) Strings in this set consist of an optional plus or minus sign followed by one or more digits.
ave c) Strings in this set consist of any number of letters, followed by any number of E';inar‘y digit& followed by
ba. any number of letters. “Any number” includes 0, so the string could consist of letters only or of binary « hgn’:s
ore only, and it could also be empty. Ounly the letters z and y are used, however N{;te that (@+}? is equivalent
to Dx.
on) 36. This is straightforward, using the conventions. We assume that the string gives the sandwich from top to
E), bottom. Note that words in roman font are constants here, and words in italics are variables.
the sandwich ::= bread dressing lettuce?tomato?meai4 cheeses hread
Iressing ::= mustard | mayonnaise
1ing meat = ’turkey chicken | beef
the
38. The cosmetic change is to put angled brackets around the variables used for nonterminal symbols. The
substantive changes are to replace uses of +, *, and 7 with rules that have the same effect. For the plus sign,
we replace -, where x is a symbol by a new symbol, let’s call it (zplus), and the new rule
(aplus) = x | (:xpi,us):z:
Similarly, we replace @+, where x is a symbol by a new symbol, let’s call it (zstar), and the new rule
(wstar) =) | (:ﬁsz‘,ar}.
where A is the empty string. Finally, we replace each occurrence of %7 by a new symbol, let’s call it (zquestion),
and the new rule
(rquestion) =\ |
where z is a symbol; and we replace each occurrence of (7unk)? by a new symbol, let’s call it (Junkquestion)
and the new rule
(Junkquestion) ::= X | junk
mply where junk is a string of symbols.
1) = . 40. This is very similar to the preamble to Exercise 39.

The only difference is that the operators are placed
between their operands, rather than behind them, and parentheses are required in expressions used as factors.
Thus we have the following Backus-Naur form:

I ——————

;
:

308 Chapter 12 Modeling Computation

(expression) = (term) | (term){addOperator)(term)
(addOperator) ::= + | —

(term) == (factor) | (factor){mulOperator){factor)
(mulOperator) = x|/

(factor) = (identifier) | ((expression))

42. The definition of “derivable from” says that it is the reflexive, transitive closure of the relation “directly
derivable from.” Indeed, taking n = 0 in that definition gives us the fact that every string is derivable from
itself; and the existence of a sequence wy = wy = -+ = w,, for n > 1 means that (wg, w,) is in the transitive
closure of the relation = (see Theorem 2 in Section 8.4).

SECTION 12.2 Finite-State Machines with OQutput

2. In each case we need to write down, in a table, all the information contained in the arrows in the diagram.
In part (a), for example, there are arrows from state s; to s labeled 1,0 and from s; to sp labeled 0,0.
Therefore the row of our table for this machine that gives the information for transitions from sy shows that
on input 1 the transition is to state sy and the output is 0, and on input 0 the transition is to state sy and
the output is 0.

a) Next State Cutput
State 0 1 0 1

S0 S1 39 0 1

81 S9 S 0 0

89 89 50 1 0

b) Next State Qutput
State 0 1 0 1

So S 59 1 0

81 Sg 83 1 0

S9 53 S0 0 0

53 51 59 1 1

<) Next State Output
State 0 1 0 1

Sg 83 59 0 1

51 S0 51 0 1

89 83 81 0 1

83 S1 S3 0 0

4. a) The machine starts in state sg. On input 1 it moves to state sz and outputs 0. The next three inputs
(all 0’s) drive it to s3, then sy, then back to sg, with outputs 011. The final 1 drives it back to 39 and
outputs 0 again. So the cutput generated is 00110.

b) The machine starts in state s5. On input 1 it moves to state sy and outputs 1. The next three inputs
(all 0’s) keep it at s9, outputting 1 each time. The final 1 drives it back to sg and outputs 0. So the output
generated is 11110,

¢) The machine starts in state sg. Since the first input symbol is 1, the machine goes to state s; and gives
1 as output. The next input symbol is 0, so the machine moves back to state sy and gives 0 as output.
The third input is 0, so the machine moves to state s3 and gives 0 as output. The fourth input is 0, so the
machine moves to state s; and gives 0 as output. The fifth input is 1, so the machine stays in state s; and
gives 1 as output. Thus the output is 10001.

Section 12.2

i
£

output opposite to the input.

Finite-State Machines with Qutput

6. a) The machine starts in state sp. On input 0 it moves to state s; and outputs 1. On the next three inputs
it stays in state s; and outputs 1. Therefore the output is 1111.
b) The machine starts in state sp. On input 1 it moves to state s3 and outputs 0. Then on the next input,
which is 0, it moves to state s; and outputs 0. The next four moves are to states s3, s3, sg, and g1, with
outputs 1001. Thus the answer is 001001 .
c) The idea is the same as in the other parts. The answer is 00110000110.

