CHAPTER 12
Modeling Computation

SECTION 12.1 Languages and Grammars

2. There are of course a large number of possible answers. Five of them are the sleepy hare runs quickly, the hare passes the tortoise, the happy hare runs slowly, the happy tortoise passes the hare, and the hare passes the happy hare.

4. a) It suffices to give a derivation of this string. We write the derivation in the obvious way. $S \Rightarrow 1S \Rightarrow 11S \Rightarrow 11100A \Rightarrow 111000$.

b) Every production results in a string that ends in S, A, or 0. Therefore this string, which ends with a 1, cannot be generated.

c) Notice that we can have any number of 1’s at the beginning of the string (including none) by iterating the production $S \rightarrow 1S$. Eventually the S must turn into 00A, so at least two 0’s must come next. We can then have as many 0’s as we like by using the production $A \rightarrow 0A$ repeatedly. We must end up with at least one more 0 (and therefore a total of at least three 0’s) at the right end of the string, because the A disappears only upon using $A \rightarrow 0$. So the language generated by G is the set of all strings consisting of zero or more 1’s followed by three or more 0’s. We can write this as $\{ 0^n1^m \mid n \geq 0, m \geq 0 \}$.

6. a) There is only one terminal string possible here, namely abb. Therefore the language is $\{ abb \}$.

b) This time there are only two possible strings, so the answer is $\{ aba, aa \}$.

c) Note that A must eventually turn into ab. Therefore the answer is $\{ abb, abab \}$.

d) If the rule $S \rightarrow AA$ is applied first, then the string that results must be N a’s, where N is an even number greater than or equal to 4, since each A becomes a positive even number of a’s. If the rule $S \rightarrow B$ is applied first, then a string of one or more b’s results. Therefore the language is $\{ a^{2n} \mid n \geq 2 \} \cup \{ b^n \mid n \geq 1 \}$.

e) The rules imply that the string will consist of some a’s, followed by some b’s, followed by some more a’s (“some” might be none, though). Furthermore, the total number of a’s equals the total number of b’s. Thus we can write the answer as $\{ a^nb^{n+m}a^m \mid m, n \geq 0 \}$.

8. If we apply the rule $S \rightarrow 0S1$ n times, followed by the rule $S \rightarrow \lambda$, then the string 0^n1^n results. On the other hand, no other derivations are possible, since once the rule $S \rightarrow \lambda$ is used, the derivation stops. This proves the given statement.

10. a) It follows by induction that unless the derivation has stopped, the string generated by any sequence of applications of the rules must be of the form 0^nS1^m for some nonnegative integers n and m. Conversely, every string of this form can be obtained. Since the only other rule is $S \rightarrow \lambda$, the only terminal strings generated by this grammar are 0^n1^m.

b) A derivation consists of some applications of the rules until the S disappears, followed, perhaps, by some more applications of the rules. First let us see what can happen up to the point at which the S disappears. The first rule adds 0’s to the left of the S. The last rule makes the S disappear, whereas rules two and three turn the S into $1A$ or 1. Therefore the possible strings generated at the point the S disappears are 0^n, 0^n1, 0^nS1^m, 0^nS1^m1, 0^nS1^m1S.
and 0^n1A, where n is a nonnegative integer. By rules four and five, the A eventually turns into one or more 1's. Therefore the possible strings are 0^n1^m for nonnegative integers n and m.

12. By following the pattern given in the solution to Exercise 11, we can certainly generate all the strings $0^n1^m2^n$, for $n \geq 0$. We must show that no other terminal strings are possible. First, the number of 0’s, A’s, and B’s must be equal at the point at which S disappears, with all the 0’s on the left (where they must stay). The rule $BA \rightarrow BA$ tells us the A’s can only move left across the B’s, not conversely. Furthermore, A’s turn into 1’s, but only if connected by 1’s to a 0; therefore the only way to get rid of the A’s is for them all to move to the left of the B’s and then turn into 1’s. Finally, the B’s can only turn into 2’s, and they are all on the right.

14. In each case we will list only the productions, because V and T will be obvious from the context, and S speaks for itself.
 a) For this finite set of strings, we can simply have $S \rightarrow 10$, $S \rightarrow 01$, and $S \rightarrow 101$.
 b) To get started we can have $S \rightarrow 00A$; this gives us the two 0’s at the start of each string in the language. After that we can have anything we want in the middle, so we want $A \rightarrow 0A$ and $A \rightarrow 1A$. Finally we insist on ending with a 1, so we have $A \rightarrow 1$.
 c) The even number of 1’s can be accomplished with $S \rightarrow 11S$, and the final 0 tells us to include $S \rightarrow 0$ as the only other production. Note that zero is an even number, so the string 0 is in the language.
 d) If there are not two consecutive 0’s or two consecutive 1’s, the symbols must alternate. We can accomplish this by having an optional 0 to start, then any number of repetitions of 10, and then an optional 1 at the end. One way to do this is with these productions: $S \rightarrow ABC$, $A \rightarrow 0$, $A \rightarrow \lambda$, $B \rightarrow 10B$, $B \rightarrow \lambda$, $C \rightarrow 1$, $C \rightarrow \lambda$.

16. In each case we will list only the productions, because V and T will be obvious from the context, and S speaks for itself.
 a) It suffices to have $S \rightarrow 1S$ and $S \rightarrow \lambda$.
 b) We let A represent the string of 0’s. Thus we take $S \rightarrow 1A$, $A \rightarrow 0A$, and $A \rightarrow \lambda$. (Here $A \rightarrow A0$ works just as well as $A \rightarrow 0A$, and either one is fine.)
 c) It suffices to have $S \rightarrow 11S$ and $S \rightarrow \lambda$.

18. a) We want exactly one 0 and an even number of 1’s to its right. Thus we can use the rules $S \rightarrow 0A$, $A \rightarrow 1A$, and $A \rightarrow \lambda$.
 b) We can have the new symbols grow out from the center, using the rules $S \rightarrow 0511$ and $S \rightarrow \lambda$.
 c) We can have the 0’s grow out from the center, and then have the center turn into a 1-making machine. The rules we propose are $S \rightarrow 050$, $S \rightarrow A$, $A \rightarrow 1A$, and $A \rightarrow \lambda$.

20. We can simply have identical symbols grow out from the center, with an optional final symbol in the center itself. Thus we use the rules $S \rightarrow 0S0$, $S \rightarrow 1S1$, $S \rightarrow \lambda$, $S \rightarrow 0$, and $S \rightarrow 1$. Note that this grammar is context-free since each left-hand side is a single nonterminal symbol.

22. a) The string is the leaves of the tree, read from left to right. Thus the string is “a large mathematician hops wildly.”
 b) Again, the string is the leaves from left to right, namely +987.

24. a) If we look at the beginning of the string, we see that we can use the rule $S \rightarrow bcS$ first. Then since the remainder of the string (after the initial bc) starts with bb, we can use the rule $S \rightarrow bbS$. Finally, we can use the rule $S \rightarrow a$. We therefore obtain the first tree shown below.
b) This is similar to part (a), using three rules to take care of the first six characters, two by two.

