The rules of logic specify the meaning of mathematical statements. For instance, these rules help us understand and reason with statements such as “There exists an integer that is not the sum of two squares” and “For every positive integer n, the sum of the positive integers not exceeding n is $n(n + 1)/2$.” Logic is the basis of all mathematical reasoning, and of all automated reasoning. It has practical applications to the design of computing machines, to the specification of systems, to artificial intelligence, to computer programming, to programming languages, and to other areas of computer science, as well as to many other fields of study.

To understand mathematics, we must understand what makes up a correct mathematical argument, that is, a proof. Once we prove a mathematical statement is true, we call it a theorem. A collection of theorems on a topic organize what we know about this topic. To learn a mathematical topic, a person needs to actively construct mathematical arguments on this topic, and not just read exposition. Moreover, because knowing the proof of a theorem often makes it possible to modify the result to fit new situations, proofs play an essential role in the development of new ideas. Students of computer science often find it surprising how important proofs are in computer science. In fact, proofs play essential roles when we verify that computer programs produce the correct output for all possible input values, when we show that algorithms always produce the correct result, when we establish the security of a system, and when we create artificial intelligence. Automated reasoning systems have been constructed that allow computers to construct their own proofs.

In this chapter, we will explain what makes up a correct mathematical argument and introduce tools to construct these arguments. We will develop an arsenal of different proof methods that will enable us to prove many different types of results. After introducing many different methods of proof, we will introduce some strategy for constructing proofs. We will introduce the notion of a conjecture and explain the process of developing mathematics by studying conjectures.

1.1 Propositional Logic

Introduction

The rules of logic give precise meaning to mathematical statements. These rules are used to distinguish between valid and invalid mathematical arguments. Because a major goal of this book is to teach the reader how to understand and how to construct correct mathematical arguments, we begin our study of discrete mathematics with an introduction to logic.

In addition to its importance in understanding mathematical reasoning, logic has numerous applications in computer science. These rules are used in the design of computer circuits, the construction of computer programs, the verification of the correctness of programs, and in many other ways. Furthermore, software systems have been developed for constructing proofs automatically. We will discuss these applications of logic in the upcoming chapters.

Propositions

Our discussion begins with an introduction to the basic building blocks of logic—propositions. A proposition is a declarative sentence (that is, a sentence that declares a fact) that is either true or false, but not both.
EXAMPLE 1 All the following declarative sentences are propositions.

1. Washington, D.C., is the capital of the United States of America.
2. Toronto is the capital of Canada.
3. $1 + 1 = 2$.
4. $2 + 2 = 3$.

Propositions 1 and 3 are true, whereas 2 and 4 are false.

Some sentences that are not propositions are given in Example 2.

EXAMPLE 2 Consider the following sentences.

1. What time is it?
2. Read this carefully.
3. $x + 1 = 2$.
4. $x + y = x$.

Sentences 1 and 2 are not propositions because they are not declarative sentences. Sentences 3 and 4 are not propositions because they are neither true nor false. Note that each of sentences 3 and 4 can be turned into a proposition if we assign values to the variables. We will also discuss other ways to turn sentences such as these into propositions in Section 1.3.

We use letters to denote propositional variables (or statement variables), that is, variables that represent propositions, just as letters are used to denote numerical variables. The conventional letters used for propositional variables are p, q, r, s, \ldots. The truth value of a proposition is true, denoted by T, if it is a true proposition and false, denoted by F, if it is a false proposition.

The area of logic that deals with propositions is called the propositional calculus or propositional logic. It was first developed systematically by the Greek philosopher Aristotle more than 2300 years ago.

ARISTOTLE (384 B.C.E.–322 B.C.E.) Aristotle was born in Stagirus (Stagira) in northern Greece. His father was the personal physician of the King of Macedonia. Because his father died when Aristotle was young, Aristotle could not follow the custom of following his father's profession. Aristotle became an orphan at a young age when his mother also died. His guardian who raised him taught him poetry, rhetoric, and Greek. At the age of 17, his guardian sent him to Athens to further his education. Aristotle joined Plato's Academy where for 20 years he attended Plato's lectures, later presenting his own lectures on rhetoric. When Plato died in 347 B.C.E., Aristotle was not chosen to succeed him because his views differed too much from those of Plato. Instead, Aristotle joined the court of King Hermias where he remained for three years, and married the niece of the King. When the Persians defeated Hermias, Aristotle moved to Mytilene and, at the invitation of King Philip of Macedonia, he tutored Alexander, Philip's son, who later became Alexander the Great. Aristotle tutored Alexander for five years and after the death of King Philip, he returned to Athens and set up his own school, called the Lyceum.

Aristotle's followers were called the peripatetics, which means "to walk about," because Aristotle often walked around as he discussed philosophical questions. Aristotle taught at the Lyceum for 13 years where he lectured to his advanced students in the morning and gave popular lectures to a broad audience in the evening. When Alexander the Great died in 323 B.C.E., a backlash against anything related to Alexander led to trumped-up charges of impiety against Aristotle. Aristotle fled to Chalcis to avoid prosecution. He only lived one year in Chalcis, dying of a stomach ailment in 322 B.C.E.

Aristotle wrote three types of works: those written for a popular audience, compilations of scientific facts, and systematic treatises. The systematic treatises included works on logic, philosophy, psychology, physics, and natural history. Aristotle's writings were preserved by a student and were hidden in a vault where a wealthy book collector discovered them about 200 years later. They were taken to Rome, where they were studied by scholars and issued in new editions, preserving them for posterity.
We now turn our attention to methods for producing new propositions from those that we already have. These methods were discussed by the English mathematician George Boole in 1854 in his book *The Laws of Thought*. Many mathematical statements are constructed by combining one or more propositions. New propositions, called *compound propositions*, are formed from existing propositions using logical operators.

DEFINITION 1

Let p be a proposition. The *negation* of p, denoted by $\neg p$ (also denoted by \overline{p}), is the statement

"It is not the case that p.

The proposition $\neg p$ is read "not p." The truth value of the negation of p, $\neg p$, is the opposite of the truth value of p.

EXAMPLE 3

Find the negation of the proposition

"Today is Friday."

and express this in simple English.

Solution: The negation is

"It is not the case that today is Friday."

This negation can be more simply expressed by

"Today is not Friday;"

or

"It is not Friday today."

EXAMPLE 4

Find the negation of the proposition

"At least 10 inches of rain fell today in Miami."

and express this in simple English.

Solution: The negation is

"It is not the case that at least 10 inches of rain fell today in Miami."

This negation can be more simply expressed by

"Less than 10 inches of rain fell today in Miami."

Remark: Strictly speaking, sentences involving variable times such as those in Examples 3 and 4 are not propositions unless a fixed time is assumed. The same holds for variable places unless a fixed place is assumed and for pronouns unless a particular person is assumed. We will always assume fixed times, fixed places, and particular people in such sentences unless otherwise noted.

<table>
<thead>
<tr>
<th>p</th>
<th>$\neg p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Remark: Strictly speaking, sentences involving variable times such as those in Examples 3 and 4 are not propositions unless a fixed time is assumed. The same holds for variable places unless a fixed place is assumed and for pronouns unless a particular person is assumed. We will always assume fixed times, fixed places, and particular people in such sentences unless otherwise noted.

Table 1 displays the *truth table* for the negation of a proposition p. This table has a row for each of the two possible truth values of a proposition p. Each row shows the truth value of $\neg p$ corresponding to the truth value of p for this row.
The negation of a proposition can also be considered the result of the operation of the **negation operator** on a proposition. The negation operator constructs a new proposition from a single existing proposition. We will now introduce the logical operators that are used to form new propositions from two or more existing propositions. These logical operators are also called **connectives**.

DEFINITION 2

Let \(p \) and \(q \) be propositions. The **conjunction** of \(p \) and \(q \), denoted by \(p \land q \), is the proposition “\(p \) and \(q \).” The conjunction \(p \land q \) is true when both \(p \) and \(q \) are true and is false otherwise.

Table 2 displays the truth table of \(p \land q \). This table has a row for each of the four possible combinations of truth values of \(p \) and \(q \). The four rows correspond to the pairs of truth values TT, TF, FT, and FF, where the first truth value in the pair is the truth value of \(p \) and the second truth value is the truth value of \(q \).

Note that in logic the word “but” sometimes is used instead of “and” in a conjunction. For example, the statement “The sun is shining, but it is raining” is another way of saying “The sun is shining and it is raining.” (In natural language, there is a subtle difference in meaning between “and” and “but”; we will not be concerned with this nuance here.)

EXAMPLE 5

Find the conjunction of the propositions \(p \) and \(q \) where \(p \) is the proposition “Today is Friday” and \(q \) is the proposition “It is raining today.”

Solution: The conjunction of these propositions, \(p \land q \), is the proposition “Today is Friday and it is raining today.” This proposition is true on rainy Fridays and is false on any day that is not a Friday and on Fridays when it does not rain.

DEFINITION 3

Let \(p \) and \(q \) be propositions. The **disjunction** of \(p \) and \(q \), denoted by \(p \lor q \), is the proposition “\(p \) or \(q \).” The disjunction \(p \lor q \) is true when both \(p \) and \(q \) are false and is true otherwise.

Table 3 displays the truth table for \(p \lor q \).

The use of the connective or in a disjunction corresponds to one of the two ways the word or is used in English, namely, in an inclusive way. A disjunction is true when at least one of the two propositions is true. For instance, the inclusive or is being used in the statement

“Students who have taken calculus or computer science can take this class.”

<table>
<thead>
<tr>
<th>(p \land q)</th>
<th>(p \lor q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(p \land q)</th>
<th>(p \lor q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Here, we mean that students who have taken both calculus and computer science can take the class, as well as the students who have taken only one of the two subjects. On the other hand, we are using the exclusive or when we say

"Students who have taken calculus or computer science, but not both, can enroll in this class."

Here, we mean that students who have taken both calculus and a computer science course cannot take the class. Only those who have taken exactly one of the two courses can take the class.

Similarly, when a menu at a restaurant states, "Soup or salad comes with an entrée," the restaurant almost always means that customers can have either soup or salad, but not both. Hence, this is an exclusive, rather than an inclusive, or.

EXAMPLE 6

What is the disjunction of the propositions p and q where p and q are the same propositions as in Example 5?

Solution: The disjunction of p and q, $p \lor q$, is the proposition

"Today is Friday or it is raining today."

This proposition is true on any day that is either a Friday or a rainy day (including rainy Fridays). It is only false on days that are not Fridays when it also does not rain.

As was previously remarked, the use of the connective or in a disjunction corresponds to one of the two ways the word or is used in English, namely, in an inclusive way. Thus, a disjunction is true when at least one of the two propositions in it is true. Sometimes, we use or in an exclusive sense. When the exclusive or is used to connect the propositions p and q, the proposition "p or q (but not both)" is obtained. This proposition is true when p is true and q is false, and when p is false and q is true. It is false when both p and q are false and when both are true.

DEFINITION 4

Let p and q be propositions. The exclusive or of p and q, denoted by $p \oplus q$, is the proposition that is true when exactly one of p and q is true and is false otherwise.

The truth table for the exclusive or of two propositions is displayed in Table 4.

GEORGE BOOLE (1815–1864)

George Boole, the son of a cobbler, was born in Lincoln, England, in November 1815. Because of his family’s difficult financial situation, Boole had to struggle to educate himself while supporting his family. Nevertheless, he became one of the most important mathematicians of the 1800s. Although he considered a career as a clergyman, he decided instead to go into teaching and soon afterward opened a school of his own. In his preparation for teaching mathematics, Boole—unsatisfied with textbooks of his day—decided to read the works of the great mathematicians. While reading papers of the great French mathematician Lagrange, Boole made discoveries in the calculus of variations, the branch of analysis dealing with finding curves and surfaces optimizing certain parameters.

In 1848 Boole published *The Mathematical Analysis of Logic*, the first of his contributions to symbolic logic. In 1849 he was appointed professor of mathematics at Queen’s College in Cork, Ireland. In 1854 he published *The Laws of Thought*, his most famous work. In this book, Boole introduced what is now called *Boolean algebra* in his honor. Boole wrote textbooks on differential equations and on difference equations that were used in Great Britain until the end of the nineteenth century. Boole married in 1855; his wife was the niece of the professor of Greek at Queen’s College. In 1864 Boole died from pneumonia, which he contracted as a result of keeping a lecture engagement even though he was soaking wet from a rainstorm.
TABLE 4 The Truth Table for the Exclusive Or of Two Propositions.

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \oplus q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

TABLE 5 The Truth Table for the Conditional Statement $p \rightarrow q$.

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \rightarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Conditional Statements

We will discuss several other important ways in which propositions can be combined.

DEFINITION 5

Let p and q be propositions. The *conditional statement* $p \rightarrow q$ is the proposition “if p, then q.” The conditional statement $p \rightarrow q$ is false when p is true and q is false, and true otherwise. In the conditional statement $p \rightarrow q$, p is called the *hypothesis* (or *antecedent* or *premise*) and q is called the *conclusion* (or *consequence*).

The statement $p \rightarrow q$ is called a conditional statement because $p \rightarrow q$ asserts that q is true on the condition that p holds. A conditional statement is also called an **implication**.

The truth table for the conditional statement $p \rightarrow q$ is shown in Table 5. Note that the statement $p \rightarrow q$ is true when both p and q are true and when p is false (no matter what truth value q has).

Because conditional statements play such an essential role in mathematical reasoning, a variety of terminology is used to express $p \rightarrow q$. You will encounter most if not all of the following ways to express this conditional statement:

- “p implies q”
- “p only if q”
- “A sufficient condition for q is p”
- “q whenever p”
- “q is necessary for p”
- “q follows from p”

A useful way to understand the truth value of a conditional statement is to think of an obligation or a contract. For example, the pledge many politicians make when running for office is

“If I am elected, then I will lower taxes.”

If the politician is elected, voters would expect this politician to lower taxes. Furthermore, if the politician is not elected, then voters will not have any expectation that this person will lower taxes, although the person may have sufficient influence to cause those in power to lower taxes. It is only when the politician is elected but does not lower taxes that voters can say that the politician has broken the campaign pledge. This last scenario corresponds to the case when p is true but q is false in $p \rightarrow q$.

Similarly, consider a statement that a professor might make:

“If you get 100% on the final, then you will get an A.”
If you manage to get a 100% on the final, then you would expect to receive an A. If you do not get 100% you may or may not receive an A depending on other factors. However, if you do get 100%, but the professor does not give you an A, you will feel cheated.

Many people find it confusing that “p only if q” expresses the same thing as “if p then q.” To remember this, note that “p only if q” says that p cannot be true when q is not true. That is, the statement is false if p is true, but q is false. When p is false, q may be either true or false, because the statement says nothing about the truth value of q. A common error is for people to think that “q only if p” is a way of expressing p → q. However, these statements have different truth values when p and q have different truth values.