8. We need 9 states. The middle row of states in our picture correspond to no quarters or nickels having been
deposited. The top row takes care of the cases in which a nickel has been deposited, and the bottom row
handles the cases in which a quarter has been deposited. The columns record the number of dimes (0,1,0r2).
The transitions back to state sg are shown as leading off into open space to avoid clutter. Furthermore to
avoid clutter we have not drawn six loops, namely loops at states sz, s4, and s5 on input IV (since additional
nickels are not recorded), and loops at states sg, $7, and sg on input @ (since additional quarters are not
recorded). We do not show the output, since there is none except for all the transitions back to state sq; there

the output is “unlock the door.” The letters stand for the obvious coins.

N

ji

!

3(5.)-D

Gs) X7
K

starty§ ™ /i
5Co) 5G1)

UM,

Ll

kP

H

siart (

opens if and only if the input is (10, R, 1)(8, L,

p

2z

2

start (10,R,1),0
b (Go)
- C)

a0

Gy s
J

We need only two states, since the action depends only on the parity of the number of bits we have read in s
Transitions from state sy to state s; are made on the odd-numbered 1

bit as the input. The transitions back to sy are made on the even-numbered bits, and there we make the

To avoid having the machine being too complex, we will keep the model very simple, assuming that the lock
J(37,R,1). In our picture, the
inputs other than the inputs shown leading elsewhere. The output 0 means nothing happens; the output U
means the lock is unlocked. If we wished to make our model more realistic, we could, for instance, allow the
input (10,R,1)(8,L,1)(8,L,1)(37,R,1) to open the lock, as well as, say, (10, R,1)(8, L, 2)(30, R, 1)(37, R, 1)
(assuming the numbers on the dial are arranged counterclockwise).

(10,R,1),0

57,R,1),1
(5588

The picture for this machine would be a little cumbersome to draw; it has 25 states. Instead, we will describe
the machine verbally. We assume that possible inputs are the digits 0 through 9. We will let sq be the start

I ———"—

bits, so there we output the same

‘input” A stands for all the

310 Chapter 12 Modeling Computation

state. States sy, sa, s3, and s4 will be the states reached after the user has entered the successive digits
of the correct password, so on the transition from s3 to s4, the output is the welcome screen. No output is
given for the transitions from sy to si, from s; to s, or from s, to s3. States sy, S12, S13, and sy4 will
correspond to wrong digits. Thus there is a transition from sy to sy; if the first digit is wrong, from s; to
519 if the second digit is wrong, and so on. There are transitions from sy; to 812 to 813 to s34 on all inputs.
No output is given for the transitions to si1, sig, or s13. On transition to sy4 an error message is given.

Now state si4 plays the role of sg, with eight more states to take care of the user’s second attempt at
a correct password, either terminating in a successful sign-on (say, state sjgs4) or another failure (say, state
8114). Then another set of eight states takes care of the third attempt. State s914 is the last straw—transitions
to it tell the user that the account is locked.

16. We need just three states, to keep track of the remainder when the number of bits read so far is divided by 3.
We output 1 when we enter the state s (remainder equals 0).

start wﬁr\)
\ :
1:\1\\%\' V/“’

4
k S 2

18. Here we just need to kee number of congecutive 1's most recently encountered.

N\\w
S B 0,0
N T

\

t
T o
QGC‘/U —

20. We draw the diagram just as we draw diagrams for finite-state machines with output, except that the transi-

tions are labeled with just an input (since no outputs are associated with the transitions), and each state is
labeled with an output. For example, since the table tells us that the output of state s is 1, we write a 1

next to state sg; and since the transition from state s3 on input 1 is to state sy, we draw an arrow from s3

to s labeled 1.

22. Note that the output for a Moore machine is one bit longer than the input: it always starts with the output
for state s¢ (which is 0 for this machine).
a) The states that are encountered, after sg, are sg, 82, 52, and sy, in that order. Therefore the output is
00111.
b) The states visited are sg, s1, So, 92, 91, So, in that order (after the initial state). Therefore the output
is 0110110.
c) The procedure is similar to the other parts. The answer is 011001100110.

> Computatiogection 12.3 Finite-State Machines with No Output 311

cessive digitg4.
No output is
and sy4 will

r, from s¢ tq
on all inputs,

: is given,

1 attempt at
e (say, state
—transitions

vided by 3.

The machine is shown here. Note that state s; represents the condition that the number of symbols read
in so far is congruent to i modulo 4. Thus we make the output 1 at state sq and 0 for each of the other
states. Bach arrow, labeled 0,1, stands for two arrows with the same beginning and end, one labeled 0 and

one labeled 1.

start N

SECTION 12.3 Finite-State Machines with No Output

the transi-
ch state is
write a 1
w from sg
10.