(c) Again we work two by two from the left, producing the tree shown.

26. a) Since the string starts with a b, we might have either $Baba \Rightarrow baba$ or $Caba \Rightarrow baba$ as the last step in the derivation. The latter looks more hopeful, since the Ca could have come from the rule $A \rightarrow Ca$, meaning that the derivation ended $Aba \Rightarrow Caba \Rightarrow baba$. Now we see that since $B \rightarrow Ba$ and $B \rightarrow b$ are rules, the derivation could have been $S \Rightarrow AB \Rightarrow ABa \Rightarrow Aba \Rightarrow Caba \Rightarrow baba$.

b) There is no way to have obtained an a on the left, since every rule has every a preceded by another symbol (which does not ever turn into λ).

c) This is just part (a), since we could have used the rule $C \rightarrow cb$ instead of the rule $C \rightarrow b$, obtaining the extra c on the left. Thus the derivation is $S \Rightarrow AB \Rightarrow ABa \Rightarrow Aba \Rightarrow Caba \Rightarrow cbaba$.

d) The only way for the symbol c to have appeared is through the rule $C \rightarrow cb$. Thus we may assume (without loss of generality) that the last step in the derivation was $bbCa \Rightarrow bbcbca$. Now the only way for Ca to have occurred is from the rule $A \rightarrow Ca$. Thus we can assume that the derivation ends $bbba \Rightarrow bbbcCa \Rightarrow bbcbca$.

But there is no way for the A to appear at the end (the only rule producing an A puts a B after it). Therefore this string is not in the language.

28. a) We just translate mechanically from the Backus-Naur form to the productions. Let us use E for $\langle expression \rangle$ (which we assume is the starting symbol), and V for $\langle variable \rangle$ for convenience. The rules are $E \rightarrow (E)$, $E \rightarrow E + E$, $E \rightarrow E \times E$, and $E \rightarrow V$ (from the first form), together with $V \rightarrow x$ and $V \rightarrow y$ (from the second).

b) The tree is easy to construct. The outermost operation is $+$, so the top part of the tree shows E becoming $E + E$. The right E now is the variable x. The left E is an expression in parentheses, which is itself the product of two variables.

30. a) We first incorporate all the rules from the solution to Exercise 29a except the first two. Then we simply add the rule $S \rightarrow \langle sign \rangle \langle integer \rangle / \langle positive integer \rangle$.

b) We incorporate all of the solution to Exercise 29b except for the first line, together with a rule $\langle fraction \rangle ::= \langle sign \rangle \langle integer \rangle / \langle positive integer \rangle$.

c) The tree practically draws itself from the rules.
32. We ignore the need for spaces between the names, and we assume that names need to be nonempty. We also do not assume anything more than was given in the statement of the exercise.

\[
\begin{align*}
\langle \text{person} \rangle & ::= (\text{firstname})(\text{middleinitial})(\text{lastname}) \\
\langle \text{lastname} \rangle & ::= (\text{letterstring}) \\
\langle \text{middleinitial} \rangle & ::= (\text{letter}) \\
\langle \text{firstname} \rangle & ::= (\text{ucletter}) \mid (\text{ucletter})\text{letterstring} \\
\langle \text{letterstring} \rangle & ::= (\text{letter}) \mid (\text{letterstring})\langle \text{letter} \rangle \\
\langle \text{letter} \rangle & ::= (\text{lcletter}) \mid (\text{ucletter}) \\
\langle \text{lcletter} \rangle & ::= a \mid b \mid c \mid \ldots \mid z \\
\langle \text{ucletter} \rangle & ::= A \mid B \mid C \mid \ldots \mid Z
\end{align*}
\]

34. a) Strings in this set consist of one or more letters followed by an optional binary digit, followed by one or more letters. Only the letters \(a\), \(b\), and \(c\) are used, however.

b) Strings in this set consist of an optional plus or minus sign followed by one or more digits.

c) Strings in this set consist of any number of letters, followed by any number of binary digits, followed by any number of letters. "Any number" includes 0, so the string could consist of letters only or of binary digits only, and it could also be empty. Only the letters \(x\) and \(y\) are used, however. Note that \((D_1)\) is equivalent to \(D^*\).

36. This is straightforward, using the conventions. We assume that the string gives the sandwich from top to bottom. Note that words in roman font are constants here, and words in italics are variables.

\[
\begin{align*}
\textit{sandwich} ::= \textit{bread} \mid \textit{dressing} \mid \textit{lettuce} \mid \textit{tomato} \mid \textit{meat} \mid \textit{cheese} \mid \textit{bread} \\
\textit{dressing} ::= \textit{mustard} \mid \textit{mayonnaise} \\
\textit{meat} ::= \textit{turkey} \mid \textit{chicken} \mid \textit{beef}
\end{align*}
\]

38. The cosmetic change is to put angled brackets around the variables used for nonterminal symbols. The substantive changes are to replace uses of \(\pm\), \(*\), and ? with rules that have the same effect. For the plus sign, we replace \(x+\), where \(x\) is a symbol by a new symbol, let's call it \(\langle x+ \rangle\), and the new rule

\[
\langle x+ \rangle ::= x \mid \langle x+ \rangle x
\]

Similarly, we replace \(x\ast\), where \(x\) is a symbol by a new symbol, let's call it \(\langle x\ast \rangle\), and the new rule

\[
\langle x\ast \rangle ::= \lambda \mid \langle x\ast \rangle x
\]

where \(\lambda\) is the empty string. Finally, we replace each occurrence of \(x?\) by a new symbol, let's call it \(\langle x? \rangle\), and the new rule

\[
\langle x? \rangle ::= \lambda \mid x
\]

where \(x\) is a symbol; and we replace each occurrence of \((\text{\textit{junk}})?)\) by a new symbol, let's call it \(\langle \text{\textit{junk}}? \rangle\), and the new rule

\[
\langle \text{\textit{junk}}? \rangle ::= \lambda \mid \text{\textit{junk}}
\]

where \(\text{\textit{junk}}\) is a string of symbols.

40. This is very similar to the preamble to Exercise 39. The only difference is that the operators are placed between their operands, rather than behind them, and parentheses are required in expressions used as factors. Thus we have the following Backus-Naur form:
\begin{equation*}
\begin{align*}
\langle \text{expression} \rangle & := \langle \text{term} \rangle | \langle \text{term} \rangle \langle \text{addOperator} \rangle \langle \text{term} \rangle \\
\langle \text{addOperator} \rangle & := + | - \\
\langle \text{term} \rangle & := \langle \text{factor} \rangle | \langle \text{factor} \rangle \langle \text{mulOperator} \rangle \langle \text{factor} \rangle \\
\langle \text{mulOperator} \rangle & := * | / \\
\langle \text{factor} \rangle & := \langle \text{identifier} \rangle | (\langle \text{expression} \rangle)
\end{align*}
\end{equation*}

42. The definition of "derivable from" says that it is the reflexive, transitive closure of the relation "directly derivable from." Indeed, taking \(n = 0 \) in that definition gives us the fact that every string is derivable from itself, and the existence of a sequence \(w_0 \Rightarrow w_1 \Rightarrow \cdots \Rightarrow w_n \) for \(n \geq 1 \) means that \((w_0, w_n)\) is in the transitive closure of the relation \(\Rightarrow \) (see Theorem 2 in Section 8.4).