The word “unless” is often used to express conditional statements. Observe that “q unless ¬p” means that if ¬p is false, then q must be true. That is, the statement “q unless ¬p” is false when p is true and q is false, but it is true otherwise. Consequently, “q unless ¬p” and p → q always have the same truth value.

We illustrate the translation between conditional statements and English statements in Example 7.

EXAMPLE 7

Let p be the statement “Maria learns discrete mathematics” and q the statement “Maria will find a good job.” Express the statement p → q as a statement in English.

Solution: From the definition of conditional statements, we see that when p is the statement “Maria learns discrete mathematics” and q is the statement “Maria will find a good job,” p → q represents the statement

“If Maria learns discrete mathematics, then she will find a good job.”

There are many other ways to express this conditional statement in English. Among the most natural of these are:

“Maria will find a good job when she learns discrete mathematics.”

“For Maria to get a good job, it is sufficient for her to learn discrete mathematics.”

and

“Maria will find a good job unless she does not learn discrete mathematics.”

Note that the way we have defined conditional statements is more general than the meaning attached to such statements in the English language. For instance, the conditional statement in Example 7 and the statement

“If it is sunny today, then we will go to the beach.”

are statements used in normal language where there is a relationship between the hypothesis and the conclusion. Further, the first of these statements is true unless Maria learns discrete mathematics, but she does not get a good job, and the second is true unless it is indeed sunny today, but we do not go to the beach. On the other hand, the statement

“If today is Friday, then 2 + 3 = 5.”

is true from the definition of a conditional statement, because its conclusion is true. (The truth value of the hypothesis does not matter then.) The conditional statement

“If today is Friday, then 2 + 3 = 6.”

is true every day except Friday, even though 2 + 3 = 6 is false.

We would not use these last two conditional statements in natural language (except perhaps in sarcasm), because there is no relationship between the hypothesis and the conclusion in either
statement. In mathematical reasoning, we consider conditional statements of a more general sort than we use in English. The mathematical concept of a conditional statement is independent of a cause-and-effect relationship between hypothesis and conclusion. Our definition of a conditional statement specifies its truth values; it is not based on English usage. Propositional language is an artificial language; we only parallel English usage to make it easy to use and remember.

The if-then construction used in many programming languages is different from that used in logic. Most programming languages contain statements such as if \(p \) then \(S \), where \(p \) is a proposition and \(S \) is a program segment (one or more statements to be executed). When execution of a program encounters such a statement, \(S \) is executed if \(p \) is true, but \(S \) is not executed if \(p \) is false, as illustrated in Example 8.

EXAMPLE 8 What is the value of the variable \(x \) after the statement

\[
\text{if } 2 + 2 = 4 \text{ then } x := x + 1
\]

if \(x = 0 \) before this statement is encountered? (The symbol := stands for assignment. The statement \(x := x + 1 \) means the assignment of the value of \(x + 1 \) to \(x \).)

Solution: Because \(2 + 2 = 4 \) is true, the assignment statement \(x := x + 1 \) is executed. Hence, \(x \) has the value \(0 + 1 = 1 \) after this statement is encountered.

CONVERSE, CONTRAPOSITIVE, AND INVERSE We can form some new conditional statements starting with a conditional statement \(p \rightarrow q \). In particular, there are three related conditional statements that occur so often that they have special names. The proposition \(q \rightarrow p \) is called the **converse** of \(p \rightarrow q \). The **contrapositive** of \(p \rightarrow q \) is the proposition \(\neg q \rightarrow \neg p \). The proposition \(\neg p \rightarrow \neg q \) is called the **inverse** of \(p \rightarrow q \). We will see that of these three conditional statements formed from \(p \rightarrow q \), only the contrapositive always has the same truth value as \(p \rightarrow q \).

We first show that the contrapositive, \(\neg q \rightarrow \neg p \), of a conditional statement \(p \rightarrow q \) always has the same truth value as \(p \rightarrow q \). To see this, note that the contrapositive is false only when \(\neg p \) is false and \(\neg q \) is true, that is, only when \(p \) is true and \(q \) is false. We now show that neither the converse, \(q \rightarrow p \), nor the inverse, \(\neg p \rightarrow \neg q \), has the same truth value as \(p \rightarrow q \) for all possible truth values of \(p \) and \(q \). Note that when \(p \) is true and \(q \) is false, the original conditional statement is false, but the converse and the inverse are both true.

When two compound propositions always have the same truth value we call them **equivalent**, so that a conditional statement and its contrapositive are equivalent. The converse and the inverse of a conditional statement are also equivalent, as the reader can verify, but neither is equivalent to the original conditional statement. (We will study equivalent propositions in Section 1.2.) Take note that one of the most common logical errors is to assume that the converse or the inverse of a conditional statement is equivalent to this conditional statement.

We illustrate the use of conditional statements in Example 9.

EXAMPLE 9 What are the contrapositive, the converse, and the inverse of the conditional statement

"The home team wins whenever it is raining."

Solution: Because "\(q \) whenever \(p \)" is one of the ways to express the conditional statement \(p \rightarrow q \), the original statement can be rewritten as

"If it is raining, then the home team wins."

Consequently, the contrapositive of this conditional statement is

"If the home team does not win, then it is not raining."
The converse is

“If the home team wins, then it is raining.”

The inverse is

“If it is not raining, then the home team does not win.”

Only the contrapositive is equivalent to the original statement.

BICONDITIONALS We now introduce another way to combine propositions that expresses that two propositions have the same truth value.

DEFINITION 6 Let p and q be propositions. The *biconditional statement* $p \leftrightarrow q$ is the proposition “p if and only if q.” The biconditional statement $p \leftrightarrow q$ is true when p and q have the same truth values, and is false otherwise. Biconditional statements are also called *bi-implications*.

The truth table for $p \leftrightarrow q$ is shown in Table 6. Note that the statement $p \leftrightarrow q$ is true when both the conditional statements $p \rightarrow q$ and $q \rightarrow p$ are true and is false otherwise. That is why we use the words “if and only if” to express this logical connective and why it is symbolically written by combining the symbols \rightarrow and \leftrightarrow. There are some other common ways to express $p \leftrightarrow q$:

- “p is necessary and sufficient for q”
- “if p then q, and conversely”
- “p iff q.”

The last way of expressing the biconditional statement $p \leftrightarrow q$ uses the abbreviation “iff” for “if and only if.” Note that $p \leftrightarrow q$ has exactly the same truth value as $(p \rightarrow q) \land (q \rightarrow p)$.

EXAMPLE 10 Let p be the statement “You can take the flight” and let q be the statement “You buy a ticket.” Then $p \leftrightarrow q$ is the statement

“You can take the flight if and only if you buy a ticket.”

This statement is true if p and q are either both true or both false, that is, if you buy a ticket and can take the flight or if you do not buy a ticket and you cannot take the flight. It is false when p and q have opposite truth values, that is, when you do not buy a ticket, but you can take the flight (such as when you get a free trip) and when you buy a ticket and cannot take the flight (such as when the airline bumps you).

TABLE 6 The Truth Table for the Biconditional $p \leftrightarrow q$.

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \leftrightarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
IMPLICIT USE OF BICONDITIONALS You should be aware that biconditionals are not always explicit in natural language. In particular, the "if and only if" construction used in biconditionals is rarely used in common language. Instead, biconditionals are often expressed using an "if, then" or an "only if" construction. The other part of the "if and only if" is implicit. That is, the converse is implied, but not stated. For example, consider the statement in English "If you finish your meal, then you can have dessert." What is really meant is "You can have dessert if and only if you finish your meal." This last statement is logically equivalent to the two statements "If you finish your meal, then you can have dessert" and "You can have dessert only if you finish your meal." Because of this imprecision in natural language, we need to make an assumption whether a conditional statement in natural language implicitly includes its converse. Because precision is essential in mathematics and in logic, we will always distinguish between the conditional statement $p \rightarrow q$ and the biconditional statement $p \leftrightarrow q$.

Truth Tables of Compound Propositions

We have now introduced four important logical connectives—conjunctions, disjunctions, conditional statements, and biconditional statements—as well as negations. We can use these connectives to build up complicated compound propositions involving any number of propositional variables. We can use truth tables to determine the truth values of these compound propositions, as Example 11 illustrates. We use a separate column to find the truth value of each compound expression that occurs in the compound proposition as it is built up. The truth values of the compound proposition for each combination of truth values of the propositional variables in it is found in the final column of the table.

EXAMPLE 11 Construct the truth table of the compound proposition

$$(p \lor \neg q) \rightarrow (p \land q).$$

Solution: Because this truth table involves two propositional variables p and q, there are four rows in this truth table, corresponding to the combinations of truth values TT, TF, FT, and FF. The first two columns are used for the truth values of p and q, respectively. In the third column we find the truth value of $\neg q$, needed to find the truth value of $p \lor \neg q$, found in the fourth column. The truth value of $p \land q$ is found in the fifth column. Finally, the truth value of $(p \lor \neg q) \rightarrow (p \land q)$ is found in the last column. The resulting truth table is shown in Table 7.

Precedence of Logical Operators

We can construct compound propositions using the negation operator and the logical operators defined so far. We will generally use parentheses to specify the order in which logical operators

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$\neg q$</th>
<th>$p \lor \neg q$</th>
<th>$p \land q$</th>
<th>$(p \lor \neg q) \rightarrow (p \land q)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
in a compound proposition are to be applied. For instance, \((p \lor q) \land (\neg r)\) is the conjunction of \(p \lor q\) and \(\neg r\). However, to reduce the number of parentheses, we specify that the negation operator is applied before all other logical operators. This means that \(\neg p \land q\) is the conjunction of \(\neg p\) and \(q\), namely, \((\neg p) \land q\), not the negation of the conjunction of \(p\) and \(q\), namely \(\neg(p \land q)\).

Another general rule of precedence is that the conjunction operator takes precedence over the disjunction operator, so that \(p \land q \lor r\) means \((p \land q) \lor r\) rather than \(p \land (q \lor r)\). Because this rule may be difficult to remember, we will continue to use parentheses so that the order of the disjunction and conjunction operators is clear.

Finally, it is an accepted rule that the conditional and biconditional operators \(\rightarrow\) and \(\leftrightarrow\) have lower precedence than the conjunction and disjunction operators, \(\land\) and \(\lor\). Consequently, \(p \lor q \rightarrow r\) is the same as \((p \lor q) \rightarrow r\). We will use parentheses when the order of the conditional operator and biconditional operator is at issue, although the conditional operator has precedence over the biconditional operator. Table 8 displays the precedence levels of the logical operators, \(\neg\), \(\land\), \(\lor\), \(\rightarrow\), and \(\leftrightarrow\).

Translating English Sentences

There are many reasons to translate English sentences into expressions involving propositional variables and logical connectives. In particular, English (and every other human language) is often ambiguous. Translating sentences into compound statements (and other types of logical expressions, which we will introduce later in this chapter) removes the ambiguity. Note that this may involve making a set of reasonable assumptions based on the intended meaning of the sentence. Moreover, once we have translated sentences from English into logical expressions we can analyze these logical expressions to determine their truth values, we can manipulate them, and we can use rules of inference (which are discussed in Section 1.5) to reason about them.

To illustrate the process of translating an English sentence into a logical expression, consider Examples 12 and 13.

EXAMPLE 12 How can this English sentence be translated into a logical expression?

"You can access the Internet from campus only if you are a computer science major or you are not a freshman."

Solution: There are many ways to translate this sentence into a logical expression. Although it is possible to represent the sentence by a single propositional variable, such as \(p\), this would not be useful when analyzing its meaning or reasoning with it. Instead, we will use propositional variables to represent each sentence part and determine the appropriate logical connectives between them. In particular, we let \(a\), \(c\), and \(f\) represent "You can access the Internet from campus," "You are a computer science major," and "You are a freshman," respectively. Noting that "only if" is one way a conditional statement can be expressed, this sentence can be represented as

\[a \rightarrow (c \lor \neg f). \]

EXAMPLE 13 How can this English sentence be translated into a logical expression?

"You cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16 years old."
Solution: Let \(q, r, \) and \(s \) represent “You can ride the roller coaster,” “You are under 4 feet tall,” and “You are older than 16 years old,” respectively. Then the sentence can be translated to

\[(r \land \neg s) \rightarrow \neg q.\]

Of course, there are other ways to represent the original sentence as a logical expression, but the one we have used should meet our needs.

System Specifications

Translating sentences in natural language (such as English) into logical expressions is an essential part of specifying both hardware and software systems. System and software engineers take requirements in natural language and produce precise and unambiguous specifications that can be used as the basis for system development. Example 14 shows how compound propositions can be used in this process.

EXAMPLE 14 Express the specification “The automated reply cannot be sent when the file system is full” using logical connectives.

Solution: One way to translate this is to let \(p \) denote “The automated reply can be sent” and \(q \) denote “The file system is full.” Then \(\neg p \) represents “It is not the case that the automated reply can be sent,” which can also be expressed as “The automated reply cannot be sent.” Consequently, our specification can be represented by the conditional statement \(q \rightarrow \neg p. \)

System specifications should be **consistent**, that is, they should not contain conflicting requirements that could be used to derive a contradiction. When specifications are not consistent, there would be no way to develop a system that satisfies all specifications.

EXAMPLE 15 Determine whether these system specifications are consistent:

“The diagnostic message is stored in the buffer or it is retransmitted.”

“The diagnostic message is not stored in the buffer.”

“If the diagnostic message is stored in the buffer, then it is retransmitted.”

Solution: To determine whether these specifications are consistent, we first express them using logical expressions. Let \(p \) denote “The diagnostic message is stored in the buffer” and let \(q \) denote “The diagnostic message is retransmitted.” The specifications can then be written as \(p \lor q, \neg p \), and \(p \rightarrow q \). An assignment of truth values that makes all three specifications true must have \(p \) false to make \(\neg p \) true. Because we want \(p \lor q \) to be true but \(p \) must be false, \(q \) must be true. Because \(p \rightarrow q \) is true when \(p \) is false and \(q \) is true, we conclude that these specifications are consistent because they are all true when \(p \) is false and \(q \) is true. We could come to the same conclusion by use of a truth table to examine the four possible assignments of truth values to \(p \) and \(q \).

EXAMPLE 16 Do the system specifications in Example 15 remain consistent if the specification “The diagnostic message is not retransmitted” is added?

Solution: By the reasoning in Example 15, the three specifications from that example are true only in the case when \(p \) is false and \(q \) is true. However, this new specification is \(\neg q \), which is false when \(q \) is true. Consequently, these four specifications are inconsistent.
Boolean Searches

Logical connectives are used extensively in searches of large collections of information, such as indexes of Web pages. Because these searches employ techniques from propositional logic, they are called **Boolean searches**.

In Boolean searches, the connective **AND** is used to match records that contain both of two search terms, the connective **OR** is used to match one or both of two search terms, and the connective **NOT** (sometimes written as **AND NOT**) is used to exclude a particular search term. Careful planning of how logical connectives are used is often required when Boolean searches are used to locate information of potential interest. Example 17 illustrates how Boolean searches are carried out.