¢ output

utput is

> output

By definition AQ = {2y | v € A Ay € O}. Since there are no elements of the empty set, this set is
empty. Similarly @A = . (This result is also a corollary of Exercise 6, since a set is empty if and only if i

(:ardmahty is 0.)

a) If we concatenate any number of copies of the empty string, then we get the empty string.

b) Clearly A* C (A*)*, e B C B* for all sets B. To show that (A*)" C A*, let w be an element of
(A%, Them w = wywy ... w, for some strings w; € A*. This means that each w; = wijwys ... w;y,, for
some strings w;; € A. But then w = wiiwig ... Win, WarWas ... Wap, .. WeiW2 - . . Wy, , & concatenation of

elements of 4, so w e 4"

At most, AB contains one element for each element in A x B, namely uv € AB when (u,v) € A x B. (It
might contain fewer elements than this, since the same string in AB may arise in two different ways, i.e., from

<A x Bl = |A||B|.

two different ordered pairs.) Theref

a) This is false; take A = {1}, so that A% = {11}.

b) This is not true if we take A = . If we exclude that possibility, then the length of every string in A2
would be greater than the length of the shortest string in A if A ¢ A. Thus the statement is true for 4 # (.
¢} This is true since wA = w for all strings.

d) This was Exercise 4h.

e) This is false if A ¢ A, since then the right-hand side contains the empty string but the left-hand side does
not.

f) This is false. Take A = {0,A}. Then A% = {},0,00}, so |4?| =3 # 4 = |A|%.

a) This set contains all bit strings, so of course the answer is yes.

b) Every string in this set cannot have two consecutive 0’s except possibly at the very start of the string.
Because 01001 violates this condition, it is not in the set.

¢) Our string is (010)'0'1 and so is in this set.

d) The answer is yes; just take 010 from the first set and 01 from the second.

e) Every string in this set must begin 00; since our string does not, it is not in the set.

f) Every string in this set cannot have two consecutive 0’s. Because 01001 violates this condition, it is not in
the set.

;
g
:
}
|

312

12.

14.

16.

20.

X
b

24.

26.

28.

Chapter 12 Modeling Computation

a) The first input keeps the machine in state sg. The second input drives it to state s;. The third input
drives it back to state so. Since this state (s¢) is final, the string is accéptedv

b) The input string drives the machine to states si, s2, so, and sy, respectively. Since s; is not a final state,
this string is not accepted.

c) The input string drives the machine to states si, s, sg, 81, 2, S0, and s1, respectively. Since s; is not
a final state, this string is not accepted.

d) The input string drives the machine to states sqg, s1, so, S1, S0, 81, So, S1, and sq, respectively. Since
sp is a final state, this string is accepted.

We can prove this by mathematical induction. For n =0 (the basis step) we want to show that f(s,)) = s,
and this is true by the basis step of the recursive definition following Example 4. The inductive step follows
directly from Exercise 15, since "1 = z"z.

Since sg is a final state, the empty string is in the language recognized by this machine; note that no other
string leads to sg. The only other final state is sq, and it is clear that it can be reached if the input string
is in {1}{0,1}" or in {0}{1}*{0}{0,1}*. Therefore the answer can be summarized as {A} U {1}{0,1}* U

{0H{1}*{0}40, 1}*.

Since state sg is final, the empty string is accepted. The only other strings that are accepted are tho

that drive the machine to state s, namely a 0 followed by any number of 1’s. Therefore the answer is
AU [n >0},
We need to write down the strings that drive the machine to states sy or s3. It is not hard to see that the

answer is {1}"{0H{0}" U {]} }{U}" {10,11}4{0,1}*.

We need to write down the strings that drive the machine to states sq, s1, or s5. It is not hard to see that
the angwer is {0} U {0} {1} U fﬁ}*{l()u}{i}* U {0}*{1110}{1}*. This can be written more compactly as
{0}*{A, 1} U {0}* {100, 1110} {1}*

s

We need states to keep track of what the last two symbols of input were, so we create four states, sg, 51, 59,

v s9 will be final, because

and s3, corresponding to having just seen 00, 01, 10, and 11, respectively. Onl

.

we want to accept precisely those strings that end with 10. We make sy the start state, so in effect we are

pretending that the string began with two 0's before we started accepting input; this causes no harm.

/5\\
)

siart @ 1 @
=

This is very similar to Exercise 29, except that the role of 0 and 1 are reversed, and we want to accept exactly
those strings that are not accepted in Exercise 29. Therefore we take the machine given in the solution to that
exercise, interchange inputs 0’s and 1's throughout, and make s3 the only nonfinal state (see Exercise 39).

We have four states: sg (the start state) represents having seen no 0’s; sy represents having seen exactly
one 0; sy represents having seen exactly two 0’s; and s represents having seen at least three 0’s. Ouly state
s3 is final. The transitions are the obvious ones: from each state to itself on input 1, from s; to s;1; on

input 0 for i =0,1,2, and from s3 to itself on input 0.