SECTION 12.2 Finite-State Machines with Output

2. In each case we need to write down, in a table, all the information contained in the arrows in the diagram. In part (a), for example, there are arrows from state \(s_1 \) to \(s_1 \) labeled 1,0 and from \(s_1 \) to \(s_2 \) labeled 0,0. Therefore the row of our table for this machine that gives the information for transitions from \(s_1 \) shows that on input 1 the transition is to state \(s_1 \) and the output is 0, and on input 0 the transition is to state \(s_2 \) and the output is 0.

\begin{center}
\begin{tabular}{ccc}
\text{State} & \text{Next State} & \text{Output} \\
\hline
\(s_0 \) & \(s_1 \) \(s_2 \) & 0 1 \\
\(s_1 \) & \(s_2 \) \(s_1 \) & 0 0 \\
\(s_2 \) & \(s_2 \) \(s_0 \) & 1 0 \\
\hline
\end{tabular}
\end{center}

\begin{center}
\begin{tabular}{ccc}
\text{State} & \text{Next State} & \text{Output} \\
\hline
\(s_0 \) & \(s_1 \) \(s_2 \) & 0 1 \\
\(s_1 \) & \(s_1 \) \(s_3 \) & 1 0 \\
\(s_2 \) & \(s_3 \) \(s_0 \) & 0 0 \\
\(s_3 \) & \(s_1 \) \(s_2 \) & 1 1 \\
\hline
\end{tabular}
\end{center}

\begin{center}
\begin{tabular}{ccc}
\text{State} & \text{Next State} & \text{Output} \\
\hline
\(s_0 \) & \(s_3 \) \(s_1 \) & 0 1 \\
\(s_1 \) & \(s_0 \) \(s_1 \) & 0 1 \\
\(s_2 \) & \(s_3 \) \(s_1 \) & 0 1 \\
\(s_3 \) & \(s_1 \) \(s_3 \) & 0 0 \\
\hline
\end{tabular}
\end{center}

4. a) The machine starts in state \(s_0 \). On input 1 it moves to state \(s_2 \) and outputs 0. The next three inputs (all 0's) drive it to \(s_3 \), then \(s_1 \), then back to \(s_0 \), with outputs 011. The final 1 drives it back to \(s_2 \) and outputs 0 again. So the output generated is 00110.

b) The machine starts in state \(s_0 \). On input 1 it moves to state \(s_2 \) and outputs 1. The next three inputs (all 0's) keep it at \(s_2 \), outputting 1 each time. The final 1 drives it back to \(s_0 \) and outputs 0. So the output generated is 11110.

c) The machine starts in state \(s_0 \). Since the first input symbol is 1, the machine goes to state \(s_1 \) and gives 1 as output. The next input symbol is 0, so the machine moves back to state \(s_0 \) and gives 0 as output. The third input is 0, so the machine moves to state \(s_3 \) and gives 0 as output. The fourth input is 0, so the machine moves to state \(s_1 \) and gives 0 as output. The fifth input is 1, so the machine stays in state \(s_1 \) and gives 1 as output. Thus the output is 10001.
6. a) The machine starts in state s_0. On input 0 it moves to state s_1 and outputs 1. On the next three inputs it stays in state s_1 and outputs 1. Therefore the output is 1111.
b) The machine starts in state s_0. On input 1 it moves to state s_3 and outputs 0. Then on the next input, which is 0, it moves to state s_1 and outputs 0. The next four moves are to states s_2, s_3, s_0, and s_1, with outputs 1001. Thus the answer is 001001.
c) The idea is the same as in the other parts. The answer is 00110000110.

8. We need 9 states. The middle row of states in our picture correspond to no quarters or nickels having been deposited. The top row takes care of the cases in which a nickel has been deposited, and the bottom row handles the cases in which a quarter has been deposited. The columns record the number of dimes (0, 1, or 2). The transitions back to state s_0 are shown as leading off into open space to avoid clutter. Furthermore to avoid clutter we have not drawn six loops, namely loops at states s_3, s_4, and s_5 on input N (since additional nickels are not recorded), and loops at states s_6, s_7, and s_8 on input Q (since additional quarters are not recorded). We do not show the output, since there is none except for all the transitions back to state s_0; there the output is “unlock the door.” The letters stand for the obvious coins.

10. We need only two states, since the action depends only on the parity of the number of bits we have read in so far. Transitions from state s_0 to state s_1 are made on the odd-numbered bits, so there we output the same bit as the input. The transitions back to s_0 are made on the even-numbered bits, and there we make the output opposite to the input.

12. To avoid having the machine being too complex, we will keep the model very simple, assuming that the lock opens if and only if the input is $(10, R, 1)(8, L, 2)(37, R, 1)$. In our picture, the “input” A stands for all the inputs other than the inputs shown leading elsewhere. The output 0 means nothing happens; the output U means the lock is unlocked. If we wished to make our model more realistic, we could, for instance, allow the input $(10, R, 1)(8, L, 1)(8, L, 1)(37, R, 1)$ to open the lock, as well as, say, $(10, R, 1)(8, L, 2)(30, R, 1)(37, R, 1)$ (assuming the numbers on the dial are arranged counterclockwise).

14. The picture for this machine would be a little cumbersome to draw; it has 25 states. Instead, we will describe the machine verbally. We assume that possible inputs are the digits 0 through 9. We will let s_0 be the start
state. States \(s_1, s_2, s_3, \) and \(s_4 \) will be the states reached after the user has entered the successive digits of the correct password, so on the transition from \(s_3 \) to \(s_4 \), the output is the welcome screen. No output is given for the transitions from \(s_0 \) to \(s_1 \), from \(s_1 \) to \(s_2 \), or from \(s_2 \) to \(s_3 \). States \(s_{11}, s_{12}, s_{13}, \) and \(s_{14} \) will correspond to wrong digits. Thus there is a transition from \(s_0 \) to \(s_{11} \) if the first digit is wrong, from \(s_1 \) to \(s_{12} \) if the second digit is wrong, and so on. There are transitions from \(s_{11} \) to \(s_{12} \) to \(s_{13} \) to \(s_{14} \) on all inputs. No output is given for the transitions to \(s_{11}, s_{12}, \) or \(s_{13} \), On transition to \(s_{14} \) an error message is given.