EXAMPLE 17

Web Page Searching Most Web search engines support Boolean searching techniques, which usually can help find Web pages about particular subjects. For instance, using Boolean searching to find Web pages about universities in New Mexico, we can look for pages matching **NEW AND MEXICO AND UNIVERSITIES**. The results of this search will include those pages that contain the three words **NEW, MEXICO, and UNIVERSITIES**. This will include all of the pages of interest, together with others such as a page about new universities in Mexico. (Note that in Google, and many other search engines, the word “AND” is not needed, although it is understood, because all search terms are included by default.) Next, to find pages that deal with universities in New Mexico or Arizona, we can search for pages matching **NEW AND MEXICO OR ARIZONA AND UNIVERSITIES**. (Note: Here the **AND** operator takes precedence over the **OR** operator. Also, in Google, the terms used for this search would be **NEW MEXICO OR ARIZONA**.) The results of this search will include all pages that contain the word **UNIVERSITIES** and either both the words **NEW** and **MEXICO** or the word **ARIZONA**. Again, pages besides those of interest will be listed. Finally, to find Web pages that deal with universities in Mexico (and not New Mexico), we might first look for pages matching **MEXICO AND UNIVERSITIES**, but because the results of this search will include pages about universities in New Mexico, as well as universities in Mexico, it might be better to search for pages matching **(MEXICO AND UNIVERSITIES) NOT NEW**. The results of this search include pages that contain both the words **MEXICO and UNIVERSITIES** but do not contain the word **NEW**. (In Google, and many other search engines, the word “NOT” is replaced by a minus sign “-”. In Google, the terms used for this last search would be **MEXICO UNIVERSITIES - NEW.**)

Logic Puzzles

Puzzles that can be solved using logical reasoning are known as **logic puzzles**. Solving logic puzzles is an excellent way to practice working with the rules of logic. Also, computer programs designed to carry out logical reasoning often use well-known logic puzzles to illustrate their capabilities. Many people enjoy solving logic puzzles, which are published in books and periodicals as a recreational activity.

We will discuss two logic puzzles here. We begin with a puzzle that was originally posed by Raymond Smullyan, a master of logic puzzles, who has published more than a dozen books containing challenging puzzles that involve logical reasoning.

EXAMPLE 18

In [Sm78] Smullyan posed many puzzles about an island that has two kinds of inhabitants, knights, who always tell the truth, and their opposites, knaves, who always lie. You encounter two people **A** and **B**. What are **A** and **B** if **A** says “**B** is a knight” and **B** says “The two of us are opposite types”?
Solution: Let p and q be the statements that A is a knight and B is a knight, respectively, so that $\neg p$ and $\neg q$ are the statements that A is a knave and that B is a knave, respectively.

We first consider the possibility that A is a knight; this is the statement that p is true. If A is a knight, then he is telling the truth when he says that B is a knight, so that q is true, and A and B are the same type. However, if B is a knight, then B‘s statements that A and B are of opposite types, the statement $(p \land \neg q) \lor (\neg p \land q)$, would have to be true, which it is not, because A and B are both knights. Consequently, we can conclude that A is not a knight, that is, that p is false.

If A is a knave, then because everything a knave says is false, A‘s statement that B is a knight, that is, that q is true, is a lie, which means that q is false and B is also a knave. Furthermore, if B is a knave, then B‘s statement that A and B are opposite types is a lie, which is consistent with both A and B being knaves. We can conclude that both A and B are knaves.

We pose more of Smullyan’s puzzles about knights and knaves in Exercises 55–59 at the end of this section. Next, we pose a puzzle known as the muddy children puzzle for the case of two children.

EXAMPLE 19

A father tells his two children, a boy and a girl, to play in their backyard without getting dirty. However, while playing, both children get mud on their foreheads. When the children stop playing, the father says “At least one of you has a muddy forehead,” and then asks the children to answer “Yes” or “No” to the question: “Do you know whether you have a muddy forehead?” The father asks this question twice. What will the children answer each time this question is asked, assuming that a child can see whether his or her sibling has a muddy forehead, but cannot see his or her own forehead? Assume that both children are honest and that the children answer each question simultaneously.

Solution: Let s be the statement that the son has a muddy forehead and let d be the statement that the daughter has a muddy forehead. When the father says that at least one of the two children has a muddy forehead, he is stating that the disjunction $s \lor d$ is true. Both children will answer “No” the first time the question is asked because each sees mud on the other child’s forehead. That is, the son knows that d is true, but does not know whether s is true, and the daughter knows that s is true, but does not know whether d is true.

After the son has answered “No” to the first question, the daughter can determine that d must be true. This follows because when the first question is asked, the son knows that $s \lor d$ is

Links

RAYMOND SMULLYAN (BORN 1919) Raymond Smullyan dropped out of high school. He wanted to study what he was really interested in and not standard high school material. After jumping from one university to the next, he earned an undergraduate degree in mathematics at the University of Chicago in 1955. He paid his college expenses by performing magic tricks at parties and clubs. He obtained a Ph.D. in logic in 1959 at Princeton, studying under Alonzo Church. After graduating from Princeton, he taught mathematics and logic at Dartmouth College, Princeton University, Yeshiva University, and the City University of New York. He joined the philosophy department at Indiana University in 1981 where he is now an emeritus professor.

Smullyan has written many books on recreational logic and mathematics, including *Satan, Cantor, and Infinity; What Is the Name of This Book?: The Lady or the Tiger?: Alice in Puzzland; To Mock a Mockingbird; Forever Undecided; and The Riddle of Scheherazade: Amazing Logic Puzzles, Ancient and Modern*. Because his logic puzzles are challenging, entertaining, and thought-provoking, he is considered to be a modern-day Lewis Carroll. Smullyan has also written several books about the application of deductive logic to chess, three collections of philosophical essays and aphorisms, and several advanced books on mathematical logic and set theory. He is particularly interested in self-reference and has worked on extending some of Godel’s results that show that it is impossible to write a computer program that can solve all mathematical problems. He is also particularly interested in explaining ideas from mathematical logic to the public.

Smullyan is a talented musician and often plays piano with his wife, who is a concert-level pianist. Making telescopes is one of his hobbies. He is also interested in optics and stereo photography. He states “I’ve never had a conflict between teaching and research as some people do because when I’m teaching, I’m doing research.”
true, but cannot determine whether s is true. Using this information, the daughter can conclude that d must be true, for if d were false, the son could have reasoned that because $s \lor d$ is true, then s must be true, and he would have answered “Yes” to the first question. The son can reason in a similar way to determine that s must be true. It follows that both children answer “Yes” the second time the question is asked.

Logic and Bit Operations

Computers represent information using bits. A bit is a symbol with two possible values, namely, 0 (zero) and 1 (one). This meaning of the word bit comes from binary digit, because zeros and ones are the digits used in binary representations of numbers. The well-known statistician John Tukey introduced this terminology in 1946. A bit can be used to represent a truth value, because there are two truth values, namely, true and false. As is customarily done, we will use a 1 bit to represent true and a 0 bit to represent false. That is, 1 represents T (true), 0 represents F (false). A variable is called a Boolean variable if its value is either true or false. Consequently, a Boolean variable can be represented using a bit.

Computer bit operations correspond to the logical connectives. By replacing true by a one and false by a zero in the truth tables for the operators \land, \lor, and \oplus, the tables shown in Table 9 for the corresponding bit operations are obtained. We will also use the notation OR, AND, and XOR for the operators \lor, \land, and \oplus, as is done in various programming languages.

Information is often represented using bit strings, which are lists of zeros and ones. When this is done, operations on the bit strings can be used to manipulate this information.

Definition 7

A bit string is a sequence of zero or more bits. The length of this string is the number of bits in the string.

Example 20

101010011 is a bit string of length nine.

We can extend bit operations to bit strings. We define the bitwise OR, bitwise AND, and bitwise XOR of two strings of the same length to be the strings that have as their bits the OR, AND, and XOR of the corresponding bits in the two strings, respectively. We use the symbols \lor, \land, and \oplus to represent the bitwise OR, bitwise AND, and bitwise XOR operations, respectively. We illustrate bitwise operations on bit strings with Example 21.

Example 21

Find the bitwise OR, bitwise AND, and bitwise XOR of the bit strings 0110110110 and 1100011101. (Here, and throughout this book, bit strings will be split into blocks of four bits to make them easier to read.)
Solution: The bitwise OR, bitwise AND, and bitwise XOR of these strings are obtained by taking the OR, AND, and XOR of the corresponding bits, respectively. This gives us

<table>
<thead>
<tr>
<th></th>
<th>01 1011 0110</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11 0001 1101</td>
</tr>
</tbody>
</table>
| | 11 1011 1111 | bitwise OR
| | 01 0001 0100 | bitwise AND
| 10 1010 1011 | bitwise XOR |

Exercises

1. Which of these sentences are propositions? What are the truth values of those that are propositions?
 a) Boston is the capital of Massachusetts.
 b) Miami is the capital of Florida.
 c) 2 + 3 = 5.
 d) 5 + 7 = 10.
 e) x + 2 = 11.
 f) Answer this question.

2. Which of these are propositions? What are the truth values of those that are propositions?
 a) Do not pass go.
 b) What time is it?
 c) There are no black flies in Maine.
 d) 4 + x = 5.
 e) The moon is made of green cheese.
 f) $2^n \geq 100$.

3. What is the negation of each of these propositions?
 a) Today is Thursday.
 b) There is no pollution in New Jersey.
 c) 2 + 1 = 3.
 d) The summer in Maine is hot and sunny.

4. Let p and q be the propositions

 p: I bought a lottery ticket this week.
 q: I won the million dollar jackpot on Friday.

 Express each of these propositions as an English sentence.
 a) $\neg p$
 b) $p \lor q$
 c) $p \rightarrow q$
 d) $p \land q$
 e) $p \leftrightarrow q$
 f) $\neg p \rightarrow \neg q$
 g) $\neg p \land \neg q$
 h) $\neg p \lor (p \land q)$

5. Let p and q be the propositions “Swimming at the New Jersey shore is allowed” and “Sharks have been spotted near the shore,” respectively. Express each of these compound propositions as an English sentence.
 a) $\neg q$
 b) $p \land q$
 c) $\neg p \lor q$
 d) $p \rightarrow \neg q$
 e) $\neg q \rightarrow p$
 f) $\neg p \rightarrow \neg q$
 g) $p \leftrightarrow \neg q$
 h) $\neg p \land (p \lor \neg q)$

John Wilder Tukey (1915–2000) Tukey, born in New Bedford, Massachusetts, was an only child. His parents, both teachers, decided home schooling would best develop his potential. His formal education began at Brown University, where he studied mathematics and chemistry. He received a master’s degree in chemistry from Brown and continued his studies at Princeton University, changing his field of study from chemistry to mathematics. He received his Ph.D. from Princeton in 1939 for work in topology, when he was appointed an instructor in mathematics at Princeton. With the start of World War II, he joined the Fire Control Research Office, where he began working in statistics. Tukey found statistical research to his liking and impressed several leading statisticians with his skills. In 1945, at the conclusion of the war, Tukey returned to the mathematics department at Princeton as a professor of statistics, and he also took a position at AT&T Bell Laboratories. Tukey founded the Statistics Department at Princeton in 1966 and was its first chairman. Tukey made significant contributions to many areas of statistics, including the analysis of variance, the estimation of spectra of time series, inferences about the values of a set of parameters from a single experiment, and the philosophy of statistics. However, he is best known for his inventor, with J. W. Cooley, of the fast Fourier transform. In addition to his contributions to statistics, Tukey was noted as a skilled wordsmith; he is credited with coining the terms bit and software.

Tukey contributed his insight and expertise by serving on the President’s Science Advisory Committee. He chaired several important committees dealing with the environment, education, and chemicals and health. He also served on committees working on nuclear disarmament. Tukey received many awards, including the National Medal of Science.

HISTORICAL NOTE There were several other suggested words for a binary digit, including binit and bigit, that never were widely accepted. The adoption of the word bit may be due to its meaning as a common English word. For an account of Tukey’s coinage of the word bit, see the April 1984 issue of Annals of the History of Computing.
6. Let \(p \) and \(q \) be the propositions “The election is decided” and “The votes have been counted,” respectively. Express each of these compound propositions as an English sentence.

\[
\begin{align*}
\text{a)} & \quad \neg p \\
\text{b)} & \quad p \lor q \\
\text{c)} & \quad \neg p \land q \\
\text{d)} & \quad q \rightarrow p \\
\text{e)} & \quad \neg q \rightarrow \neg p \\
\text{f)} & \quad \neg p \rightarrow q \\
\text{g)} & \quad p \leftrightarrow q
\end{align*}
\]

7. Let \(p \) and \(q \) be the propositions

\[
\begin{align*}
p & : \text{It is below freezing.} \\
q & : \text{It is snowing.}
\end{align*}
\]

Write these propositions using \(p \) and \(q \) and logical connectives.

\[
\begin{align*}
a) & \quad \text{It is below freezing and snowing.} \\
b) & \quad \text{It is below freezing but not snowing.} \\
c) & \quad \text{It is not below freezing and it is not snowing.} \\
d) & \quad \text{It is either snowing or below freezing (or both).} \\
e) & \quad \text{If it is below freezing, it is also snowing.} \\
f) & \quad \text{It is either below freezing or it is snowing, but it is not snowing if it is below freezing.} \\
g) & \quad \text{That it is below freezing is necessary and sufficient for it to be snowing.}
\end{align*}
\]

8. Let \(p, q, \) and \(r \) be the propositions

\[
\begin{align*}
p & : \text{You have the flu.} \\
q & : \text{You miss the final examination.} \\
r & : \text{You pass the course.}
\end{align*}
\]

Express each of these propositions as an English sentence.

\[
\begin{align*}
a) & \quad p \rightarrow q \\
b) & \quad \neg q \leftrightarrow p \\
c) & \quad q \rightarrow \neg r \\
d) & \quad p \lor q \lor r \\
e) & \quad (p \rightarrow \neg r) \lor (q \rightarrow \neg r) \\
f) & \quad (p \land q) \lor (\neg q \land r)
\end{align*}
\]

9. Let \(p \) and \(q \) be the propositions

\[
\begin{align*}
p & : \text{You drive over 65 miles per hour.} \\
q & : \text{You get a speeding ticket.}
\end{align*}
\]

Write these propositions using \(p \) and \(q \) and logical connectives.

\[
\begin{align*}
a) & \quad \text{You do not drive over 65 miles per hour.} \\
b) & \quad \text{You drive over 65 miles per hour, but you do not get a speeding ticket.} \\
c) & \quad \text{You will get a speeding ticket if you drive over 65 miles per hour.} \\
d) & \quad \text{If you do not drive over 65 miles per hour, then you will not get a speeding ticket.} \\
e) & \quad \text{Driving over 65 miles per hour is sufficient for getting a speeding ticket.} \\
f) & \quad \text{You get a speeding ticket, but you do not drive over 65 miles per hour.} \\
g) & \quad \text{Whenever you get a speeding ticket, you are driving over 65 miles per hour.}
\end{align*}
\]