:
:
:
:
:

Section 12.3 Finite-State Machines with No Output 313

30

32.

34

36.

38.

40.

42.

44,

We have five states: nonfinal state so (the start state); final state s; representing that the string began
with 0; nonfinal state s, representing that the first symbol in the string was 1; final state s3 representing
that the first two symbols in the string were 11; and nonfinal state s4, a graveyard. The transitions are from
sp to sy on input 0, from sy to sp on input 1, from sy to &3 on input 1, from sy to ss on input 0, and
from each of the states s;, s3, and s4 to itself on either input.

This is very similar to Exercise 33, except that the role of 0 and 1 are reversed, and we want to accept exactly
those strings that are not accepted in Exercise 33. Therefore we take the machine given in the solution to
that exercise, interchange inputs 0’s and 1’s throughout, and make sq the only final state (see Exercise 39).

This is exactly the same as Exercise 36, except that s; is the one and only final state here.
This deterministic machine is the obvious choice. The top row represents having seen an even number of 0s

(and the bottom row represents having seen an odd number of 0’s); the left column represents having seen an

even number of 1's (and the right column represents having seen an odd number of 1's).

. 1 —
start ——
St sf S (S

=)
OT l@ of lo
!

N
G2) =
.~)

We prove this by contradiction. Suppose that such a machine exists, with start state sy. Because the empty

string is in the language, s must be a final state. There must be transitions from sg on each input, but

.

st
they cannot be to sy itself, because neither the string 0 nor the string 1 is accepted. Furthermore, it cannot

be that both transitions from sy lead to the same state s, because a 0 transition from & would have to

lead to an accepting state (since 00 is in the language), but that would cause
pring guage),

which is not in the language. Therefore there must be nounfinal states
53 on input 0 and from s¢ to sy on input 1. If our machine has only three states, then there are no other
states. Since the string 00 is accepted, there has to be a transition from s; to sq on input 0. Similarly, since
the string 11 is accepted, there has to be a transition from sy to s on input 1. Since the string 01 is not

accepted (but some longer strings that start this way are accepted), there has to be a transition from 51 on

goes to s, then our machine accepts 011, which it should not. Having obtained a contradiction, we conclude

that no such finite-state automaton exists.

By the solution to Exercise 39, all we have to do is take the deterministic automata constructed in the relevant
parts ((a), (d), and (e)) of Example 6 and change the status of each state (from final to nonfinal, and from
nonfinal to final).

We use exactly the same machine as in Exercise 29, but make sq, $;, and s, the final states and make §3
nonfinal. See also Exercise 26.

The empty string is accepted, since the start state is final. No other string drives the machine to state sg,
so the only other accepted strings are the ones that can drive the machine to state s;. Clearly the strings 0
and 1 do so. Also, every string of one or more 1’s can drive the machine to state s, after which a 0 will

take it to state s;. Therefore all the strings of the form 170 for n > 1 are also accepted. Thus the answer is
{A.0,13U {170 | n > 1}. (This can also be written as {A\,1} U {10 |n > 0}, since 0 = 1°0.)

314 Chapter 12 Modeling Computation

46. We can end up at state sg by doing nothing, and we can end up at state s; by reading a 1. We can
also end up at these final states by reading {10}{0,1} first, any number of times. Therefore the answer is

({103{0, 11)"{A, 1}

48. We just write down the paths that take us to state s¢ (namely, {0}*), to state s; (namely, {0}{0,1}{0}%),
and to state s4 via s3 (namely {0}*{0,1}{0}*{10}{0}") or via sy (namely {0}*{0,1}{0}*{1}{0}*{0,1}{0}*).
Our final answer is then the union of these:

{03 U {0}{0,1}{0}" L {0}7{0, 1{0}*{10}{0}* L {0}"{0, 1}{0}"{1}{0}"{0, 1}{0}"

50. One way to do Exercises 50-54 is to construct a machine following the proof of Theorem 1. Rather than do
that, we construct the machines in an ad hoc way, using the answers obtained in Exercises 43-47. As we saw
in the solution to Exercise 43, the language recognized by this machine is {0,01,11}. A deterministic machine

to recognize this language is shown below. Note that state sg is a graveyard state.

start @ 0 S @ i N @\
) \ %y k\j/
/S
i \O /
N2 \\ / 0,1
(33)— o Vv
S N
1 \\(; °s) ™
h // &\/’} 0.
o
Sa)

P

- 1 2 K\\
=)0

54. This one is fairly simple, since the nondeterministic machine is almost deterministic. In fact, all we need to
do is to eliminate the transition from s; to the graveyard state sy on input 0, and the transition from s3 to

o0
storty (50— ((5,) —
\ /

0,1

89 on input 0.

C®

56. The machines in the solutions to Exercise 55, with the graveyard state removed, satisfy the requirements of

this exercise.