Now state \(s_{14} \) plays the role of \(s_0 \), with eight more states to take care of the user's second attempt at a correct password, either terminating in a successful sign-on (say, state \(s_{101} \)) or another failure (say, state \(s_{114} \)). Then another set of eight states takes care of the third attempt. State \(s_{214} \) is the last straw—transitions to it tell the user that the account is locked.

16. We need just three states, to keep track of the remainder when the number of bits read so far is divided by \(3 \). We output 1 when we enter the state \(s_0 \) (remainder equals 0).

```
18. Here we just need to keep track of the number of consecutive 1's most recently encountered.

20. We draw the diagram just as we draw diagrams for finite-state machines with output, except that the transitions are labeled with just an input (since no outputs are associated with the transitions), and each state is labeled with an output. For example, since the table tells us that the output of state \( s_2 \) is 1, we write a 1 next to state \( s_2 \); and since the transition from state \( s_3 \) on input 1 is to state \( s_0 \), we draw an arrow from \( s_3 \) to \( s_0 \) labeled 1.

22. Note that the output for a Moore machine is one bit longer than the input: it always starts with the output for state \( s_0 \) (which is 0 for this machine).
   a) The states that are encountered, after \( s_0 \), are \( s_0, s_2, s_2, \) and \( s_1 \), in that order. Therefore the output is 00111.
   b) The states visited are \( s_2, s_1, s_0, s_2, s_1, s_0 \), in that order (after the initial state). Therefore the output is 0110110.
   c) The procedure is similar to the other parts. The answer is 011001100110.
The machine is shown here. Note that state $s_i$ represents the condition that the number of symbols read in so far is congruent to $i$ modulo 4. Thus we make the output 1 at state $s_0$ and 0 for each of the other states. Each arrow, labeled 0, 1, stands for two arrows with the same beginning and end, one labeled 0 and one labeled 1.

### SECTION 12.3 Finite-State Machines with No Output

2. By definition $A \emptyset = \{ xy \mid x \in A \land y \in \emptyset \}$. Since there are no elements of the empty set, this set is empty. Similarly $\emptyset A = \emptyset$. (This result is also a corollary of Exercise 6, since a set is empty if and only if its cardinality is 0.)

4. a) If we concatenate any number of copies of the empty string, then we get the empty string.
   
b) Clearly $A^* \subseteq (A^*)^*$, since $B \subseteq B^*$ for all sets $B$. To show that $(A^*)^* \subseteq A^*$, let $w$ be an element of $(A^*)^*$. Then $w = w_1w_2 \ldots w_k$ for some strings $w_i \in A^*$. This means that each $w_i = w_{i1}w_{i2} \ldots w_{in_i}$ for some strings $w_{ij} \in A$. But then $w = w_{11}w_{12} \ldots w_{1n_1}w_{21}w_{22} \ldots w_{2n_2} \ldots w_{kn_k}$, a concatenation of elements of $A$, so $w \in A^*$.

6. At most, $AB$ contains one element for each element in $A \times B$, namely $uv \in AB$ when $(u, v) \in A \times B$. (It might contain fewer elements than this, since the same string in $AB$ may arise in two different ways, i.e., from two different ordered pairs.) Therefore $|AB| \leq |A \times B| = |A||B|$

8. a) This is false; take $A = \{1\}$, so that $A^2 = \{11\}$.
   
b) This is not true if we take $A = \emptyset$. If we exclude that possibility, then the length of every string in $A^2$ would be greater than the length of the shortest string in $A$ if $\lambda \not\in A$. Thus the statement is true for $A \neq \emptyset$.
   
c) This is true since $w\lambda = w$ for all strings.
   
d) This was Exercise 4b.
   
e) This is false if $\lambda \not\in A$, since then the right-hand side contains the empty string but the left-hand side does not.
   
f) This is false. Take $A = \{0, \lambda\}$. Then $A^2 = \{\lambda, 0, 0\}$, so $|A^2| = 3 \neq 4 = |A|^2$.

10. a) This set contains all bit strings, so of course the answer is yes.
   
b) Every string in this set cannot have two consecutive 0's except possibly at the very start of the string. Because 01001 violates this condition, it is not in the set.
   
c) Our string is (010)4011 and so is in this set.
   
d) The answer is yes; just take 010 from the first set and 01 from the second.
   
e) Every string in this set must begin 00; since our string does not, it is not in the set.
   
f) Every string in this set cannot have two consecutive 0's. Because 01001 violates this condition, it is not in the set.
12. a) The first input keeps the machine in state $s_0$. The second input drives it to state $s_1$. The third input drives it back to state $s_0$. Since this state ($s_0$) is final, the string is accepted.

b) The input string drives the machine to states $s_1$, $s_2$, $s_0$, and $s_1$, respectively. Since $s_1$ is not a final state, this string is not accepted.

c) The input string drives the machine to states $s_1$, $s_2$, $s_0$, $s_1$, $s_2$, $s_0$, and $s_1$, respectively. Since $s_1$ is not a final state, this string is not accepted.

d) The input string drives the machine to states $s_0$, $s_1$, $s_0$, $s_1$, $s_0$, $s_1$, and $s_0$, respectively. Since $s_0$ is a final state, this string is accepted.

14. We can prove this by mathematical induction. For $n = 0$ (the basis step) we want to show that $f(s, \lambda) = s$, and this is true by the basis step of the recursive definition following Example 4. The inductive step follows directly from Exercise 15, since $x^{n+1} = x^n x$.

16. Since $s_0$ is a final state, the empty string is in the language recognized by this machine; note that no other string leads to $s_0$. The only other final state is $s_1$, and it is clear that it can be reached if the input string is in $\{1\}^* \{0,1\}^*$ or in $\{0\}^* \{0\} \{1\}^* \{0,1\}^*$. Therefore the answer can be summarized as $\{\lambda\} \cup \{1\}^* \{0,1\}^* \cup \{0\} \{1\}^* \{0\} \{0,1\}^*$.

18. Since state $s_0$ is final, the empty string is accepted. The only other strings that are accepted are those that drive the machine to state $s_1$, namely a 0 followed by any number of 1's. Therefore the answer is $\{\lambda\} \cup \{01^n \mid n \geq 0\}$.

20. We need to write down the strings that drive the machine to states $s_1$ or $s_2$. It is not hard to see that the answer is $\{1\}^* \{0\} \{0\}^* \cup \{1\}^* \{0\} \{0\}^* \{10,11\} \{0,1\}^*$.

22. We need to write down the strings that drive the machine to states $s_0$, $s_1$, or $s_5$. It is not hard to see that the answer is $\{0\}^* \cup \{0\} \{1\}^* \cup \{0\} \{100\} \{1\}^* \cup \{0\} \{1110\} \{1\}^*$. This can be written more compactly as $\{0\}^* \{\lambda,1\} \cup \{0\} \{100,1110\} \{1\}^*$.