10. Let \(p, q, \) and \(r \) be the propositions

\[
\begin{align*}
p & : \text{You get an A on the final exam.} \\
q & : \text{You do every exercise in this book.} \\
r & : \text{You get an A in this class.}
\end{align*}
\]

Write these propositions using \(p, q, \) and \(r \) and logical connectives.

\[
\begin{align*}
a) & \quad \text{You get an A in this class, but you do not do every exercise in this book.} \\
b) & \quad \text{You get an A on the final, you do every exercise in this book, and you get an A in this class.} \\
c) & \quad \text{To get an A in this class, it is necessary for you to get an A on the final.} \\
d) & \quad \text{You get an A on the final, but you don’t do every exercise in this book; nevertheless, you get an A in this class.} \\
e) & \quad \text{Getting an A on the final and doing every exercise in this book is sufficient for getting an A in this class.} \\
f) & \quad \text{You will get an A in this class if and only if you either do every exercise in this book or you get an A on the final.}
\end{align*}
\]

11. Let \(p, q, \) and \(r \) be the propositions

\[
\begin{align*}
p & : \text{Grizzly bears have been seen in the area.} \\
q & : \text{Hiking is safe on the trail.} \\
r & : \text{Berries are ripe along the trail.}
\end{align*}
\]

Write these propositions using \(p, q, \) and \(r \) and logical connectives.

\[
\begin{align*}
a) & \quad \text{Berries are ripe along the trail, but grizzly bears have not been seen in the area.} \\
b) & \quad \text{Grizzly bears have not been seen in the area and hiking on the trail is safe, but berries are ripe along the trail.} \\
c) & \quad \text{If berries are ripe along the trail, hiking is safe if and only if grizzly bears have not been seen in the area.} \\
d) & \quad \text{It is not safe to hike on the trail, but grizzly bears have not been seen in the area and the berries along the trail are ripe.} \\
e) & \quad \text{For hiking on the trail to be safe, it is necessary but not sufficient that berries not be ripe along the trail and for grizzly bears not to have been seen in the area.} \\
f) & \quad \text{Hiking is not safe on the trail whenever grizzly bears have been seen in the area and berries are ripe along the trail.}
\end{align*}
\]

12. Determine whether these biconditionals are true or false.

\[
\begin{align*}
a) & \quad 2 + 2 = 4 \quad \text{if and only if} \quad 1 + 1 = 2. \\
b) & \quad 1 + 1 = 2 \quad \text{if and only if} \quad 2 + 3 = 4. \\
c) & \quad 1 + 1 = 3 \quad \text{if and only if} \quad \text{monkeys can fly.} \\
d) & \quad 0 > 1 \quad \text{if and only if} \quad 2 > 1.
\end{align*}
\]

13. Determine whether each of these conditional statements is true or false.

\[
\begin{align*}
a) & \quad \text{If } 1 + 1 = 2, \text{ then } 2 + 2 = 5. \\
b) & \quad \text{If } 1 + 1 = 3, \text{ then } 2 + 2 = 4. \\
c) & \quad \text{If } 1 + 1 = 3, \text{ then } 2 + 2 = 5. \\
d) & \quad \text{If} \text{ monkeys can fly, then } 1 + 1 = 3.
\end{align*}
\]

14. Determine whether each of these conditional statements is true or false.

\[
\begin{align*}
a) & \quad \text{If } 1 + 1 = 3, \text{ then unicorns exists.} \\
b) & \quad \text{If} \text{ 1 + 1 = 3, then dogs can fly.} \\
c) & \quad \text{If} \text{ 1 + 1 = 2, then dogs can fly.} \\
d) & \quad \text{If } 2 + 2 = 4, \text{ then } 1 + 2 = 5.
\end{align*}
\]
15. For each of these sentences, determine whether an inclusive or an exclusive or is intended. Explain your answer.
 a) Coffee or tea comes with dinner.
 b) A password must have at least three digits or be at least eight characters long.
 c) The prerequisite for the course is a course in number theory or a course in cryptography.
 d) You can pay using U.S. dollars or euros.
16. For each of these sentences, determine whether an inclusive or an exclusive or is intended. Explain your answer.
 a) Experience with C++ or Java is required.
 b) Lunch includes soup or salad.
 c) To enter the country you need a passport or a voter registration card.
 d) Publish or perish.
17. For each of these sentences, state what the sentence means if the or is an inclusive or (that is, a disjunction) versus an exclusive or. Which of these meanings of or do you think is intended?
 a) To take discrete mathematics, you must have taken calculus or a course in computer science.
 b) When you buy a new car from Acme Motor Company, you get $2000 back in cash or a 2% car loan.
 c) Dinner for two includes two items from column A or three items from column B.
 d) School is closed if more than 2 feet of snow falls or if the wind chill is below −100.
18. Write each of these statements in the form "if p, then q" in English. [Hint: Refer to the list of common ways to express conditional statements provided in this section.]
 a) It is necessary to wash the boss's car to get promoted.
 b) Winds from the south imply a spring thaw.
 c) A sufficient condition for the warranty to be good is that you bought the computer less than a year ago.
 d) Willy gets caught whenever he cheats.
 e) You can access the website only if you pay a subscription fee.
 f) Getting elected follows from knowing the right people.
 g) Carol gets seasick whenever she is on a boat.
19. Write each of these statements in the form "if p, then q" in English. [Hint: Refer to the list of common ways to express conditional statements.]
 a) It snows whenever the wind blows from the northeast.
 b) The apple trees will bloom if it stays warm for a week.
 c) That the Pistons win the championship implies that they beat the Lakers.
 d) It is necessary to walk 8 miles to get to the top of Long's Peak.
 e) To get tenure as a professor, it is sufficient to be world-famous.
 f) If you drive more than 400 miles, you will need to buy gasoline.
 g) Your guarantee is good only if you bought your CD player less than 90 days ago.
 h) Jan will go swimming unless the water is too cold.
20. Write each of these statements in the form "if p, then q" in English. [Hint: Refer to the list of common ways to express conditional statements provided in this section.]
 a) I will remember to send you the address only if you send me an e-mail message.
 b) To be a citizen of this country, it is sufficient that you were born in the United States.
 c) If you keep your textbook, it will be a useful reference in your future courses.
 d) The Red Wings will win the Stanley Cup if their goalie plays well.
 e) That you get the job implies that you had the best credentials.
 f) The beach erodes whenever there is a storm.
 g) It is necessary to have a valid password to log on to the server.
 h) You will reach the summit unless you begin your climb too late.
21. Write each of these propositions in the form "p if and only if q" in English.
 a) If it is hot outside you buy an ice cream cone, and if you buy an ice cream cone it is hot outside.
 b) For you to win the contest it is necessary and sufficient that you have the only winning ticket.
 c) You get promoted only if you have connections, and you have connections only if you get promoted.
 d) If you watch television your mind will decay, and conversely.
 e) The trains run late on exactly those days when I take it.
22. Write each of these propositions in the form "p if and only if q" in English.
 a) For you to get an A in this course, it is necessary and sufficient that you learn how to solve discrete mathematics problems.
 b) If you read the newspaper every day, you will be informed, and conversely.
 c) It rains if it is a weekend day, and it is a weekend day if it rains.
 d) You can see the wizard only if the wizard is not in, and the wizard is not in only if you can see him.
23. State the converse, contrapositive, and inverse of each of these conditional statements.
 a) If it snows today, I will ski tomorrow.
 b) I come to class whenever there is going to be a quiz.
 c) A positive integer is a prime only if it has no divisors other than 1 and itself.
24. State the converse, contrapositive, and inverse of each of these conditional statements.
 a) If it snows tonight, then I will stay at home.
 b) I go to the beach whenever it is a sunny summer day.
 c) When I stay up late, it is necessary that I sleep until noon.
25. How many rows appear in a truth table for each of these compound propositions?
a) \(p \rightarrow \neg p \)
b) \((p \lor \neg r) \land (q \lor \neg s)\)
c) \((p \lor \neg v) \land \neg t \lor u\)
d) \((p \land r \land l) \leftrightarrow (q \land t)\)

26. How many rows appear in a truth table for each of these compound propositions?
a) \((q \rightarrow \neg p) \lor (\neg p \rightarrow \neg q)\)
b) \((p \lor \neg t) \land (p \lor \neg v)\)
c) \((p \rightarrow r) \lor (\neg s \rightarrow (\neg t \lor (\neg u \rightarrow v))\)
d) \((p \land r \land s) \lor (q \land l) \lor (r \land \neg v)\)

27. Construct a truth table for each of these compound propositions.
a) \(p \land \neg p\)
b) \(p \lor \neg p\)
c) \((p \lor \neg q) \rightarrow q\)
d) \((p \land q) \rightarrow (p \lor q)\)

e) \((p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)\)
f) \((p \rightarrow q) \leftrightarrow (q \rightarrow p)\)

28. Construct a truth table for each of these compound propositions.
a) \(p \rightarrow \neg p\)
b) \(p \leftrightarrow \neg p\)
c) \(p \oplus (p \lor q)\)
d) \((p \land q) \rightarrow (p \lor q)\)

e) \((q \rightarrow \neg p) \leftrightarrow (p \leftrightarrow q)\)
f) \((p \leftrightarrow q) \oplus (p \leftrightarrow \neg q)\)

29. Construct a truth table for each of these compound propositions.
a) \((p \lor q) \rightarrow (p \oplus q)\)
b) \((p \oplus q) \rightarrow (p \land q)\)
c) \((p \lor q) \oplus (p \land q)\)
d) \((p \land q) \oplus (\neg p \leftrightarrow q)\)

e) \((p \leftrightarrow q) \oplus (\neg p \leftrightarrow \neg q)\)
f) \((p \land q) \rightarrow (p \rightarrow \neg q)\)

30. Construct a truth table for each of these compound propositions.
a) \(p \oplus p\)
b) \(p \land \neg p\)
c) \(p \land \neg q\)
d) \(\neg p \land \neg q\)

e) \((p \land q) \lor (p \land \neg q)\)
f) \((p \land q) \land (p \land \neg q)\)

31. Construct a truth table for each of these compound propositions.
a) \(p \rightarrow \neg q\)
b) \(\neg p \rightarrow q\)
c) \((p \rightarrow q) \lor (\neg p \rightarrow q)\)
d) \((p \rightarrow q) \land (\neg p \rightarrow q)\)

e) \((p \rightarrow q) \lor (\neg p \leftrightarrow q)\)
f) \((p \rightarrow q \leftrightarrow q) \leftrightarrow (p \leftrightarrow q)\)

32. Construct a truth table for each of these compound propositions.
a) \((p \lor q) \lor r\)
b) \((p \lor q) \land r\)
c) \((p \land q) \lor r\)
d) \((p \land q) \land r\)

e) \((p \lor q) \lor \neg r\)
f) \((p \land q) \lor \neg r\)

33. Construct a truth table for each of these compound propositions.
a) \(p \rightarrow (\neg q \lor r)\)
b) \(\neg p \rightarrow (q \rightarrow r)\)
c) \((p \rightarrow q) \land (\neg p \rightarrow r)\)
d) \((p \rightarrow q) \land (\neg p \rightarrow r)\)

e) \((p \rightarrow q) \lor (\neg q \land r)\)
f) \((\neg p \leftrightarrow \neg q) \leftrightarrow (q \leftrightarrow r)\)

34. Construct a truth table for \((p \leftrightarrow q) \leftrightarrow (r \leftrightarrow s)\).

35. Construct a truth table for \((p \rightarrow q) \leftrightarrow (r \rightarrow s)\).

36. What is the value of \(x\) after each of these statements is encountered in a computer program, if \(x = 1\) before the statement is reached?
a) \(if 1 + 2 = 3 then x := x + 1\)
b) \(if (1 + 1 = 3) OR (2 + 2 = 3) then x := x + 1\)
c) \(if (2 + 3 = 5) AND (3 + 4 = 7) then x := x + 1\)
d) \(if (1 + 1 = 2) XOR (1 + 2 = 3) then x := x + 1\)
e) \(if x < 2 then x := x + 1\)

37. Find the bitwise OR, bitwise AND, and bitwise XOR of each of these pairs of bit strings.
a) \(1011110, 0100001\)
b) \(11110000, 1010101\)
c) \(00001100, 10110000\)
d) \(1101111111, 0000000000\)

38. Evaluate each of these expressions.
a) \(1 \land 0 \land 0 \land (0 \lor 111 \land 1 \lor 011)\)
b) \((0 \land 111 \land 1 \land 011) \lor 0 \land 00\)
c) \((0 \land 011 \land 1 \land 11) \lor 0 \land 0100\)
d) \((1 \land 1011 \lor 1 \land 0101) \land (1 \land 001 \lor 1 \land 111)\)

Fuzzy logic is used in artificial intelligence. In fuzzy logic, a proposition has a truth value that is a number between 0 and 1, inclusive. A proposition with a truth value of 0 is false and one with a truth value of 1 is true. Truth values that are between 0 and 1 indicate varying degrees of truth. For instance, the truth value 0.8 can be assigned to the statement “Fred is happy,” because Fred is happy most of the time, and the truth value 0.4 can be assigned to the statement “John is happy,” because John is happy slightly less than half the time.

39. The truth value of the negation of a proposition in fuzzy logic is 1 minus the truth value of the proposition. What are the truth values of the statements “Fred is not happy” and “John is not happy”?

40. The truth value of the conjunction of two propositions in fuzzy logic is the minimum of the truth values of the two propositions. What are the truth values of the statements “Fred and John are happy” and “Neither Fred nor John is happy”?

41. The truth value of the disjunction of two propositions in fuzzy logic is the maximum of the truth values of the two propositions. What are the truth values of the statements “Fred is happy, or John is happy” and “Fred is not happy, or John is not happy”?

42. Is the assertion “This statement is false” a proposition?

43. The \(n\)th statement in a list of 100 statements is “Exactly \(n\) of the statements in this list are false.”
a) What conclusions can you draw from these statements?
b) Answer part (a) if the \(n\)th statement is “At least \(n\) of the statements in this list are false.”
c) Answer part (b) assuming that the list contains 99 statements.

44. An ancient Sicilian legend says that the barber in a remote town who can be reached only by traveling a dangerous mountain road shaves those people, and only those
people, who do not shave themselves. Can there be such a barber?

45. Each inhabitant of a remote village always tells the truth or always lies. A villager will only give a “Yes” or a “No” response to a question a tourist asks. Suppose you are a tourist visiting this area and come to a fork in the road. One branch leads to the ruins you want to visit; the other branch leads deep into the jungle. A villager is standing at the fork in the road. What one question can you ask the villager to determine which branch to take?