Modeling Compuon 12.3 Finite-State Machines with No Qutput 315

eading a 1. Wea) That Ry is reflexive is tautological; and that Ry is symmetric is clear from the symmetric nature of its
herefore the answdefinition. To see that Ry is transitive, suppose sRyt and tRiu; we must show that sRyu. Let = be an
arbitrary string of length at most k. If f(s,z) is final, then f(t,x) is final, and so f(u,x) is final; similarly,
if f(s,z) is nonfinal, then f(¢,x) is nonfinal, and so f(u,x) is nonfinal. This is the definition of tRju.
nely, {0}"{0, 1}{) Notice that Ry 2 Ry 2 Ry 2 -+ (see part (c)) and that R, = Mreo By (see part (e)). To see that R, is
F{1Ho}{o, 1}{(1'eﬂexive, just note that for every state s and every nonnegative integer k we have (s,s) € Ry, so (s,s) € R..
To see that I, is symmetric, suppose that sR.t. Then sRyt for every k, whence tRys, whence tR,s. To see
that R. is transitive, suppose that sR.t and tR,u. Then sRyt and {Ryu for every k. By the transitivity of
0,1}{0}" R;, we have sRuu, whence sR.u.
c) The condition sRyt is stronger than the condition sRj_it, because all the strings considered for sRj_it
are also strings under consideration for sRyt. Therefore if sRyt, then sRy_t.
sm 1. Rather thad) This is an example of the general result proved in Exercise 54 in Section 8.5
ises 43-47. As wee) Suppose that s and ¢ are k-equivalent for every k. Let 2 be a string of length k. Then f(s,) and f(t,)
deterministic ma@re either both final or both nonfinal, so by definition, s and ¢ are s-equivalent.
) If s and ¢ are x-equivalent, then in particular the empty string drives them both to a final state or drives
them both to a nonfinal state. But the empty string drives a state to itself, and the result follows.
g) We must show that f(f(s,a),z) and f(f(¢,a),x) are either both final or both nonfinal. By Exercise 15
we have [(f(s,a),x) = f(s,ax) and f(f(t,a),2) = f(t,
I

that f(s,az) and f(¢, ax)are either smiL final or b@t 1 nonfinal.

1t

is
az). But because s and t are x-equivalent, we know

a} Two states are U-equivalent if the empty string drives both to a final state or drives both to a nonfinal

state. But the empty string drives a state to itself. Therefore two states are O-equivalent if they are both

ot
final states or both nonfinal states. Thus each equivalence class of Ry consists of only final states or of only

nonfinal states. Since the equivalence classes of H, are a refinement of the equivalence classes of Ry, each

squivalence class of R, consists of only final states or of only nonfinal state

e (k—1)-equivalent. Furthermore,

b} First suppose that s and ¢ are k-equivalent. By Exercise 58¢, s

a

I f(s,a) and f(t,a) were not (k — 1)-equivalent, then some string = of Eength k—1 would drive f{s,a) and
f(t,a) to different types of states (one final, one nonfina } Tha t i i f

ength k, would drive s and ¢ to different types of
Conversely, suppose that s and ¢ are (k—1)-equivalent a a) and f(t,a) are (k—1)-equiv cﬂen for every
3

1€ 1. We must show that s and ¢ are iﬁmequivaa t. A string of length less than & drives both to the same
let

:ype of state because s and ¢ are (k—1)-equive . Sosuppose ¥ = aw is a string of length &. Then z drives

>oth s and ¢ to the same type of state because ’th? marhme moves first to f(s,a) and f(¢,a), respectively,
out we are given that f(s,a) and f(#,a) are (k— 1)-equivalent. Thus the definition of the transition function
1 fact. all we nej does not depend on the choice of representative from the equwaience class and so is well defined.
| ’ There are only a finite nuniber of strings of length % for each k. Therefore we can test two states for k-

transition from ¢ . . .) .) :
:quivalence in a finite length of time by just tracing all possible computations. If we do this for £ =0,1,2,...

shen by Exercise 59 we know that eventually we will find nothing new, and at that point we have rletelmmed
‘he equivalence classes of R, . This tells us the states of M, and the definition in the preamble to this exercise
sives us the transition function, the start state, and the set of final states of M. For more details, see a source
such as Introduction to Automata Theory, Languages, and Computation (2nd Edition) by John BE. Hopcroft,

Rajeev Motwani, and Jeffrey D. Ullman (Addison Wesley, 2000).

1) For k = 0 the only issue is whether the states are final or not. Thus one equivalence class is {sg, s1, 52,54}
the nonfinal states) and the other is {s3, 55,56} (the final states). For k = 1, we need to try to refine these
v the requiremeﬁlasses by seeing whether strings of length 1 drive the machine from the given state to final or nonfinal states.
[he string 0 takes us from sp to a nonfinal state, and the string 1 takes us from sg to a nonfinal state, so

Section 12.3 Finite-State Machines with No Output 315

58.