24. We need states to keep track of what the last two symbols of input were, so we create four states, $s_0$, $s_1$, $s_2$, and $s_3$, corresponding to having just seen 00, 01, 10, and 11, respectively. Only $s_2$ will be final, because we want to accept precisely those strings that end with 10. We make $s_0$ the start state, so in effect we are pretending that the string began with two 0's before we started accepting input; this causes no harm.

26. This is very similar to Exercise 29, except that the role of 0 and 1 are reversed, and we want to accept exactly those strings that are not accepted in Exercise 29. Therefore we take the machine given in the solution to that exercise, interchange inputs 0's and 1's throughout, and make $s_3$ the only nonfinal state (see Exercise 39).

28. We have four states: $s_0$ (the start state) represents having seen no 0's; $s_1$ represents having seen exactly one 0; $s_2$ represents having seen exactly two 0's; and $s_3$ represents having seen at least three 0's. Only state $s_3$ is final. The transitions are the obvious ones: from each state to itself on input 1, from $s_i$ to $s_{i+1}$ on input 0 for $i = 0, 1, 2$, and from $s_3$ to itself on input 0.
30. We have five states: nonfinal state $s_0$ (the start state); final state $s_1$ representing that the string began with 0; nonfinal state $s_2$ representing that the first symbol in the string was 1; final state $s_3$ representing that the first two symbols in the string were 11; and nonfinal state $s_4$, a graveyard. The transitions are from $s_0$ to $s_1$ on input 0, from $s_0$ to $s_2$ on input 1, from $s_2$ to $s_3$ on input 1, from $s_2$ to $s_4$ on input 0, and from each of the states $s_1$, $s_3$, and $s_4$ to itself on either input.

32. This is very similar to Exercise 33, except that the role of 0 and 1 are reversed, and we want to accept exactly those strings that are not accepted in Exercise 33. Therefore we take the machine given in the solution to that exercise, interchange inputs 0's and 1's throughout, and make $s_0$ the only final state (see Exercise 39).

34. This is exactly the same as Exercise 36, except that $s_1$ is the one and only final state here.

36. This deterministic machine is the obvious choice. The top row represents having seen an even number of 0's (and the bottom row represents having seen an odd number of 0's); the left column represents having seen an even number of 1's (and the right column represents having seen an odd number of 1's).

38. We prove this by contradiction. Suppose that such a machine exists, with start state $s_0$. Because the empty string is in the language, $s_0$ must be a final state. There must be transitions from $s_0$ on each input, but they cannot be to $s_0$ itself, because neither the string 0 nor the string 1 is accepted. Furthermore, it cannot be that both transitions from $s_0$ lead to the same state $s'$, because a 0 transition from $s'$ would have to lead to an accepting state (since 00 is in the language), but that would cause our machine also to accept 10, which is not in the language. Therefore there must be nonfinal states $s_1$ and $s_2$ with transitions from $s_0$ to $s_1$ on input 0 and from $s_0$ to $s_2$ on input 1. If our machine has only three states, then there are no other states. Since the string 00 is accepted, there has to be a transition from $s_1$ to $s_0$ on input 0. Similarly, since the string 11 is accepted, there has to be a transition from $s_2$ to $s_0$ on input 1. Since the string 01 is not accepted (but some longer strings that start this way are accepted), there has to be a transition from $s_1$ on input 1 either to itself or to $s_2$. If it goes to $s_1$, then our machine accepts 010, which it should not; and if it goes to $s_2$, then our machine accepts 011, which it should not. Having obtained a contradiction, we conclude that no such finite-state automaton exists.

40. By the solution to Exercise 39, all we have to do is take the deterministic automata constructed in the relevant parts ((a), (d), and (e)) of Example 6 and change the status of each state (from final to nonfinal, and from nonfinal to final).

42. We use exactly the same machine as in Exercise 29, but make $s_0$, $s_1$, and $s_2$ the final states and make $s_3$ nonfinal. See also Exercise 26.

44. The empty string is accepted, since the start state is final. No other string drives the machine to state $s_0$, so the only other accepted strings are the ones that can drive the machine to state $s_1$. Clearly the strings 0 and 1 do so. Also, every string of one or more 1's can drive the machine to state $s_2$, after which a 0 will take it to state $s_1$. Therefore all the strings of the form $1^n0$ for $n \geq 1$ are also accepted. Thus the answer is $\{\lambda, 0, 1\} \cup \{1^n0 \mid n \geq 1\}$. (This can also be written as $\{\lambda, 1\} \cup \{1^n0 \mid n \geq 0\}$, since $\epsilon = 1^00$.)
46. We can end up at state $s_0$ by doing nothing, and we can end up at state $s_1$ by reading a 1. We can also end up at these final states by reading $\{10\}$ first, any number of times. Therefore the answer is $(\{10\}^* \{0,1\})^* \{\lambda,1\}$.

48. We just write down the paths that take us to state $s_0$ (namely, $\{0\}^*$), to state $s_1$ (namely, $\{0\}^* \{0,1\}^* \{0\}^*$), and to state $s_4$ via $s_3$ (namely $\{0\}^* \{0,1\} \{0\}^* \{1,0\} \{0\}^* \{0,1\} \{0\}^*$ or via $s_2$ (namely $\{0\}^* \{0,1\} \{0\}^* \{1\} \{0\}^* \{0,1\} \{0\}^*$). Our final answer is then the union of these:

$\{0\}^* \cup \{0\}^* \{0,1\} \{0\}^* \cup \{0\}^* \{0,1\} \{0\}^* \{10\} \{0\}^* \cup \{0\}^* \{0,1\} \{0\}^* \{1\} \{0\}^* \{0,1\} \{0\}^*$

50. One way to do Exercises 50–54 is to construct a machine following the proof of Theorem 1. Rather than do that, we construct the machines in an ad hoc way, using the answers obtained in Exercises 43–47. As we saw in the solution to Exercise 43, the language recognized by this machine is $\{0,01,11\}$. A deterministic machine to recognize this language is shown below. Note that state $s_5$ is a graveyard state.

52. This is similar to Exercise 44; here is the machine.

54. This one is fairly simple, since the nondeterministic machine is almost deterministic. In fact, all we need to do is to eliminate the transition from $s_1$ to the graveyard state $s_2$ on input 0, and the transition from $s_3$ to $s_2$ on input 0.

56. The machines in the solutions to Exercise 55, with the graveyard state removed, satisfy the requirements of this exercise.
Modeling Computation 12.3 Finite-State Machines with No Output

315

(a) That \( R_k \) is reflexive is tautological; and that \( R_k \) is symmetric is clear from the symmetric nature of its definition. To see that \( R_k \) is transitive, suppose \( sR_k t \) and \( tR_k u \); we must show that \( sR_k u \). Let \( x \) be an arbitrary string of length at most \( k \). If \( f(s, x) \) is final, then \( f(t, x) \) is final, and so \( f(u, x) \) is final; similarly, if \( f(s, x) \) is nonfinal, then \( f(t, x) \) is nonfinal, and so \( f(u, x) \) is nonfinal. This is the definition of \( tR_k u \).