46. An explorer is captured by a group of cannibals. There are two types of cannibals—those who always tell the truth and those who always lie. The cannibals will barbecue the explorer unless he can determine whether a particular cannibal always lies or always tells the truth. He is allowed to ask the cannibal exactly one question.

a) Explain why the question “Are you a liar?” does not work.

b) Find a question that the explorer can use to determine whether the cannibal always lies or always tells the truth.

47. Express these system specifications using the propositions p “The message is scanned for viruses” and q “The message was sent from an unknown system” together with logical connectives.

a) “The message is scanned for viruses whenever the message was sent from an unknown system.”

b) “The message was sent from an unknown system but it was not scanned for viruses.”

c) “It is necessary to scan the message for viruses whenever it was sent from an unknown system.”

d) “When a message is not sent from an unknown system it is not scanned for viruses.”

48. Express these system specifications using the propositions p “The user enters a valid password,” q “Access is granted,” and r “The user has paid the subscription fee” and logical connectives.

a) “The user has paid the subscription fee, but does not enter a valid password.”

b) “Access is granted whenever the user has paid the subscription fee and enters a valid password.”

c) “Access is denied if the user has not paid the subscription fee.”

d) “If the user has not entered a valid password but has paid the subscription fee, then access is granted.”

49. Are these system specifications consistent? “The system is in multiuser state if and only if it is operating normally. If the system is operating normally, the kernel is functioning. The kernel is not functioning or the system is in interrupt mode. If the system is not in multiuser state, then it is in interrupt mode. The system is not in interrupt mode.”

50. Are these system specifications consistent? “Whenever the system software is being upgraded, users cannot access the file system. If users can access the file system, then they can save new files. If users cannot save new files, then the system software is not being upgraded.”

51. Are these system specifications consistent? “The router can send packets to the edge system only if it supports the new address space. For the router to support the new address space it is necessary that the latest software release be installed. The router can send packets to the edge system if the latest software release is installed. The router does not support the new address space.”

52. Are these system specifications consistent? “If the file system is not locked, then new messages will be queued. If the file system is not locked, then the system is functioning normally, and conversely. If new messages are not queued, then they will be sent to the message buffer. If the file system is not locked, then new messages will be sent to the message buffer. New messages will not be sent to the message buffer.”

53. What Boolean search would you use to look for Web pages about beaches in New Jersey? What if you wanted to find Web pages about beaches on the isle of Jersey (in the English Channel)?

54. What Boolean search would you use to look for Web pages about hiking in West Virginia? What if you wanted to find Web pages about hiking in Virginia, but not in West Virginia?

Exercises 55–59 relate to inhabitants of the island of knights and knaves created by Smullyan, where knights always tell the truth and knaves always lie. You encounter two people, A and B. Determine, if possible, what A and B are if they address you in the ways described. If you cannot determine what these two people are, can you draw any conclusions?

55. A says “At least one of us is a knave” and B says nothing.

56. A says “The two of us are both knights” and B says “A is a knave.”

57. A says “I am a knave or B is a knight” and B says nothing.

58. Both A and B say “I am a knight.”

59. A says “We are both knaves” and B says nothing.

Exercises 60–65 are puzzles that can be solved by translating statements into logical expressions and reasoning from these expressions using truth tables.

60. The police have three suspects for the murder of Mr. Cooper: Mr. Smith, Mr. Jones, and Mr. Williams. Smith, Jones, and Williams each declare that they did not kill Cooper. Smith also states that Cooper was a friend of Jones and that Williams disliked him. Jones also states that he did not know Cooper and that he was out of town the day Cooper was killed. Williams also states that he saw both Smith and Jones with Cooper the day of the killing and that either Smith or Jones must have killed him. Can you determine who the murderer was if

a) one of the three men is guilty, the two innocent men are telling the truth, but the statements of the guilty man may or may not be true?

b) innocent men do not lie?
61. Steve would like to determine the relative salaries of three coworkers using two facts. First, he knows that if Fred is not the highest paid of the three, then Janice is. Second, he knows that if Janice is not the lowest paid, then Maggie is paid the most. Is it possible to determine the relative salaries of Fred, Maggie, and Janice from what Steve knows? If so, who is paid the most and who the least? Explain your reasoning.

62. Five friends have access to a chat room. Is it possible to determine who is chatting if the following information is known? Either Kevin or Heather, or both, are chatting. Either Randy or Vijay, but not both, are chatting. If Abby is chatting, so is Randy. Vijay and Kevin are either both chatting or neither is. If Heather is chatting, then so are Abby and Kevin. Explain your reasoning.

63. A detective has interviewed four witnesses to a crime. From the stories of the witnesses the detective has concluded that if the butler is telling the truth then so is the cook; the cook and the gardener cannot both be telling the truth; the gardener and the handyman are not both lying; and if the handyman is telling the truth then the cook is lying. For each of the four witnesses, can the detective determine whether that person is telling the truth or lying? Explain your reasoning.

64. Four friends have been identified as suspects for an unauthorized access into a computer system. They have made statements to the investigating authorities. Alice said "Carlos did it." John said "I did not do it." Carlos said "Diana did it." Diana said "Carlos lied when he said that I did it."

 a) If the authorities also know that exactly one of the four suspects is telling the truth, who did it? Explain your reasoning.
 b) If the authorities also know that exactly one is lying, who did it? Explain your reasoning.

*65. Solve this famous logic puzzle, attributed to Albert Einstein, and known as the zebra puzzle. Five men with different nationalities and with different jobs live in consecutive houses on a street. These houses are painted different colors. The men have different pets and have different favorite drinks. Determine who owns a zebra and whose favorite drink is mineral water (which is one of the favorite drinks) given these clues: The Englishman lives in the red house. The Spaniard owns a dog. The Japanese man is a painter. The Italian drinks tea. The Norwegian lives in the first house on the left. The green house is immediately to the right of the white one. The photographer breeds snails. The diplomat lives in the yellow house. Milk is drunk in the middle house. The owner of the green house drinks coffee. The Norwegian's house is next to the blue one. The violinist drinks orange juice. The fox is in a house next to that of the physician. The horse is in a house next to that of the diplomat. [Hint: Make a table where the rows represent the men and columns represent the color of their houses, their jobs, their pets, and their favorite drinks and use logical reasoning to determine the correct entries in the table.]

1.2 Propositional Equivalences

Introduction

An important type of step used in a mathematical argument is the replacement of a statement with another statement with the same truth value. Because of this, methods that produce propositions with the same truth value as a given compound proposition are used extensively in the construction of mathematical arguments. Note that we will use the term “compound proposition” to refer to an expression formed from propositional variables using logical operators, such as \(p \land q \).

We begin our discussion with a classification of compound propositions according to their possible truth values.

DEFINITION 1

A compound proposition that is always true, no matter what the truth values of the propositions that occur in it, is called a tautology. A compound proposition that is always false is called a contradiction. A compound proposition that is neither a tautology nor a contradiction is called a contingency.

Tautologies and contradictions are often important in mathematical reasoning. Example 1 illustrates these types of compound propositions.
TABLE 1 Examples of a Tautology and a Contradiction.

<table>
<thead>
<tr>
<th></th>
<th>(p)</th>
<th>(\neg p)</th>
<th>(p \lor \neg p)</th>
<th>(p \land \neg p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2 De Morgan’s Laws.

- \(\neg(p \land q) \equiv \neg p \lor \neg q \)
- \(\neg(p \lor q) \equiv \neg p \land \neg q \)

EXAMPLE 1 We can construct examples of tautologies and contradictions using just one propositional variable. Consider the truth tables of \(p \lor \neg p \) and \(p \land \neg p \), shown in Table 1. Because \(p \lor \neg p \) is always true, it is a tautology. Because \(p \land \neg p \) is always false, it is a contradiction.

Logical Equivalences

Compound propositions that have the same truth values in all possible cases are called **logically equivalent**. We can also define this notion as follows.

DEFINITION 2 The compound propositions \(p \) and \(q \) are called **logically equivalent** if \(p \leftrightarrow q \) is a tautology. The notation \(p \equiv q \) denotes that \(p \) and \(q \) are logically equivalent.

Remark: The symbol \(\equiv \) is not a logical connective and \(p \equiv q \) is not a compound proposition but rather is the statement that \(p \leftrightarrow q \) is a tautology. The symbol \(\leftrightarrow \) is sometimes used instead of \(\equiv \) to denote logical equivalence.

One way to determine whether two compound propositions are equivalent is to use a truth table. In particular, the compound propositions \(p \) and \(q \) are equivalent if and only if the columns giving their truth values agree. Example 2 illustrates this method to establish an extremely important and useful logical equivalence, namely, that \(\neg(p \lor q) \equiv \neg p \land \neg q \). This logical equivalence is one of the two **De Morgan laws**, shown in Table 2, named after the English mathematician Augustus De Morgan, of the mid-nineteenth century.

EXAMPLE 2 Show that \(\neg(p \lor q) \) and \(\neg p \land \neg q \) are logically equivalent.

Solution: The truth tables for these compound propositions are displayed in Table 3. Because the truth values of the compound propositions \(\neg(p \lor q) \) and \(\neg p \land \neg q \) agree for all possible combinations of the truth values of \(p \) and \(q \), it follows that \(\neg(p \lor q) \leftrightarrow (\neg p \land \neg q) \) is a tautology and that these compound propositions are logically equivalent.

TABLE 3 Truth Tables for \(\neg(p \lor q) \) and \(\neg p \land \neg q \).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(p \lor q)</th>
<th>(\neg(p \lor q))</th>
<th>(\neg p)</th>
<th>(\neg q)</th>
<th>(\neg p \land \neg q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Example 3 Show that $p \rightarrow q$ and $\neg p \lor q$ are logically equivalent.

Solution: We construct the truth table for these compound propositions in Table 4. Because the truth values of $\neg p \lor q$ and $p \rightarrow q$ agree, they are logically equivalent.

We will now establish a logical equivalence of two compound propositions involving three different propositional variables p, q, and r. To use a truth table to establish such a logical equivalence, we need eight rows, one for each possible combination of truth values of these three variables. We symbolically represent these combinations by listing the truth values of p, q, and r, respectively. These eight combinations of truth values are TTT, TTF, TFT, TFF, FTT, FFT, FTF, and FFF; we use this order when we display the rows of the truth table. Note that we need to double the number of rows in the truth table to show that compound propositions are equivalent for each additional propositional variable, so that 16 rows are needed to establish the logical equivalence of two compound propositions involving four propositional variables, and so on. In general, 2^n rows are required if a compound proposition involves n propositional variables.

Example 4 Show that $p \lor (q \land r)$ and $(p \lor q) \land (p \lor r)$ are logically equivalent. This is the *distributive law* of disjunction over conjunction.

Solution: We construct the truth table for these compound propositions in Table 5. Because the truth values of $p \lor (q \land r)$ and $(p \lor q) \land (p \lor r)$ agree, these compound propositions are logically equivalent.

TABLE 4 Truth Tables for $\neg p \lor q$ and $p \rightarrow q$.

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$\neg p$</th>
<th>$\neg p \lor q$</th>
<th>$p \rightarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

TABLE 5 A Demonstration That $p \lor (q \land r)$ and $(p \lor q) \land (p \lor r)$ Are Logically Equivalent.

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>r</th>
<th>$q \land r$</th>
<th>$p \lor (q \land r)$</th>
<th>$p \lor q$</th>
<th>$p \lor r$</th>
<th>$(p \lor q) \land (p \lor r)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>
Table 6: Logical Equivalences.

<table>
<thead>
<tr>
<th>Equivalence</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p \land T \equiv p)</td>
<td>Identity laws</td>
</tr>
<tr>
<td>(p \lor F \equiv p)</td>
<td></td>
</tr>
<tr>
<td>(p \lor T \equiv T)</td>
<td>Domination laws</td>
</tr>
<tr>
<td>(p \land F \equiv F)</td>
<td></td>
</tr>
<tr>
<td>(p \lor p \equiv p)</td>
<td>Idempotent laws</td>
</tr>
<tr>
<td>(p \land p \equiv p)</td>
<td></td>
</tr>
<tr>
<td>(\neg(\neg p) \equiv p)</td>
<td>Double negation law</td>
</tr>
<tr>
<td>(p \lor q \equiv q \lor p)</td>
<td>Commutative laws</td>
</tr>
<tr>
<td>(p \land q \equiv q \land p)</td>
<td></td>
</tr>
<tr>
<td>((p \lor q) \lor r \equiv p \lor (q \lor r))</td>
<td>Associative laws</td>
</tr>
<tr>
<td>((p \land q) \land r \equiv p \land (q \land r))</td>
<td></td>
</tr>
<tr>
<td>(p \lor (q \land r) \equiv (p \lor q) \land (p \lor r))</td>
<td>Distributive laws</td>
</tr>
<tr>
<td>(p \land (q \lor r) \equiv (p \land q) \lor (p \land r))</td>
<td></td>
</tr>
<tr>
<td>(\neg(\neg p \land q) \equiv \neg p \lor \neg q)</td>
<td>De Morgan’s laws</td>
</tr>
<tr>
<td>(\neg(\neg p \lor q) \equiv \neg p \land \neg q)</td>
<td></td>
</tr>
<tr>
<td>(p \lor (p \land q) \equiv p)</td>
<td>Absorption laws</td>
</tr>
<tr>
<td>(p \land (p \lor q) \equiv p)</td>
<td></td>
</tr>
<tr>
<td>(p \lor \neg p \equiv T)</td>
<td>Negation laws</td>
</tr>
<tr>
<td>(p \land \neg p \equiv F)</td>
<td></td>
</tr>
</tbody>
</table>

Table 6 contains some important equivalences. In these equivalences, \(T \) denotes the compound proposition that is always true and \(F \) denotes the compound proposition that is always false. We also display some useful equivalences for compound propositions involving conditional statements and biconditional statements in Tables 7 and 8, respectively. The reader is asked to verify the equivalences in Tables 6–8 in the exercises at the end of the section.

The associative law for disjunction shows that the expression \(p \lor q \lor r \) is well defined, in the sense that it does not matter whether we first take the disjunction of \(p \) with \(q \) and then the disjunction of \(p \lor q \) with \(r \), or if we first take the disjunction of \(q \) and \(r \) and then take the disjunction of \(p \) with \(q \lor r \). Similarly, the expression \(p \land q \land r \) is well defined. By extending this reasoning, it follows that \(p_1 \lor p_2 \lor \cdots \lor p_n \) and \(p_1 \land p_2 \land \cdots \land p_n \) are well defined whenever \(p_1, p_2, \ldots, p_n \) are propositions. Furthermore, note that De Morgan’s laws extend to

\[
\neg(p_1 \lor p_2 \lor \cdots \lor p_n) \equiv (\neg p_1 \land \neg p_2 \land \cdots \land \neg p_n)
\]

and

\[
\neg(p_1 \land p_2 \land \cdots \land p_n) \equiv (\neg p_1 \lor \neg p_2 \lor \cdots \lor \neg p_n).
\]

(Methods for proving these identities will be given in Section 4.1.)