60.

62.

a) That Ry is reflexive is tautological; and that Ry is symmetric is clear from the symmetric nature of its
definition. To see that Ry is transitive, suppose st and tRpu; we must show that sRpu. Let x be an
arbitrary string of length at most k. If f(s,) is final, then f(¢,x) is final, and so f(u,z) is final; similarly,
if f(s,x) is nonfinal, then f(¢,7) is nonfinal, and so f(u,7) is nonfinal. This is the definition of tRju.

b) Notice that Ry 2 Ry D Ry 2 -+ (see part (c)) and that R, = {)y—q Ry (see part (e)). To see that R, is
reflexive, just note that for every state s and every nonnegative integer k we have (s,s) € Ry, so (s,s) € R,
To see that I, is symmetric, suppose that sR.¢. Then syt for every k, whence tRys, whence {R.s. To see
that R. is transitive, suppose that sR.t and tR.u. Then sRyt and tRyu for every k. By the transitivity of
Ry we have sRpu, whence sR,u.

c) The condition sRyt is stronger than the condition sRj_it, because all the strings considered for sRj_t
are also strings under consideration for sRyt. Therefore if sRyt, then sRj_it.

d) This is an example of the general result proved in Exercise 54 in Section 8.5.

e) Suppose that s and ¢ are k-equivalent for every k. Let x be a string of length k. Then f(s,x) and f(t,x)
are either both final or both nonfinal, so by definition, s and ¢ are s-equivalent.

f) If s and ¢ are s-equivalent, then in particular the empty string drives them both to a final state or drives

them both to a nounfinal state. But the empty string drives a state to itself, and the result follows.

g) We must show that f(f(s,a),z) and f(f(¢,a),x) are either both final or both nonfinal. By Exercise 15
P

we have f(f(s,a),2)=) and f(f(t,a),z) = f({,ax). But because s and ¢ are s-equivalent, we know

that f(s,ax) and f(t,ax her both final or both nonfinal.

a) Two states are U-equivalent if the empty string drives both to a final state or drives both to a nonfinal
state. But the empty string drives a state to itself. Therefore two states are O-equivalent if they are both

final states or both nonfinal states. Thus each equivalence class of Eg consists of only final states or of only
nonfinal states. Since the equivalence classes of R, are a refinement of the equivalence classes of Ry, each

equivalence class of R, consists of only final states or of only nonfinal stat

b) First suppose that s and ¢ are k-equivalent. By Exercise 58¢, s and # are (k—1)-equivalent. Furthermore,

if f(s,a) and f(t,a) were not (k— 1)-equivalent, then some string z of length k — 1 would drive f(s,a) and

f(t,a) to different types of states (one final, one nonfinal). That would mean that, ez, which is a string of

:

length &, would drive s and ¢ to different types of states, contradicting the fact that s and ¢ are k-equivalent.
Conversely, suppose that s and ¢ are (k—1)-equivalent and f(s,a) and f(t,a) are (k—1)-equivalent for every
a € I. We must show that s and ¢ are k-equivalent. A string of length less than % drives both to the same
type of state because s and ¢ are (k—1)-equivalent. So suppose = = aw is a string of length k. Then x drives
both s and ¢ to the same type of state because the machine moves first to f(s,a) and f(t,a), respectively,
but we are given that f(s,a) and f(t,a) are (k—1)-equivalent. Thus the definition of the transition function
F does not depend on the choice of representative from the equivalence class and so is well defined.

) There are only a finite number of strings of length k for each k. Therefore we can test two states for k-

equivalence in a ﬁnite len gth of time by juqt i‘mr*ing all po%lhle (’01’1’5;)11‘(&%10118 If we do this for k= 0,1

the equwaieme Classes, Of R,. Thls tells us the states of M , a,ud the deﬁmmon in ‘the preamble to uhls exercise
gives us the transition function, the start state, and the set of final states of M. For more details, see a source
such as Introduction to Automata Theory, Languages, and Computation (2nd Edition) by John E. Hopcroft,
Rajeev Motwani, and Jeffrey D. Ullman (Addison Wesley, 2000).

a) For k = 0 the only issue is whether the states are final or not. Thus one equivalence class is {s0, 81, 82, 84}

(the nonfinal states) and the other is {s3, 85,86} (the final states). For k = 1, we need to try to refine these
classes by seeing whether strings of length 1 drive the machine from the given state to final or nonfinal states.
The string 0 takes us from sy to a nonfinal state, and the string 1 takes us from sg to a nonfinal state, so