b) Notice that \( R_0 \supseteq R_1 \supseteq R_2 \supseteq \cdots \) (see part (c)) and that \( R_* = \bigcap_{k=0}^\infty R_k \) (see part (e)). To see that \( R_* \) is reflexive, just note that for every state \( s \) and every nonnegative integer \( k \) we have \( (s, s) \in R_k \), so \( (s, s) \in R_* \).

c) The condition \( sR_{k-1} t \) is stronger than the condition \( sR_k t \) because all the strings considered for \( sR_{k-1} t \) are also strings under consideration for \( sR_k t \). Therefore if \( sR_k t \), then \( sR_{k-1} t \).

d) This is an example of the general result proved in Exercise 54 in Section 8.5.

We consider \( f(s, x) \) and \( f(t, x) \) deterministic, which means either both final or both nonfinal, so by definition, \( s \) and \( t \) are \(+\)-equivalent.

f) If \( s \) and \( t \) are \(+\)-equivalent, then in particular the empty string drives them both to a final state or drives them both to a nonfinal state. But the empty string drives a state to itself, and the result follows.

g) We must show that \( f(f(s, a), x) \) and \( f(f(t, a), x) \) are both final or both nonfinal. By Exercise 15

a) Two states are \(-\)-equivalent if the empty string drives both to a final state or drives both to a nonfinal state. But the empty string drives a state to itself. Therefore two states are \(-\)-equivalent if they are both final states or both nonfinal states. Thus each equivalence class of \( R_0 \) consists of only final states or only nonfinal states. Since the equivalence classes of \( R_* \) are refinements of the equivalence classes of \( R_0 \), each equivalence class of \( R_* \) consists of only final states or only nonfinal states.

b) First suppose that \( s \) and \( t \) are \( k\)-equivalent. By Exercise 58c, \( s \) and \( t \) are \((k - 1)\)-equivalent. Furthermore, if \( f(s, a) \) and \( f(t, a) \) were not \((k - 1)\)-equivalent, then some string \( x \) of length \( k - 1 \) would drive \( f(s, a) \) and \( f(t, a) \) to different types of states (one final, one nonfinal). That would mean that \( ax \), which is a string of length \( k \), would drive \( s \) and \( t \) to different types of states, contradicting the fact that \( s \) and \( t \) are \( k\)-equivalent. Conversely, suppose that \( s \) and \( t \) are \((k - 1)\)-equivalent and \( f(s, a) \) and \( f(t, a) \) are \((k - 1)\)-equivalent for every \( x \in I \). We must show that \( s \) and \( t \) are \( k\)-equivalent. A string of length less than \( k \) drives both to the same type of state because \( s \) and \( t \) are \((k - 1)\)-equivalent. Suppose \( x = aw \) is a string of length \( k \). Then \( x \) drives both \( s \) and \( t \) to the same type of state because the machine moves first to \( f(s, a) \) and \( f(t, a) \), respectively, and we are given that \( f(s, a) \) and \( f(t, a) \) are \((k - 1)\)-equivalent. Thus the definition of the transition function \( \bar{f} \) does not depend on the choice of representative from the equivalence class and is well defined.

2) There are only a finite number of strings of length \( k \) for each \( k \). Therefore we can test two states for \( k\)-equivalence in a finite length of time by just tracing all possible computations. If we do this for \( k = 0, 1, 2, \ldots \), then by Exercise 59 we know that eventually we will find nothing new, and at that point we have determined the equivalence classes of \( R_* \). This tells us the states of \( \overline{M} \), and the definition in the preamble to this exercise gives us the transition function, the start state, and the set of final states of \( \overline{M} \). For more details, see a source such as Introduction to Automata Theory, Languages, and Computation (2nd Edition) by John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman (Addison Wesley, 2000).

3) For \( k = 0 \) the only issue is whether the states are final or not. Thus one equivalence class is \( \{s_0, s_1, s_2, s_3\} \) (the nonfinal states) and the other is \( \{s_4, s_5, s_6\} \) (the final states). For \( k = 1 \), we need to try to refine these classes by seeing whether strings of length 1 drive the machine from the given state to final or nonfinal states. The string 0 takes us from \( s_0 \) to a nonfinal state, and the string 1 takes us from \( s_0 \) to a nonfinal state, so
58. a) That $R_k$ is reflexive is tautological; and that $R_k$ is symmetric is clear from the symmetric nature of its definition. To see that $R_k$ is transitive, suppose $sR_k t$ and $tR_k u$; we must show that $sR_k u$. Let $x$ be an arbitrary string of length at most $k$. If $f(s,x)$ is final, then $f(t,x)$ is final, and so $f(u,x)$ is final; similarly, if $f(s,x)$ is nonfinal, then $f(t,x)$ is nonfinal, and so $f(u,x)$ is nonfinal. This is the definition of $tR_k u$.

b) Notice that $R_0 \supseteq R_1 \supseteq R_2 \supseteq \cdots$ (see part (c)) and that $R_* = \bigcap_{k=0}^{\infty} R_k$ (see part (b)). To see that $R_*$ is reflexive, just note that for every state $s$ and every nonnegative integer $k$ we have $(s,s) \in R_k$, so $(s,s) \in R_*$. To see that $R_*$ is symmetric, suppose that $sR_* t$. Then $sR_k t$ for every $k$, whence $tR_k s$, whence $tR_* s$. To see that $R_*$ is transitive, suppose that $sR_* t$ and $tR_* u$. Then $sR_k t$ and $tR_k u$ for every $k$. By the transitivity of $R_k$ we have $sR_k u$, whence $sR_* u$.

c) The condition $sR_k t$ is stronger than the condition $sR_{k-1} t$, because all the strings considered for $sR_{k-1} t$ are also strings under consideration for $sR_k t$. Therefore if $sR_k t$, then $sR_{k-1} t$.

d) This is an example of the general result proved in Exercise 54 in Section 8.5.

e) Suppose that $s$ and $t$ are $k$-equivalent for every $k$. Let $x$ be a string of length $k$. Then $f(s,x)$ and $f(t,x)$ are either both final or both nonfinal, so by definition, $s$ and $t$ are $*$-equivalent.

f) If $s$ and $t$ are $*$-equivalent, then in particular the empty string drives them both to a final state or drives them both to a nonfinal state. But the empty string drives a state to itself, and the result follows.

g) We must show that $f(f(s,a),x)$ and $f(f(t,a),x)$ are either both final or both nonfinal. By Exercise 15 we have $f(f(s,a),x) = f(s,ax)$ and $f(f(t,a),x) = f(t,ax)$. But because $s$ and $t$ are $*$-equivalent, we know that $f(s,ax)$ and $f(t,ax)$ are either both final or both nonfinal.

60. a) Two states are 0-equivalent if the empty string drives both to a final state or drives both to a nonfinal state. But the empty string drives a state to itself. Therefore two states are 0-equivalent if they are both final states or both nonfinal states. Thus each equivalence class of $R_0$ consists of only final states or of only nonfinal states. Since the equivalence classes of $R_k$ are a refinement of the equivalence classes of $R_0$, each equivalence class of $R_0$ consists of only final states or of only nonfinal states.