Readers familiar with the concept of a Boolean algebra will notice that these identities are a special case of identities that hold for any Boolean algebra. Compare them with set identities in Table 1 in Section 2.2 and with Boolean identities in Table 5 in Section 11.1.
TABLE 7 Logical Equivalences Involving Conditional Statements.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p \rightarrow q \equiv \neg p \lor q$</td>
<td></td>
</tr>
<tr>
<td>$p \rightarrow q \equiv \neg q \rightarrow \neg p$</td>
<td></td>
</tr>
<tr>
<td>$p \lor q \equiv \neg p \rightarrow q$</td>
<td></td>
</tr>
<tr>
<td>$p \land q \equiv \neg (p \rightarrow \neg q)$</td>
<td></td>
</tr>
<tr>
<td>$\neg (p \rightarrow q) \equiv p \land \neg q$</td>
<td></td>
</tr>
<tr>
<td>$(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$</td>
<td></td>
</tr>
<tr>
<td>$(p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r$</td>
<td></td>
</tr>
<tr>
<td>$(p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r)$</td>
<td></td>
</tr>
<tr>
<td>$(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 8 Logical Equivalences Involving Biconditionals.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$</td>
<td></td>
</tr>
<tr>
<td>$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$</td>
<td></td>
</tr>
<tr>
<td>$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$</td>
<td></td>
</tr>
<tr>
<td>$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$</td>
<td></td>
</tr>
</tbody>
</table>

Using De Morgan’s Laws

The two logical equivalences known as De Morgan’s laws are particularly important. They tell us how to negate conjunctions and how to negate disjunctions. In particular, the equivalence \(\neg (p \lor q) \equiv \neg p \land \neg q\) tells us that the negation of a disjunction is formed by taking the conjunction of the negations of the component propositions. Similarly, the equivalence \(\neg (p \land q) \equiv \neg p \lor \neg q\) tells us that the negation of a conjunction is formed by taking the disjunction of the negations of the component propositions. Example 5 illustrates the use of De Morgan’s laws.

EXAMPLE 5 Use De Morgan’s laws to express the negations of “Miguel has a cellphone and he has a laptop computer,” and “Heather will go to the concert or Steve will go to the concert.”

Solution: Let \(p\) be “Miguel has a cellphone” and \(q\) be “Miguel has a laptop computer.” Then “Miguel has a cellphone and he has a laptop computer” can be represented by \(p \land q\). By the first of De Morgan’s laws, \(\neg (p \land q)\) is equivalent to \(\neg p \lor \neg q\). Consequently, we can express

AUGUSTUS DE MORGAN (1806–1871) Augustus De Morgan was born in India, where his father was a colonel in the Indian army. De Morgan’s family moved to England when he was 7 months old. He attended private schools, where he developed a strong interest in mathematics in his early teens. De Morgan studied at Trinity College, Cambridge, graduating in 1827. Although he considered entering medicine or law, he decided on a career in mathematics. He won a position at University College, London, in 1828, but resigned when the college dismissed a fellow professor without giving reasons. However, he resumed this position in 1836 when his successor died, staying there until 1866.

De Morgan was a noted teacher who stressed principles over techniques. His students included many famous mathematicians, including Augusta Ada, Countess of Lovelace, who was Charles Babbage’s collaborator in his work on computing machines (see page 27 for biographical notes on Augusta Ada). (De Morgan cautioned the countess against studying too much mathematics, because it might interfere with her childbearing abilities!)

De Morgan was an extremely prolific writer. He wrote more than 1000 articles for more than 15 periodicals. De Morgan also wrote textbooks on many subjects, including logic, probability, calculus, and algebra. In 1838 he presented what was perhaps the first clear explanation of an important proof technique known as mathematical induction (discussed in Section 4.1 of this text), a term he coined. In the 1840s De Morgan made fundamental contributions to the development of symbolic logic. He invented notations that helped him prove propositional equivalences, such as the laws that are named after him. In 1842 De Morgan presented what was perhaps the first precise definition of a limit and developed some tests for convergence of infinite series. De Morgan was also interested in the history of mathematics and wrote biographies of Newton and Halley.

In 1837 De Morgan married Sophia Frend, who wrote his biography in 1882. De Morgan’s research, writing, and teaching left little time for his family or social life. Nevertheless, he was noted for his kindness, humor, and wide range of knowledge.
the negation of our original statement as “Miguel does not have a cellphone or he does not have a laptop computer.”

Let \(r \) be “Heather will go to the concert” and \(s \) be “Steve will go to the concert.” Then “Heather will go to the concert or Steve will go to the concert” can be represented by \(r \lor s \). By the second of De Morgan’s laws, \(\neg(r \lor s) \) is equivalent to \(\neg r \land \neg s \). Consequently, we can express the negation of our original statement as “Heather will not go to the concert and Steve will not go to the concert.”

Constructing New Logical Equivalences

The logical equivalences in Table 6, as well as any others that have been established (such as those shown in Tables 7 and 8), can be used to construct additional logical equivalences. The reason for this is that a proposition in a compound proposition can be replaced by a compound proposition that is logically equivalent to it without changing the truth value of the original compound proposition. This technique is illustrated in Examples 6–8, where we also use the fact that if \(p \) and \(q \) are logically equivalent and \(q \) and \(r \) are logically equivalent, then \(p \) and \(r \) are logically equivalent (see Exercise 56).

Example 6

Show that \(\neg(p \to q) \) and \(p \land \neg q \) are logically equivalent.

Solution: We could use a truth table to show that these compound propositions are equivalent (similar to what we did in Example 4). Indeed, it would not be hard to do so. However, we want to illustrate how to use logical identities that we already know to establish new logical identities, something that is of practical importance for establishing equivalences of compound propositions with a large number of variables. So, we will establish this equivalence by developing a series of logical equivalences, using one of the equivalences in Table 6 at a time, starting with \(\neg(p \to q) \) and ending with \(p \land \neg q \). We have the following equivalences.

\[
\begin{align*}
\neg(p \to q) & \equiv \neg(\neg p \lor q) \quad \text{by Example 3} \\
 & \equiv \neg \neg p \land \neg q \quad \text{by the second De Morgan law} \\
 & \equiv p \land \neg q \quad \text{by the double negation law}
\end{align*}
\]

Example 7

Show that \(\neg(p \lor (\neg p \land q)) \) and \(\neg p \land \neg q \) are logically equivalent by developing a series of logical equivalences.

Solution: We will use one of the equivalences in Table 6 at a time, starting with \(\neg(p \lor (\neg p \land q)) \) and ending with \(\neg p \land \neg q \). (Note: we could also easily establish this equivalence using a truth table.) We have the following equivalences.

\[
\begin{align*}
\neg(p \lor (\neg p \land q)) & \equiv \neg p \land \neg(\neg p \land q) \quad \text{by the second De Morgan law} \\
 & \equiv \neg p \land [(\neg p) \lor \neg q] \quad \text{by the first De Morgan law} \\
 & \equiv \neg p \land (p \land \neg q) \quad \text{by the double negation law} \\
 & \equiv (\neg p \land p) \lor (\neg p \land \neg q) \quad \text{by the second distributive law} \\
 & \equiv \text{F} \lor (\neg p \land \neg q) \quad \text{because } \neg p \land p \equiv \text{F} \\
 & \equiv (\neg p \land \neg q) \lor \text{F} \quad \text{by the commutative law for disjunction} \\
 & \equiv \neg p \land \neg q \quad \text{by the identity law for F}
\end{align*}
\]

Consequently \(\neg(p \lor (\neg p \land q)) \) and \(\neg p \land \neg q \) are logically equivalent.
EXAMPLE 8 Show that \((p \land q) \rightarrow (p \lor q)\) is a tautology.

Solution: To show that this statement is a tautology, we will use logical equivalences to demonstrate that it is logically equivalent to \(T\). (Note: This could also be done using a truth table.)

\[
(p \land q) \rightarrow (p \lor q) \equiv \neg(p \land q) \lor (p \lor q) \\
\equiv (\neg p \lor \neg q) \lor (p \lor q) \quad \text{by Example 3} \\
\equiv (\neg p \lor p) \lor (\neg q \lor q) \quad \text{by the first De Morgan law} \\
\equiv T \lor T \quad \text{by the associative and commutative laws for disjunction} \\
\equiv T \quad \text{by Example 1 and the commutative law for disjunction} \\
\equiv T \quad \text{by the domination law}
\]

A truth table can be used to determine whether a compound proposition is a tautology. This can be done by hand for a compound proposition with a small number of variables, but when the number of variables grows, this becomes impractical. For instance, there are \(2^{20} = 1,048,576\) rows in the truth value table for a compound proposition with 20 variables. Clearly, you need a computer to help you determine, in this way, whether a compound proposition in 20 variables is a tautology. But when there are 1000 variables, can even a computer determine in a reasonable amount of time whether a compound proposition is a tautology? Checking every one of the \(2^{1000}\) (a number with more than 300 decimal digits) possible combinations of truth values simply cannot be done by a computer in even trillions of years. Furthermore, no other procedures are known that a computer can follow to determine in a reasonable amount of time whether a compound proposition in such a large number of variables is a tautology. We will study questions such as this in Chapter 3, when we study the complexity of algorithms.

Links

AUGUSTA ADA, COUNTESS OF LOVELACE (1815–1852) Augusta Ada was the only child from the marriage of the famous poet Lord Byron and Lady Byron, Annabella Millbanke, who separated when Ada was 1 month old, because of Lord Byron's scandalous affair with his half sister. The Lord Byron had quite a reputation, being described by one of his lovers as "mad, bad, and dangerous to know." Lady Byron was noted for her intellect and had a passion for mathematics; she was called by Lord Byron "The Princess of Parallelograms." Augusta was raised by her mother, who encouraged her intellectual talents especially in music and mathematics, to counter what Lady Byron considered dangerous poetic tendencies. At this time, women were not allowed to attend universities and could not join learned societies. Nevertheless, Augusta pursued her mathematical studies independently and with mathematicians, including William Freind. She was also encouraged by another female mathematician, Mary Somerville, and in 1834 at a dinner party hosted by Mary Somerville, she learned about Charles Babbage's ideas for a calculating machine, called the Analytic Engine. In 1838 Augusta Ada married Lord King, later elevated to Earl of Lovelace. Together they had three children.

Augusta Ada continued her mathematical studies after her marriage. Charles Babbage had continued work on his Analytic Engine and lectured on this in Europe. In 1842 Babbage asked Augusta Ada to translate an article in French describing Babbage's invention. When Babbage saw her translation, he suggested she add her own notes, and the resulting work was three times the length of the original. The most complete accounts of the Analytic Machine are found in Augusta Ada's notes. In her notes, she compared the working of the Analytic Engine to that of the Jacquard loom, with Babbage's punch cards analogous to the cards used to create patterns on the loom. Furthermore, she recognized the promises of the machine as a general purpose computer much better than Babbage did. She stated that the "engine is the material expression of any indefinite function of any degree of generality and complexity." Her notes on the Analytic Engine anticipate many future developments, including computer-generated music. Augusta Ada published her writings under her initials A.A.L. concealing her identity as a women as did many women did at a time when women were not considered to be the intellectual equals of men. After 1845 she and Babbage worked toward the development of a system to predict horse races. Unfortunately, their system did not work well, leaving Augusta heavily in debt at the time of her death at an unfortunately young age from uterine cancer. In 1953 Augusta Ada's notes on the Analytic Engine were republished more than 100 years after they were written, and after they had been long forgotten. In his work in the 1950s on the capacity of computers to think (and his famous Turing Test), Alan Turing responded to Augusta Ada's statement that "The Analytic Engine has no pretensions whatever to originate anything. It can do whatever we know how to order it to perform." This "dialogue" between Turing and Augusta Ada is still the subject of controversy. Because of her fundamental contributions to computing, the programming language Augusta is named in honor of the Countess of Lovelace.
Exercises

1. Use truth tables to verify these equivalences.
 a) \(p \land T \equiv p \)
 b) \(p \lor F \equiv p \)
 c) \(p \land F \equiv F \)
 d) \(p \lor T \equiv T \)
 e) \(p \lor p \equiv p \)
 f) \(p \land p \equiv p \)

2. Show that \(\neg(\neg p) \) and \(p \) are logically equivalent.

3. Use truth tables to verify the commutative laws
 a) \(p \lor q \equiv q \lor p \)
 b) \(p \land q \equiv q \land p \)

4. Use truth tables to verify the associative laws
 a) \((p \lor q) \lor r \equiv p \lor (q \lor r) \)
 b) \((p \land q) \land r \equiv p \land (q \land r) \)

5. Use a truth table to verify the distributive law
 \(p \land (q \lor r) \equiv (p \land q) \lor (p \land r) \).

6. Use a truth table to verify the first De Morgan law
 \(\neg(p \land q) \equiv \neg p \lor \neg q \).

7. Use De Morgan's laws to find the negation of each of the following statements.
 a) Jan is rich and happy.
 b) Carlos will bicycle or run tomorrow.
 c) Mei walks or takes the bus to class.
 d) Ibrahim is smart and hard working.

8. Use De Morgan's laws to find the negation of each of the following statements.
 a) Kwame will take a job in industry or go to graduate school.
 b) Yoshiko knows Java and calculus.
 c) James is young and strong.
 d) Rita will move to Oregon or Washington.

9. Show that each of these conditional statements is a tautology by using truth tables.
 a) \((p \land q) \rightarrow p \)
 b) \(p \rightarrow (p \lor q) \)
 c) \(\neg p \rightarrow (p \lor q) \)
 d) \((p \lor q) \rightarrow (p \lor q) \)
 e) \((p \lor q) \rightarrow p \)
 f) \((p \lor q) \rightarrow \neg q \)

10. Show that each of these conditional statements is a tautology by using truth tables.
 a) \(\neg p \lor (p \lor q) \rightarrow q \)
 b) \([(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r) \)
 c) \([p \land (p \rightarrow q)] \rightarrow q \)
 d) \([(p \lor q) \land (p \lor r) \land (q \rightarrow r)] \rightarrow r \)

11. Show that each conditional statement in Exercise 9 is a tautology without using truth tables.

12. Show that each conditional statement in Exercise 10 is a tautology without using truth tables.

13. Use truth tables to verify the absorption laws.
 a) \(p \lor (p \land q) \equiv p \)
 b) \(p \land (p \lor q) \equiv p \)

14. Determine whether \(\neg(p \land (p \rightarrow q)) \) is a tautology.

15. Determine whether \(\neg q \land (p \rightarrow q) \) is a tautology.

Each of Exercises 16-28 asks you to show that two compound propositions are logically equivalent. To do this, either show that both sides are true, or that both sides are false, for exactly the same combinations of truth values of the propositional variables in these expressions (whichever is easier).