316

Chapter 12 Modeling Computation

let’s call s type NN. Then we see that s; is type FN, that sg is type FF, and that s4 is type FF. Therefore
sy and sy are still equivalent (they have the same type, so they behave the same, in terms of driving to
final states, on strings of length 1), but sy and sy are not l-equivalent to either of them or to each other,
Similarly, states s3, s5, and sg are types FN, FN, and I'F, respectively, so s3 and s5 are 1-equivalent, but sq
is not l-equivalent to either of them. This gives us the following 1-equivalence classes: {so}, {51}, {s2,54},
{33,385}, and {s¢}. Notice that not only are sy and sy l-equivalent, but they will be k-equivalent for all k,
because they have exactly the same transitions (to s; on input 0, and to sg on input 1). The same can be
said for s3 and ss. Therefore the 2-equivalence classes will be the same as the I-equivalence classes, and
these will be the k-equivalence classes for all k > 1, as well as the x-equivalence classes.

b) We turn s; and s4 into one state (labeled sy below), and we turn s3 and ss into one state (labeled s
below). The transitions can be copied from the diagram for M .

)=
o
1 z// T
\1\\ V/O
<

ﬁ@) i @31

start s

SECTION 124 ILanguage Recognition

2. a) This regular expression generates all strings consisting of exactly two 0’s followed by zero or more 1's.

b) This regular expression generates all strings consisting of zero or more repetitions of 01.
c) This is the string 01 together with all strings consis ‘Ung of exactly two 0's followed by zero or more 1’s

d) This set contains all strings that start with a 0 and satisfly the condition that all the max

of 1’s have an even number of 1’s in them
e) This set consists of all strings in which every 0 is preceded by a 1, and furthermore the string must start
10 if it is not empty.

f) This gives us all strings that consist of zero or more 0’s followed by 11, together with the string 111.

. a) The string is in the set, since it is 10112,

b) The string is in the set, since it is (10)(11).

¢) The string is in the set, since it is 1(01)1.

d) The string is in the set: take the first * to be 1, and take the 1 in the union.
e) The string is in the set, since it is (10)(11).

f) The strings in this set must have odd length, so the given string is not in the set.
g) The string is in the set: take = to be 0.

hi) The string is in the set: choose 1 from the first group, 01 from the second, and take % = 1.

. a) There are many ways to do this, such as (AUOU1)(AUOU1)(AUOU1L).

b) 001*0
c) We assume it is not intended that every 1 is followed by ezactly two 0’s, so we can write 0*(100 U 0)*.

d) One way to say this is that every 1 must be followed by a 0. Thus we can write 0*(10 U 0)*00.

e) To get an even number of 1’s, we can write something like (0*10*10%)*.

Section 12.4 Language Recognition 317

8. a) Since we want to accept no strings, we will have no final states. We need only one state, the start state,
and there is a transition from this state to itself on all inputs.
b) This is just like part (a), except that we want to accept the empty string. Our machine will have two
states. The start state will be final, the other state will not be final. On all inputs, there is a transition from
each of the states to the nonfinal state.
c) This time we need three states, sg (the start state), s1, and sp. Only sy is final. On input a, there is a
transition from sy to sq: this will make sure that a is accepted. All other transitions are to sy, which serves
as a graveyard state: from so on all inputs except a, and from s; and s5 on all inputs. (It is not clear from
the exercise whether @ is meant to be one fixed element of I, as we have assumed, or rather whether we are
to accept all strings of length 1. If the latter is intended, then we have a transition from state sg to state sq
for every a € 1.)

10. The construction is straightforward in each case: we just lead to final states on the desired inputs.

start\@ 0 5 30

(a)
o T ™~ ////‘“\\;
S‘E‘TA><SU)-—~ML——-> g§>__~~? >1(Sa\)
~ e Nt/
0
N
< i
= {(b)
starty(s)0 @ 0 ()0 /((;;5
Y =4 N N/
]
4 > 5s
> &
{c)

12. These are quite messy to draw in detail.

Al

a) The machine for 0 is shown in F

7

igure 3 (third machine). The machine for 1* is shown in Figure 3 (second

machine). We need to concatenate them, so we get the following picture:

0 ™~ T
start /O/JK}\H(\ 1\N— K\]t
2050 © OO0

b) The machine for 0 is shown in Figure 3 (third machine). The machine for 1 is similar. We need to take
their union. Then we need to concatenate that with the machine for 1* , shown in Figure 3 (second machine).
So we get the following picture:

C N
00,

) g 050D
e

c¢) The machine for 10* is like our answer for part (a), with the roles of 0 and 1 reversed. We need to take
the union of that with the machine for 1* shown in Figure 3 (second machine). We then need to concatenate

two copies of the machine for 0 (third machine in Figure 3) in front of this, so we get the following picture:

318

14.

16.

18.

20.