b) First suppose that $s$ and $t$ are $k$-equivalent. By Exercise 58c, $s$ and $t$ are $(k-1)$-equivalent. Furthermore, if $f(s,a)$ and $f(t,a)$ were not $(k-1)$-equivalent, then some string $x$ of length $k-1$ would drive $f(s,a)$ and $f(t,a)$ to different types of states (one final, one nonfinal). That would mean that $ax$, which is a string of length $k$, would drive $s$ and $t$ to different types of states, contradicting the fact that $s$ and $t$ are $k$-equivalent. Conversely, suppose that $s$ and $t$ are $(k-1)$-equivalent and $f(s,a)$ and $f(t,a)$ are $(k-1)$-equivalent for every $a \in I$. We must show that $s$ and $t$ are $k$-equivalent. A string of length less than $k$ drives both to the same type of state because $s$ and $t$ are $(k-1)$-equivalent. So suppose $x = aw$ is a string of length $k$. Then $x$ drives both $s$ and $t$ to the same type of state because the machine moves first to $f(s,a)$ and $f(t,a)$, respectively, but we are given that $f(s,a)$ and $f(t,a)$ are $(k-1)$-equivalent. Thus the definition of the transition function $f$ does not depend on the choice of representative from the equivalence class and so is well defined.

c) There are only a finite number of strings of length $k$ for each $k$. Therefore we can test two states for $k$-equivalence in a finite length of time by just tracing all possible computations. If we do this for $k = 0, 1, 2, \ldots$, then by Exercise 59 we know that eventually we will find nothing new, and at that point we have determined the equivalence classes of $R_*$. This tells us the states of $\overline{M}$, and the definition in the preamble to this exercise gives us the transition function, the start state, and the set of final states of $\overline{M}$. For more details, see a source such as Introduction to Automata Theory, Languages, and Computation (2nd Edition) by John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman (Addison Wesley, 2000).

62. a) For $k = 0$ the only issue is whether the states are final or not. Thus one equivalence class is $\{s_0, s_1, s_2, s_4\}$ (the nonfinal states) and the other is $\{s_3, s_5, s_6\}$ (the final states). For $k = 1$, we need to try to refine these classes by seeing whether strings of length 1 drive the machine from the given state to final or nonfinal states. The string 0 takes us from $s_0$ to a nonfinal state, and the string 1 takes us from $s_0$ to a nonfinal state, so
let's call \( s_0 \) type NN. Then we see that \( s_1 \) is type FN, that \( s_2 \) is type FF, and that \( s_4 \) is type FF. Therefore \( s_2 \) and \( s_4 \) are still equivalent (they have the same type, so they behave the same, in terms of driving to final states, on strings of length 1), but \( s_0 \) and \( s_1 \) are not 1-equivalent to either of them or to each other. Similarly, states \( s_3, s_5, \) and \( s_6 \) are types FN, FN, and FF, respectively, so \( s_3 \) and \( s_5 \) are 1-equivalent, but \( s_6 \) is not 1-equivalent to either of them. This gives us the following 1-equivalence classes: \{\( s_0 \), \( s_1 \), \{\( s_2, s_4 \)\}, \{\( s_3, s_5 \)\}, and \{\( s_6 \)\}. Notice that not only are \( s_2 \) and \( s_4 \) 1-equivalent, but they will be \( k \)-equivalent for all \( k \), because they have exactly the same transitions (to \( s_5 \) on input 0, and to \( s_6 \) on input 1). The same can be said for \( s_3 \) and \( s_5 \). Therefore the 2-equivalence classes will be the same as the 1-equivalence classes, and these will be the \( k \)-equivalence classes for all \( k \geq 1 \), as well as the \( \ast \)-equivalence classes.

b) We turn \( s_2 \) and \( s_4 \) into one state (labeled \( s_3 \) below), and we turn \( s_3 \) and \( s_5 \) into one state (labeled \( s_6 \) below). The transitions can be copied from the diagram for \( M \).

![Diagram](image)

SECTION 12.4 Language Recognition

2. a) This regular expression generates all strings consisting of exactly two 0's followed by zero or more 1's.
   b) This regular expression generates all strings consisting of zero or more repetitions of 01.
   c) This is the string 01 together with all strings consisting of exactly two 0's followed by zero or more 1's.
   d) This set contains all strings that start with a 0 and satisfy the condition that all the maximal substrings of 1's have an even number of 1's in them.
   e) This set consists of all strings in which every 0 is preceded by a 1, and furthermore the string must start 10 if it is not empty.
   f) This gives us all strings that consist of zero or more 0's followed by 11, together with the string 111.

4. a) The string is in the set, since it is \( 10^11 \).
   b) The string is in the set, since it is \( (10)(11) \).
   c) The string is in the set, since it is \( 1(01)1 \).
   d) The string is in the set: take the first \( * \) to be 1, and take the 1 in the union.
   e) The string is in the set, since it is \( (10)(11) \).
   f) The strings in this set must have odd length, so the given string is not in the set.
   g) The string is in the set: take \( * \) to be 0.
   h) The string is in the set: choose 1 from the first group, 01 from the second, and take \( * = 1 \).

6. a) There are many ways to do this, such as \((\lambda \cup 0 \cup 1)(\lambda \cup 0 \cup 1)(\lambda \cup 0 \cup 1)\).
   b) 001*0
   c) We assume it is not intended that every 1 is followed by exactly two 0's, so we can write \( 0^* (100 \cup 0)^* \).
   d) One way to say this is that every 1 must be followed by a 0. Thus we can write \( 0^*(10 \cup 0)^*00 \).
   e) To get an even number of 1's, we can write something like \((0^*10^*10^*)^*\).
8. a) Since we want to accept no strings, we will have no final states. We need only one state, the start state, and there is a transition from this state to itself on all inputs.

b) This is just like part (a), except that we want to accept the empty string. Our machine will have two states. The start state will be final, the other state will not be final. On all inputs, there is a transition from each of the states to the nonfinal state.

c) This time we need three states, \( s_0 \) (the start state), \( s_1 \), and \( s_2 \). Only \( s_1 \) is final. On input \( a \), there is a transition from \( s_0 \) to \( s_1 \); this will make sure that \( a \) is accepted. All other transitions are to \( s_2 \), which serves as a graveyard state: from \( s_0 \) on all inputs except \( a \), and from \( s_1 \) and \( s_2 \) on all inputs. (It is not clear from the exercise whether \( a \) is meant to be one fixed element of \( I \), as we have assumed, or rather whether we are to accept all strings of length 1. If the latter is intended, then we have a transition from state \( s_0 \) to state \( s_1 \) for every \( a \in I \).)

10. The construction is straightforward in each case: we just lead to final states on the desired inputs.

![Diagram](image)

12. These are quite messy to draw in detail.