16. Show that \(p \leftrightarrow q \) and \((p \land q) \lor (\neg p \land \neg q) \) are equivalent.

17. Show that \(\neg(p \leftrightarrow q) \) and \(p \leftrightarrow \neg q \) are logically equivalent.
18. Show that \(p \rightarrow q \) and \(\neg q \rightarrow \neg p \) are logically equivalent.
19. Show that \(\neg p \rightarrow q \) and \(p \rightarrow \neg q \) are logically equivalent.
20. Show that \(\neg (p \oplus q) \) and \(p \leftrightarrow q \) are logically equivalent.
21. Show that \((p \leftrightarrow q) \) and \(\neg p \leftrightarrow q \) are logically equivalent.
22. Show that \((p \rightarrow q) \land (p \rightarrow r) \) and \(p \rightarrow (q \land r) \) are logically equivalent.
23. Show that \((p \rightarrow r) \land (q \rightarrow r) \) and \((p \lor q) \rightarrow r \) are logically equivalent.
24. Show that \((p \rightarrow q) \lor (p \rightarrow r) \) and \(p \rightarrow (q \lor r) \) are logically equivalent.
25. Show that \((p \rightarrow r) \lor (q \rightarrow r) \) and \((p \land q) \rightarrow r \) are logically equivalent.
26. Show that \(\neg p \rightarrow (q \rightarrow r) \) and \(q \rightarrow (p \lor r) \) are logically equivalent.
27. Show that \(p \leftarrow q \) and \((p \rightarrow q) \land (q \rightarrow p) \) are logically equivalent.
28. Show that \(p \leftarrow q \) and \(\neg p \leftarrow \neg q \) are logically equivalent.
29. Show that \((p \rightarrow q) \land (q \rightarrow r) \rightarrow (p \rightarrow r) \) is a tautology.
30. Show that \((p \lor q) \land (\neg p \lor r) \rightarrow (q \lor r) \) is a tautology.
31. Show that \((p \rightarrow q) \rightarrow r \) and \(p \rightarrow (q \rightarrow r) \) are not equivalent.
32. Show that \((p \land q) \rightarrow r \) and \((p \rightarrow r) \land (q \rightarrow r) \) are not equivalent.
33. Show that \((p \rightarrow q) \rightarrow (r \rightarrow s) \) and \((p \rightarrow r) \rightarrow (q \rightarrow s) \) are not logically equivalent.

The dual of a compound proposition that contains only the logical operators \(\lor \), \(\land \), and \(\neg \) is the compound proposition obtained by replacing each \(\lor \) by \(\land \), each \(\land \) by \(\lor \), each \(T \) by \(F \), and each \(F \) by \(T \). The dual of \(s \) is denoted by \(s^* \).

34. Find the dual of each of these compound propositions.
 a) \(p \lor \neg q \)
 b) \(p \land (q \lor (r \land T)) \)
 c) \((p \land \neg q) \lor (q \land F) \)
35. Find the dual of each of these compound propositions.
 a) \(p \lor \neg q \lor r \)
 b) \((p \land q) \land (r \land s) \)
 c) \((p \lor F) \land (q \lor T) \)
36. When does \(s^* = s \), where \(s \) is a compound proposition?
37. Show that \((s^*)^* = s \) when \(s \) is a compound proposition.
38. Show that the logical equivalences in Table 6, except for the double negation law, come in pairs, where each pair contains compound propositions that are duals of each other.

**39. Why are the duals of two equivalent compound propositions also equivalent, where these compound propositions contain only the operators \(\lor \), \(\land \), and \(\neg \)?

40. Find a compound proposition involving the propositional variables \(p \), \(q \), and \(r \) that is true when \(p \) and \(q \) are true and \(r \) is false, but is false otherwise. [Hint: Use a conjunction of each propositional variable or its negation.]
41. Find a compound proposition involving the propositional variables \(p \), \(q \), and \(r \) that is true when exactly two of \(p \), \(q \), and \(r \) are true and is false otherwise. [Hint: Form a disjunction of conjunctions. Include a conjunction for each combination of values for which the propositional variable is true. Each conjunction should include each of the three propositional variables or their negations.]

**42. Suppose that a truth table in \(n \) propositional variables is specified. Show that a compound proposition with this truth table can be formed by taking the disjunction of the conjunctions of the variables or their negations, with one conjunction included for each combination of values for which the compound proposition is true. The resulting compound proposition is said to be in disjunctive normal form.

A collection of logical operators is called **functionally complete** if every compound proposition is logically equivalent to a compound proposition involving only these logical operators.

43. Show that \(\neg \), \(\land \), and \(\lor \) form a functionally complete collection of logical operators. [Hint: Use the fact that every compound proposition is logically equivalent to one in disjunctive normal form, as shown in Exercise 42.]

**44. Show that \(\land \) and \(\lor \) form a functionally complete collection of logical operators. [Hint: Use a De Morgan law to show that \(p \lor q \) is equivalent to \(\neg (\neg p \land \neg q) \).]

**45. Show that \(\neg \) and \(\lor \) form a functionally complete collection of logical operators.

The following exercises involve the logical operators NAND and NOR. The proposition \(p \) NAND \(q \) is true when either \(p \) or \(q \), or both, are false; and it is false when both \(p \) and \(q \) are true. The proposition \(p \) NOR \(q \) is true when both \(p \) and \(q \) are false, and it is false otherwise. The propositions \(p \) NAND \(q \) and \(p \) NOR \(q \) are denoted by \(p \downarrow q \) and \(p \downarrow\downarrow q \), respectively. (The operators \(\downarrow \) and \(\downarrow\downarrow \) are called the Sheffer stroke and the Peirce arrow after H. M. Sheffer and C. S. Peirce, respectively.)

46. Construct a truth table for the logical operator NAND.
47. Show that \(p \downarrow q \) is logically equivalent to \(\neg (p \land q) \).
48. Construct a truth table for the logical operator NOR.
49. Show that \(p \downarrow\downarrow q \) is logically equivalent to \(\neg (p \lor q) \).

50. In this exercise we will show that \(\{\downarrow, \downarrow\downarrow\} \) is a functionally complete collection of logical operators.
 a) Show that \(p \downarrow p \) is logically equivalent to \(\neg p \).
 b) Show that \((p \downarrow q) \downarrow (p \downarrow\downarrow q) \) is logically equivalent to \(p \lor q \).
 c) Conclude from parts (a) and (b), and Exercise 49, that \(\{\downarrow, \downarrow\downarrow\} \) is a functionally complete collection of logical operators.

**51. Find a compound proposition logically equivalent to \(p \rightarrow q \) using only the logical operator \(\downarrow \).
52. Show that \(\{\downarrow\} \) is a functionally complete collection of logical operators.
53. Show that \(p \downarrow q \) and \(q \downarrow p \) are equivalent.
54. Show that \(p \downarrow (q \rightarrow r) \) and \((p \downarrow q) \downarrow r \) are not equivalent, so that the logical operator \(\downarrow \) is not associative.

**55. How many different truth tables of compound propositions are there that involve the propositional variables \(p \) and \(q \)?
56. Show that if \(p, q, \) and \(r \) are compound propositions such that \(p \) and \(q \) are logically equivalent and \(q \) and \(r \) are logically equivalent, then \(p \) and \(r \) are logically equivalent.

57. The following sentence is taken from the specification of a telephone system: “If the directory database is opened, then the monitor is put in a closed state, if the system is not in its initial state.” This specification is hard to understand because it involves two conditional statements. Find an equivalent, easier-to-understand specification that involves disjunctions and negations but not conditional statements.

58. How many of the disjunctions \(p \lor q, \neg p \lor q, q \lor r, \) \(q \lor \neg r, \) and \(\neg q \lor \neg r \) can be made simultaneously true by an assignment of truth values to \(p, q, \) and \(r \)?

59. How many of the disjunctions \(p \lor q \lor s, \neg p \lor \neg q \lor s, \neg p \lor q \lor s, \neg s, \) \(q \lor r \lor \neg s, q \lor r \lor \neg s, q \lor r \lor \neg s, \) \(q \lor r \lor \neg s, \) and \(p \lor r \lor \neg s \) can be made simultaneously true by an assignment of truth values to \(p, q, r, \) and \(s \)?

A compound proposition is **satisfiable** if there is an assignment of truth values to the variables in the compound proposition that makes the statement form true.

60. Which of these compound propositions are satisfiable?

 a) \((p \lor q \lor \neg r) \land (p \lor \neg q \lor \neg s) \land\)
 \((\neg p \lor \neg q \lor \neg s) \land (p \lor q \lor \neg s)\)

 b) \((\neg p \lor \neg q \lor r) \land (\neg p \lor q \lor \neg s) \land\)
 \((p \lor q \lor \neg s) \land (p \lor q \lor \neg r) \land (\neg p \lor q \lor r) \land (p \lor \neg r \lor \neg s)\)

 c) \((q \lor \neg q \lor \neg s) \land (\neg p \lor q \lor \neg s) \land\)
 \((p \lor \neg q \lor \neg r) \land (p \lor \neg q \lor \neg r) \land (\neg p \lor \neg q \lor \neg s) \land (\neg p \lor \neg r \lor \neg s)\)

61. Explain how an algorithm for determining whether a compound proposition is satisfiable can be used to determine whether a compound proposition is a tautology. [Hint: Look at \(\neg p \), where \(p \) is the compound proposition that is being examined.]

1.3 Predicates and Quantifiers

Introduction

Propositional logic, studied in Sections 1.1 and 1.2, cannot adequately express the meaning of statements in mathematics and in natural language. For example, suppose that we know that

“Every computer connected to the university network is functioning properly.”

No rules of propositional logic allow us to conclude the truth of the statement “MATH3 is functioning properly,”

where MATH3 is one of the computers connected to the university network. Likewise, we cannot use the rules of propositional logic to conclude from the statement “CS2 is under attack by an intruder,”

where CS2 is a computer on the university network, to conclude the truth of “There is a computer on the university network that is under attack by an intruder.”

In this section we will introduce a more powerful type of logic called **predicate logic**. We will see how predicate logic can be used to express the meaning of a wide range of statements in mathematics and computer science in ways that permit us to reason and explore relationships between objects. To understand predicate logic, we first need to introduce the concept of a predicate. Afterward, we will introduce the notion of quantifiers, which enable us reason with statements that assert that a certain property holds for all objects of a certain type and with statements that assert the existence of an object with a particular property.
Predicates

Statements involving variables, such as

“$x > 3$,” “$x = y + 3$,” “$x + y = z$,”

“computer x is under attack by an intruder,”

and

“computer x is functioning properly,”

are often found in mathematical assertions, in computer programs, and in system specifications. These statements are neither true nor false when the values of the variables are not specified. In this section, we will discuss the ways that propositions can be produced from such statements.

The statement “x is greater than 3” has two parts. The first part, the variable x, is the subject of the statement. The second part—the predicate, “is greater than 3”—refers to a property that the subject of the statement can have. We can denote the statement “x is greater than 3” by $P(x)$, where P denotes the predicate “is greater than 3” and x is the variable. The statement $P(x)$ is also said to be the value of the propositional function P at x. Once a value has been assigned to the variable x, the statement $P(x)$ becomes a proposition and has a truth value. Consider Examples 1 and 2.

EXAMPLE 1

Let $P(x)$ denote the statement “$x > 3$.” What are the truth values of $P(4)$ and $P(2)$?

Solution. We obtain the statement $P(4)$ by setting $x = 4$ in the statement “$x > 3$.” Hence, $P(4)$, which is the statement “$4 > 3$,” is true. However, $P(2)$, which is the statement “$2 > 3$,” is false.

EXAMPLE 2

Let $A(x)$ denote the statement “Computer x is under attack by an intruder.” Suppose that of the computers on campus, only CS2 and MATH1 are currently under attack by intruders. What are truth values of $A(CS1)$, $A(CS2)$, and $A(MATH1)$?

Solution: We obtain the statement $A(CS1)$ by setting $x = CS1$ in the statement “Computer x is under attack by an intruder.” Because CS1 is not on the list of computers currently under attack, we conclude that $A(CS1)$ is false. Similarly, because CS2 and MATH1 are on the list of computers under attack, we know that $A(CS2)$ and $A(MATH1)$ are true.

We can also have statements that involve more than one variable. For instance, consider the statement “$x = y + 3$.” We can denote this statement by $Q(x, y)$, where x and y are variables and Q is the predicate. When values are assigned to the variables x and y, the statement $Q(x, y)$ has a truth value.

EXAMPLE 3

Let $Q(x, y)$ denote the statement “$x = y + 3$.” What are the truth values of the propositions $Q(1, 2)$ and $Q(3, 0)$?

Solution: To obtain $Q(1, 2)$, set $x = 1$ and $y = 2$ in the statement $Q(x, y)$. Hence, $Q(1, 2)$ is the statement “$1 = 2 + 3$,” which is false. The statement $Q(3, 0)$ is the proposition “$3 = 0 + 3$,” which is true.
EXAMPLE 4 Let $A(c, n)$ denote the statement “Computer c is connected to network n,” where c is a variable representing a computer and n is a variable representing a network. Suppose that the computer MATH1 is connected to network CAMPUS2, but not to network CAMPUS1. What are the values of $A(\text{MATH1}, \text{CAMPUS1})$ and $A(\text{MATH1}, \text{CAMPUS2})$?

Solution: Because MATH1 is not connected to the CAMPUS1 network, we see that $A(\text{MATH1}, \text{CAMPUS1})$ is false. However, because MATH1 is connected to the CAMPUS2 network, we see that $A(\text{MATH1}, \text{CAMPUS2})$ is true.

Similarly, we can let $R(x, y, z)$ denote the statement “$x + y = z$.” When values are assigned to the variables x, y, and z, this statement has a truth value.

EXAMPLE 5 What are the truth values of the propositions $R(1, 2, 3)$ and $R(0, 0, 1)$?

Solution: The proposition $R(1, 2, 3)$ is obtained by setting $x = 1$, $y = 2$, and $z = 3$ in the statement $R(x, y, z)$. We see that $R(1, 2, 3)$ is the statement “$1 + 2 = 3$,” which is true. Also note that $R(0, 0, 1)$, which is the statement “$0 + 0 = 1$,” is false.

In general, a statement involving the n variables x_1, x_2, \ldots, x_n can be denoted by $P(x_1, x_2, \ldots, x_n)$.

A statement of the form $P(x_1, x_2, \ldots, x_n)$ is the value of the propositional function P at the n-tuple (x_1, x_2, \ldots, x_n), and P is also called a n-place predicate or a n-ary predicate.

Propositional functions occur in computer programs, as Example 6 demonstrates.

Links

CHARLES SANDERS PEIRCE (1839–1914)

Many consider Charles Peirce the most original and versatile intellect from the United States; he was born in Cambridge, Massachusetts. He made important contributions to an amazing number of disciplines, including mathematics, astronomy, chemistry, geodesy, metrology, engineering, psychology, philology, the history of science, and economics. He was also an inventor, a lifelong student of medicine, a book reviewer, a dramatist and an actor, a short story writer, a phenomenologist, a logician, and a metaphysician. He is noted as the preeminent system-building philosopher competent and productive in logic, mathematics, and a wide range of sciences. His father, Benjamin Peirce, was a professor of mathematics and natural philosophy at Harvard. Peirce attended Harvard (1855–1859) and received a Harvard master of arts degree (1862) and an advanced degree in chemistry from the Lawrence Scientific School (1863). His father encouraged him to pursue a career in science, but instead he chose to study logic and scientific methodology.