22,

Chapter 12 Modeling Computation

In each case we follow the construction inherent in the proof of Theorem 2. There is one state for each
nonterminal symbol (which we have denoted with the name of the symbol), and there is one more state—the
only final one unless S — A is a transition—which we call F'.

start;, 0 9

a)

tarty e N\ -
smn;@> N @
Nt/ A
0

ooy

= Y~
i
O
(b)
T
.
A~ NN D
start>® i(\\{(@)

The transitions between states cause us to put in the rules § — 04, § — 18, A - 08B, A— 14, B— 0B,
and B — 1A, The transitions to final states cause us to put in the rules S — 0, A — 1, and B — 1. Finally,

since s¢ is a final state, we add the rule S —).

This is clear, since the unique derivation of every terminal string in the grammar is exactly reflected in the
operation of the machine. Precisely those nonempty strings that are generated drive the machine to its final
state, and the empty string is accepted if and only if it is in the language.

We construct a new nondeterministic finite-state automaton from a given one as follows. A new state s}, is
added (but s¢ is still the start state). The new state is final if and only if sq is final. All transitions into s
are redirected so that they end at sj. Then all transitions out of sy are copied to become transitions out of
sg- It is clear that so can never be revisited, since all the transitions into it were redirected. Furthermore, s/,
is playing the same role that so used to play (after one or more symbols of input have been read), so exactly

the same set of strings is accepted.

Let the states that were encountered on input x be, in order, sg, s;,, $i,, ..., i, , where n = [(x). Since

we are given that n > ||, this list of n 4 1 states must, by the pigeonhole principle, contain a repetition;

Section 12.5 Turing Machines 319

suppose that the first repeated state is s,. Let v be that portion of 2 that caused the machine to move from
sy on its first encounter back to s, for the second encounter. Let u be the portion of z before v, and let w
be the portion of x after v. In particular I(v) > 1 and I(uv) < |S| (since all the states appearing before the

:
£

i second encounter with s, are different). Furthermore, the string wv'w, for each nonnegative integer 7, must

% drive the machine to exactly the same final state as © = uvw did, since the v’ part of the string simply drives
| the machine around and around in a loop starting and ending at s, (the loop is traversed i times). Therefore
all these strings are accepted (since x was accepted), and so all of them are in the language.

24. ASSUIII@ that this set is regular, accepted by a deterministic finite-state automaton with state set 5. Let
x=1"" for some n > \/? By the pumping lemma, we can write = = uvw with v nonempty, so that uviw
é is in our set for all 7. Since there is only one symbol involved, we can write u = 1", v =1° and w = 1%,
| so that the statement that uviw is in our set is the statement that (r+41t) + st is a perfect square. But this
cannot be, since successive perfect squares differ by increasing large amounts as they grow larger, whereas the

terms in the sequence (r -+ %) + si have a constant difference for ¢ = 0,1,.... This contradiction tells us that
the set is not regular.
| 26. This (far from easy) proof is similar in spirit to zigc;ritim‘;e The inter should consult
g a reference in <~@1upm;ati<‘m theory, such as Eiemem‘,s ;,(, weory of Computation by H. R. Lewis and
f C. H. Papadimitriou (Prentice-Hall, 1981).

28. It’s just a matter of untangling the definition. If 2 and y are distinguishable with respect to L(Af), then
without loss of generality there must be a string 2 such that xz € L(M) and yz ¢ L(M). This means that

the string xz drives A from its initial state to a final state, and the string yz drives M from its initial state

to a nonfinal state. For a proof by contradiction, suppose that f(SQ,u} = jfma y); in other w‘@;«isa x and

y both drive A4 to the saine state. But then #z and yz both

o

steps of computation (where [(2) is the length of %), and this state «:axit be both final and nonfinal. This
\ A] 3

contradiction shows that f(sg,2) # F(s0,9).

30. We claim that all 2" Dbit st ect to L. If and y are two bit
ugmshed by any string z of length

strings of length n that differ in bit 7, w
i — 1, because one of zz and yz has ' position from the end and the other has a 1. Therefore

by E\%’I(ISP 29, any deterministic finite-state autor

O

maton recognizing L,, must have at least 27 states.

SECTION 12.5 Turing Machines

2. We will indicate the configuration of the Turing machine using a notation such as 0[s3]151, as described in

the solution to Exercise 1. (This means that the machine is in state s 2, the tape is blank except for a portion
that reads 01B1, and the tape head points to the left-most 1 .) We indicate the successive configurations with
arrows.
a) Initially the configuration is [s9)0101. Using the first five-tuple, the machine next enters configuration
0[s1]101. Thereafter it proceeds as follows: 0[s;]101 — 01[s{]01 — 011[s]1. Since there is no five-tuple for
this combination (in state sy reading a 1), the machine halts. Thus (the nonblank portion of) the final tape
reads 0111.

b) [s0]111 — [51]B0O11 — 0[s2]011 — halt; final tape 0011
c) [50]00B00 — 0[s1]0B00 — 01[s2] BO0 — 010[s3]00 — halt; final tape 01000
d) [s0]B — 1[s1]B — 10[s2] B — 100[s3]B — halt; final tape 100