a) The machine for 0 is shown in Figure 3 (third machine). The machine for 1* is shown in Figure 3 (second machine). We need to concatenate them, so we get the following picture:

![Diagram](image)

b) The machine for 0 is shown in Figure 3 (third machine). The machine for 1 is similar. We need to take their union. Then we need to concatenate that with the machine for 1*, shown in Figure 3 (second machine). So we get the following picture:

![Diagram](image)

c) The machine for 10* is like our answer for part (a), with the roles of 0 and 1 reversed. We need to take the union of that with the machine for 1* shown in Figure 3 (second machine). We then need to concatenate two copies of the machine for 0 (third machine in Figure 3) in front of this, so we get the following picture:
14. In each case we follow the construction inherent in the proof of Theorem 2. There is one state for each nonterminal symbol (which we have denoted with the name of the symbol), and there is one more state—the only final one unless $S \rightarrow \lambda$ is a transition—which we call $F$.

(a) \begin{align*}
\text{start} \quad s_0 & \xrightarrow{0} s_A \\
& \quad s_B \xrightarrow{0} \Lambda
\end{align*}

(b) \begin{align*}
\text{start} \quad s_0 & \xrightarrow{1} s_A \\
& \quad F \xleftarrow{1} s_B
\end{align*}

(c) \begin{align*}
\text{start} \quad s_0 & \xrightarrow{1} s_A \\
& \quad F \xleftarrow{1} s_B
\end{align*}

16. The transitions between states cause us to put in the rules $S \rightarrow 0A$, $S \rightarrow 1B$, $A \rightarrow 0B$, $A \rightarrow 1A$, $B \rightarrow 0B$, and $B \rightarrow 1A$. The transitions to final states cause us to put in the rules $S \rightarrow 0$, $A \rightarrow 1$, and $B \rightarrow 1$. Finally, since $s_0$ is a final state, we add the rule $S \rightarrow \lambda$.

18. This is clear, since the unique derivation of every terminal string in the grammar is exactly reflected in the operation of the machine. Precisely those nonempty strings that are generated drive the machine to its final state, and the empty string is accepted if and only if it is in the language.

20. We construct a new nondeterministic finite-state automaton from a given one as follows. A new state $s'_0$ is added (but $s_0$ is still the start state). The new state is final if and only if $s_0$ is final. All transitions into $s_0$ are redirected so that they end at $s'_0$. Then all transitions out of $s_0$ are copied to become transitions out of $s'_0$. It is clear that $s_0$ can never be revisited, since all the transitions into it were redirected. Furthermore, $s'_0$ is playing the same role that $s_0$ used to play (after one or more symbols of input have been read), so exactly the same set of strings is accepted.

22. Let the states that were encountered on input $x$ be, in order, $s_0$, $s_{i_1}$, $s_{i_2}$, ..., $s_{i_n}$, where $n = l(x)$. Since we are given that $n \geq |S|$, this list of $n + 1$ states must, by the pigeonhole principle, contain a repetition;
suppose that the first repeated state is $s_r$. Let $v$ be that portion of $x$ that caused the machine to move from $s_r$ on its first encounter back to $s_r$ for the second encounter. Let $u$ be the portion of $x$ before $v$, and let $w$ be the portion of $x$ after $v$. In particular $l(v) \geq 1$ and $l(uw) \leq |S|$ (since all the states appearing before the second encounter with $s_r$ are different). Furthermore, the string $uv^i w$, for each nonnegative integer $i$, must drive the machine to exactly the same final state as $x = uw$ did, since the $v^i$ part of the string simply drives the machine around and around in a loop starting and ending at $s_r$ (the loop is traversed $i$ times). Therefore all these strings are accepted (since $x$ was accepted), and so all of them are in the language.

24. Assume that this set is regular, accepted by a deterministic finite-state automaton with state set $S$. Let $x = 1^n 2^n$ for some $n \geq \sqrt{|S|}$. By the pumping lemma, we can write $x = uvw$ with $v$ nonempty, so that $uv^i w$ is in our set for all $i$. Since there is only one symbol involved, we can write $u = 1^r$, $v = 1^s$ and $w = 1^t$, so that the statement that $uv^i w$ is in our set is the statement that $(r + i) + si$ is a perfect square. But this cannot be, since successive perfect squares differ by increasing large amounts as they grow larger, whereas the terms in the sequence $(r + i) + si$ have a constant difference for $i = 0, 1, \ldots$. This contradiction tells us that the set is not regular.

26. This (far from easy) proof is similar in spirit to Warshall’s algorithm. The interested reader should consult a reference in computation theory, such as Elements of the Theory of Computation by H. R. Lewis and C. H. Papadimitriou (Prentice-Hall, 1981).

28. It’s just a matter of untangling the definition. If $x$ and $y$ are distinguishable with respect to $L(M)$, then without loss of generality there must be a string $z$ such that $xz \in L(M)$ and $yz \notin L(M)$. This means that the string $xz$ drives $M$ from its initial state to a final state, and the string $yz$ drives $M$ from its initial state to a nonfinal state. For a proof by contradiction, suppose that $f(s_0, x) = f(s_0, y)$; in other words, $x$ and $y$ both drive $M$ to the same state. But then $xz$ and $yz$ both drive $M$ to the same state, after $l(z)$ more steps of computation (where $l(z)$ is the length of $z$), and this state can’t be both final and nonfinal. This contradiction shows that $f(s_0, x) \neq f(s_0, y)$.

30. We claim that all $2^n$ bit strings of length $n$ are distinguishable with respect to $L$. If $x$ and $y$ are two bit strings of length $n$ that differ in bit $i$, where $i \leq 1 \leq n$, then they are distinguished by any string $z$ of length $i - 1$, because one of $xz$ and $yz$ has a 0 in the $n^{th}$ position from the end and the other has a 1. Therefore by Exercise 29, any deterministic finite-state automaton recognizing $L_n$ must have at least $2^n$ states.

SECTION 12.5 Turing Machines

2. We will indicate the configuration of the Turing machine using a notation such as 0[s2]1B1, as described in the solution to Exercise 1. (This means that the machine is in state $s_2$, the tape is blank except for a portion that reads 01B1, and the tape head points to the left-most 1.) We indicate the successive configurations with arrows.

a) Initially the configuration is [s0]0101. Using the first five-tuple, the machine next enters configuration 0[s1]101. Thereafter it proceeds as follows: 0[s1]101 → 01[s1]01 → 011[s2]1. Since there is no five-tuple for this combination (in state $s_2$ reading a 1), the machine halts. Thus (the nonblank portion of) the final tape reads 0111.

b) [s0]111 → [s1]B011 → 0[s2]011 → halt; final tape 0011

c) [s0]00B00 → 0[s1]0B00 → 01[s2]B00 → 010[s3]00 → halt; final tape 01000

d) [s0]B → 1[s1]B → 10[s2]B → 100[s3]B → halt; final tape 100