In 1861, Peirce became an aide in the United States Coast Survey, with the goal of better understanding scientific methodology. His service for the Survey exempted him from military service during the Civil War. While working for the Survey, Peirce carried out astronomical and geodetic work. He made fundamental contributions to the design of pendulums and to map projections, applying new mathematical developments in the theory of elliptic functions. He was the first person to use the wavelength of light as a unit of measurement. Peirce rose to the position of Assistant for the Survey, a position he held until he was forced to resign in 1891 when he disagreed with the direction taken by the Survey's new administration.

Although making his living from work in the physical sciences, Peirce developed a hierarchy of sciences, with mathematics at the top rung, in which the methods of one science could be adapted for use by those sciences under it in the hierarchy. He was also the founder of the American philosophical theory of pragmatism.

The only academic position Peirce ever held was as a lecturer in logic at Johns Hopkins University in Baltimore from 1879 to 1884. His mathematical work during this time included contributions to logic, set theory, abstract algebra, and the philosophy of mathematics. His work is still relevant today; some of his work on logic has been recently applied to artificial intelligence. Peirce believed that the study of mathematics could develop the mind's powers of imagination, abstraction, and generalization. His diverse activities after retiring from the Survey included writing for newspapers and journals, contributing to scholarly dictionaries, translating scientific papers, guest lecturing, and textbook writing. Unfortunately, the income from these pursuits was insufficient to protect him and his second wife from abject poverty. He was supported in his later years by a fund created by his many admirers and administered by the philosopher William James, his lifelong friend. Although Peirce wrote and published voluminously in a vast range of subjects, he left more than 100,000 pages of unpublished manuscripts. Because of the difficulty of studying his unpublished writings, scholars have only recently started to understand some of his varied contributions. A group of people is devoted to making his work available over the Internet to bring a better appreciation of Peirce’s accomplishments to the world.
EXAMPLE 6 Consider the statement

\[
\text{if } x > 0 \text{ then } x := x + 1.
\]

When this statement is encountered in a program, the value of the variable \(x \) at that point in the execution of the program is inserted into \(P(x) \), which is "\(x > 0 \)." If \(P(x) \) is true for this value of \(x \), the assignment statement \(x := x + 1 \) is executed, so the value of \(x \) is increased by 1. If \(P(x) \) is false for this value of \(x \), the assignment statement is not executed, so the value of \(x \) is not changed.

Predicates are also used in the verification that computer programs always produce the desired output when given valid input. The statements that describe valid input are known as preconditions and the conditions that the output should satisfy when the program has run are known as postconditions. As Example 7 illustrates, we use predicates to describe both preconditions and postconditions. We will study this process in greater detail in Section 4.4.

EXAMPLE 7 Consider the following program, designed to interchange the values of two variables \(x \) and \(y \).

\[
\begin{align*}
temp & := x \\
x & := y \\
y & := temp
\end{align*}
\]

Find predicates that we can use as the precondition and the postcondition to verify the correctness of this program. Then explain how to use them to verify that for all valid input the program does what is intended.

Solution: For the precondition, we need to express that \(x \) and \(y \) have particular values before we run the program. So, for this precondition we can use the predicate \(P(x, y) \), where \(P(x, y) \) is the statement "\(x = a \) and \(y = b \)," where \(a \) and \(b \) are the values of \(x \) and \(y \) before we run the program. Because we want to verify that the program swaps the values of \(x \) and \(y \) for all input values, for the postcondition we can use \(Q(x, y) \), where \(Q(x, y) \) is the statement "\(x = b \) and \(y = a \)."

To verify that the program always does what it is supposed to do, suppose that the precondition \(P(x, y) \) holds. That is, we suppose that the statement "\(x = a \) and \(y = b \)" is true. This means that \(x = a \) and \(y = b \). The first step of the program, \(temp := x \), assigns the value of \(x \) to the variable \(temp \), so after this step we know that \(x = a \), \(temp = a \), and \(y = b \). After the second step of the program, \(x := y \), we know that \(x = b \), \(temp = a \), and \(y = b \). Finally, after the third step, we know that \(x = b \), \(temp = a \), and \(y = a \). Consequently, after this program is run, the postcondition \(Q(x, y) \) holds, that is, the statement "\(x = b \) and \(y = a \)" is true.

Quantifiers

When the variables in a propositional function are assigned values, the resulting statement becomes a proposition with a certain truth value. However, there is another important way, called quantification, to create a proposition from a propositional function. Quantification expresses the extent to which a predicate is true over a range of elements. In English, the words all, some, many, none, and few are used in quantifications. We will focus on two types of quantification here: universal quantification, which tells us that a predicate is true for every element under consideration, and existential quantification, which tells us that there is one or more element under consideration for which the predicate is true. The area of logic that deals with predicates and quantifiers is called the predicate calculus.
Answers to Odd-Numbered Exercises

CHAPTER 1

Section 1.1

1. a) Yes, T b) Yes, F c) Yes, T d) Yes, F e) No f) No 3. a) Today is not Thursday. b) There is pollution in New Jersey. c) 2 + 1 ≠ 3 d) The summer in Maine is not hot or it is not sunny. 5. a) Sharks have not been spotted near the shore. b) Swimming at the New Jersey shore is allowed, and sharks have been spotted near the shore. c) Swimming at the New Jersey shore is not allowed, or sharks have been spotted near the shore. d) If swimming at the New Jersey shore is not allowed, then sharks have not been spotted near the shore. e) If sharks have not been spotted near the shore, then swimming at the New Jersey shore is allowed. f) If swimming at the New Jersey shore is not allowed, then sharks have not been spotted near the shore. g) Swimming at the New Jersey shore is allowed if and only if sharks have not been spotted near the shore. h) Swimming at the New Jersey shore is not allowed, and either swimming at the New Jersey shore is allowed or sharks have not been spotted near the shore. (Note that we were able to incorporate the parentheses by using the word "either" in the second half of the sentence.) 7. a) \(p \land q \) b) \(p \land \neg q \) c) \(\neg p \land \neg q \) d) \(p \lor q \) e) \(p \rightarrow q \) f) \((p \lor q) \land (p \rightarrow q) \) g) \(q \leftrightarrow p \) 9. a) \(\neg p \) b) \(p \land \neg q \) c) \(p \rightarrow q \) d) \(\neg p \rightarrow \neg q \) e) \(\neg p \rightarrow \neg q \) f) \(q \land \neg p \) g) \(q \rightarrow p \) 11. a) \(r \land \neg p \) b) \(\neg p \land q \rightarrow r \) c) \(r \rightarrow (q \leftrightarrow \neg p) \) d) \(\neg q \land \neg p \land r \) e) \((q \rightarrow (\neg r \land \neg p)) \land (\neg((\neg r \land \neg p) \rightarrow q) \) f) \((p \land r) \rightarrow \neg q \) 13. a) False b) True c) True d) True 15. a) Exclusive or: You get only one beverage. b) Inclusive or: Long passwords can have any combination of symbols. c) Inclusive or: A student with both courses is even more qualified. d) Either interpretation possible; a traveler might wish to pay with a mixture of the two currencies, or the store may not allow that. 17. a) Inclusive or: It is allowable to take discrete mathematics if you have had calculus or computer science, or both. Exclusive or: It is allowable to take discrete mathematics if you have had calculus or computer science, but not if you have had both. Most likely the inclusive or is intended. b) Inclusive or: You can take the rebate, or you can get a low-interest loan, or you can get both the rebate and a low-interest loan. Exclusive or: You can take the rebate, or you can get a low-interest loan, but you cannot get both the rebate and a low-interest loan. Most likely the exclusive or is intended. c) Inclusive or: You can order two items from column A and none from column B, or three items from column B and none from column A, or five items including two from column A and three from column B. Exclusive or: You can order two items from column A or three items from column B, but not both. Almost certainly the exclusive or is intended. d) Inclusive or: More than 2 feet of snow or windchill below \(-100\), or both, will close school. Exclusive or: More than 2 feet of snow or windchill below \(-100\), but not both, will close school. Certainly the inclusive or is intended. 19. a) If the wind blows from the northeast, then it snows. b) If it stays warm for a week, then the apple trees will bloom. c) If the Pistons win the championship, then they beat the Lakers. d) If you get to the top of Long's Peak, then you must have walked 8 miles. e) If you are world-famous, then you will get tenure as a professor. f) If you drive more than 400 miles, then you will need to buy gasoline. g) If your guarantee is good, then you must have bought your CD player less than 90 days ago. h) If the water is not too cold, then Jan will go swimming. 21. a) You buy an ice cream cone if and only if it is hot outside. b) You win the contest if and only if you hold the only winning ticket. c) You get promoted if and only if you have connections. d) Your mind will decay if and only if you watch television. e) The train runs late if and only if it is a day I take the train. 23. a) Converse: “I will ski tomorrow only if it snows today.” Contrapositive: “If I do not ski tomorrow, then it will not have snowed today.” Inverse: “If it does not snow today, then I will not ski tomorrow.” b) Converse: “If I come to class, then there will be a quiz.” Contrapositive: “If I do not come to class, then there will not be a quiz.” Inverse: “If there is not going to be a quiz, then I don’t come to class.” c) Converse: “A positive integer is a prime if it has no divisor other than 1 and itself.” Contrapositive: “If a positive integer has a divisor other than 1 and itself, then it is not prime.” Inverse: “If a positive integer is not prime, then it has a divisor other than 1 and itself.” 25. a) 2 b) 16 c) 64 d) 16

<table>
<thead>
<tr>
<th>(p)</th>
<th>(\neg p)</th>
<th>(p \land \neg p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(p)</th>
<th>(\neg q)</th>
<th>(p \lor \neg q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(p \lor q \rightarrow (p \land q))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
</tr>
<tr>
<td>T</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>T</td>
</tr>
</tbody>
</table>

The tables and statements are shown in the document for logical operations and their expressions.
\[
\begin{array}{cccccccc}
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
(a \leftrightarrow b) & (a \leftrightarrow b_{\bot}) & (a \leftrightarrow d_{\bot}) & (a \leftrightarrow d_{\bot}) & (a \leftrightarrow b) & (a \wedge b_{\bot}) & a & b & d \\
\wedge (b \leftrightarrow d) & \vee (b \leftrightarrow d) & \wedge (b \leftrightarrow d) \\
\end{array}
\]

33.

\[
\begin{array}{cccccccc}
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
b \leftrightarrow (b_{\bot} \leftrightarrow d_{\bot}) & (b \leftrightarrow d_{\bot}) \\
\wedge (b \leftrightarrow d) & \vee (b \leftrightarrow d) & \wedge (b \leftrightarrow d) \\
\end{array}
\]

31.

\[
\begin{array}{cccccccc}
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
(a_{\bot} \leftrightarrow d_{\bot}) \oplus (b \leftrightarrow d) & a_{\bot} \leftrightarrow d_{\bot} & b \leftrightarrow d & a_{\bot} \leftrightarrow d_{\bot} & a & b & d \\
\wedge (b \leftrightarrow d) & \vee (b \leftrightarrow d) & \wedge (b \leftrightarrow d) \\
\end{array}
\]

For part (e) we have this table.

\[
\begin{array}{cccccccc}
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
(b_{\bot} \oplus d) \leftrightarrow (b \oplus d) & (b \leftrightarrow d_{\bot}) \oplus (b \leftrightarrow d) & (b \vee d) \oplus (b \wedge d) & (b \vee d) \leftrightarrow (b \oplus d) & (b \oplus d) \leftrightarrow (b \wedge d) & b & d \\
\end{array}
\]

For parts (a), (b), (c), (d) and (f) we have this table.

\[
\begin{array}{cccccccc}
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
(d \leftrightarrow b) & d \leftrightarrow b & d \leftrightarrow b & d & d \\
\end{array}
\]

29. For parts (a), (b), (c) and (f) we have this table.

\[
\begin{array}{cccccccc}
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
\bot & \bot \\
(d_{\bot} \leftrightarrow b_{\bot}) & d_{\bot} \leftrightarrow b_{\bot} & d_{\bot} \leftrightarrow b_{\bot} & b & d & b & d \\
\end{array}
\]

(6)
Section 1.2

The Truth Table for the Truth Value of the Proposition

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>r</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(p ↔ q)</th>
<th>(p → q)</th>
<th>(p ∧ q)</th>
<th>(p ∨ q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Problem 3.1

(a) The statement "If it rains, then I will stay at home." is a conditional statement.

(b) The statement "Either it rains or I will stay at home." is a disjunction.

(c) The statement "It cannot rain or I will stay at home." is a negation.

(d) The statement "If it does not rain, then I will not stay at home." is the converse of the original statement.

(e) The statement "If it rains, then I will stay at home." is the contrapositive of the original statement.

Problem 3.2

(a) If it rains, then I will stay at home.

(b) If I do not stay at home, then it did not rain.

(c) If it does not rain, then I will not stay at home.

(d) If it rains, then I will stay at home.

(e) If I stay at home, then it rained.

Problem 3.3

(a) If it rains, then I will stay at home.

(b) If I do not stay at home, then it did not rain.

(c) If it does not rain, then I will not stay at home.

(d) If it rains, then I will stay at home.

(e) If I stay at home, then it rained.

Problem 3.4

(a) If it rains, then I will stay at home.

(b) If I do not stay at home, then it did not rain.

(c) If it does not rain, then I will not stay at home.

(d) If it rains, then I will stay at home.

(e) If I stay at home, then it rained.

Problem 3.5

(a) If it rains, then I will stay at home.

(b) If I do not stay at home, then it did not rain.

(c) If it does not rain, then I will not stay at home.

(d) If it rains, then I will stay at home.

(e) If I stay at home, then it rained.
In the following problems, we will prove that the propositions are equivalent. In the first column, we list the propositions. In the second column, we show how the propositions are derived. If the propositions are equivalent, then the truth values of the propositions are the same. If they are not equivalent, then the truth values of the propositions are different.

<table>
<thead>
<tr>
<th>Proposition</th>
<th>Truth Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>((a \land b) \rightarrow \neg c)</td>
<td>True</td>
</tr>
<tr>
<td>((c \lor d) \rightarrow \neg a)</td>
<td>True</td>
</tr>
<tr>
<td>((b \lor c) \rightarrow \neg a)</td>
<td>True</td>
</tr>
</tbody>
</table>

To prove that these propositions are equivalent, we will use the method of truth tables. We will construct a truth table for each proposition and compare the truth values.

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>((a \land b) \rightarrow \neg c)</th>
<th>((c \lor d) \rightarrow \neg a)</th>
<th>((b \lor c) \rightarrow \neg a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

From the truth table, we can see that the truth values of the propositions are the same in all cases. Therefore, the propositions are equivalent.