Part II: Arithmetic modulo composites

Basic stuff

1. We are dealing with integers N on the order of 300 digits long, (1024 bits). Unless otherwise stated, we assume N is the product of two equal size primes, e.g. on the order of 150 digits each (512 bits).

2. For a composite N let $\mathbb{Z}_N = \{0, 1, 2, \ldots, N - 1\}$. Elements of \mathbb{Z}_N can be added and multiplied modulo N.

3. The inverse of $x \in \mathbb{Z}_N$ is an element $y \in \mathbb{Z}_N$ such that $x \cdot y \equiv 1 \pmod{N}$. An element $x \in \mathbb{Z}_N$ has an inverse if and only if x and N are relatively prime. In other words, $\gcd(x, N) = 1$.

4. Elements of \mathbb{Z}_N can be efficiently inverted using Euclid’s algorithm. If $\gcd(x, N) = 1$ then using Euclid’s algorithm it is possible to efficiently construct two integers $a, b \in \mathbb{Z}$ such that $ax + bN = 1$. Reducing this relation modulo N leads to $ax \equiv 1 \pmod{N}$. Hence $a = x^{-1} \pmod{N}$.

 Note: this inversion algorithm also works in \mathbb{Z}_p for a prime p and is more efficient than inverting x by computing $x^{p-2} \pmod{p}$.

5. Denote by \mathbb{Z}_N^* the set of invertible elements in \mathbb{Z}_N.

6. We now have an algorithm for solving linear equations: $a \cdot x \equiv b \pmod{N}$.

 Solution: $x = b \cdot a^{-1}$ where a^{-1} is computed using Euclid’s algorithm.

7. How many elements are in \mathbb{Z}_N^*? We denote by $\varphi(N)$ the number of elements in \mathbb{Z}_N^*. We already know that $\varphi(p) = p - 1$ for a prime p.

8. One can show that if $N = p_1^{e_1} \cdots p_m^{e_m}$ then $\varphi(N) = N \cdot \prod_{i=1}^{m} \left(1 - \frac{1}{p_i} \right)$.

 In particular, when $N = pq$ we have that $\varphi(N) = (p-1)(q-1) = N - p - q + 1$.

 Example: $\varphi(15) = |\{1, 2, 4, 7, 8, 11, 13, 14\}| = 8 = 2 \cdot 4$.

9. Euler’s theorem: for any $a \in \mathbb{Z}_N^*$ we have that $a^{\varphi(N)} \equiv 1 \pmod{N}$.

 Note: Euler’s theorem implies that for a prime p we have $a^{\varphi(p)} = a^{p-1} = 1 \pmod{p}$ for all $a \in \mathbb{Z}_p^*$. Hence, Euler’s theorem is a generalization of Fermat’s theorem.
Structure of \mathbb{Z}_N

1. The Chinese Remainder Theorem (CRT): Let p, q be relatively primes integers and let $N = pq$. Given $r_1 \in \mathbb{Z}_p$ and $r_2 \in \mathbb{Z}_q$ there exists a unique element $s \in \mathbb{Z}_N$ such that $s = r_1 \operatorname{mod} p$ and $s = r_2 \operatorname{mod} q$. Furthermore, s can be computed efficiently.

2. The CRT shows that each element $s \in \mathbb{Z}_N$ can be viewed as a pair (s_1, s_2) where $s_1 = s \operatorname{mod} p$ and $s_2 = s \operatorname{mod} q$. The uniqueness guarantee shows that each pair $(s_1, s_2) \in \mathbb{Z}_p \times \mathbb{Z}_q$ corresponds to one element of \mathbb{Z}_N. For example, the pair $(1, 1)$ corresponds to $1 \in \mathbb{Z}_N$.

3. Note that by the CRT if $x = y \operatorname{mod} p$ and $x = y \operatorname{mod} q$ then $x = y \operatorname{mod} N$.

4. An element $s \in \mathbb{Z}_N$ is invertible if and only if $s \operatorname{mod} p$ in invertible in \mathbb{Z}_p and $s \operatorname{mod} q$ is invertible in \mathbb{Z}_q. Hence, the number of invertible elements in \mathbb{Z}_N is $\varphi(N) = (p-1)(q-1)$.

5. An element $s \in \mathbb{Z}_N^*$ is a Q.R. if and only if $s \operatorname{mod} p$ is a Q.R. in \mathbb{Z}_p and $s \operatorname{mod} q$ is a Q.R. in \mathbb{Z}_q. Hence, the number of Q.R. in \mathbb{Z}_N is $\frac{\varphi(N)}{2} \cdot \frac{\varphi(N)}{2} = \frac{\varphi(N)^2}{4}$.

6. Jacobi symbol: for $x \in \mathbb{Z}_N$ define $\left(\frac{x}{N} \right) = \left(\frac{x}{p} \right) \cdot \left(\frac{x}{q} \right)$.

As it turns out, there is an efficient algorithm to compute the Jacobi symbol of $x \in \mathbb{Z}_N$ without knowing the factorization of N.

7. Consider the RSA function $f(x) = x^e \operatorname{mod} N$. When e is odd we have that:

$$\left(\frac{x^e}{N} \right) = \left(\frac{x^e}{p} \right) \cdot \left(\frac{x^e}{q} \right) = \left(\frac{x}{p} \right) \cdot \left(\frac{x}{q} \right) = \left(\frac{x}{N} \right)$$

Hence, given an RSA ciphertext $C = x^e \operatorname{mod} N$ the Jacobi symbol of C reveals the Jacobi symbol of x.

Computing in \mathbb{Z}_N

1. Since N is a huge prime (e.g., 1024 bits long) it cannot be stored in a single register.

2. Elements of \mathbb{Z}_N are stored in buckets where each bucket is 32 or 64 bits long depending on the processor’s register size.

3. Adding two elements $x, y \in \mathbb{Z}_N$ can be done in linear time in the length of N.

4. Multiplying two elements $x, y \in \mathbb{Z}_N$ can be done in quadratic time in the length of N.

 For an n bit integer N faster multiplication algorithms work in time $O(n^{1.7})$ (rather than $O(n^2)$).

5. Inverting an element $x \in \mathbb{Z}_N$ can be done in quadratic time in the length of N using Euclid’s algorithm.

6. Using the repeated squaring algorithm, $x^r \operatorname{mod} N$ can be computed in time $(\log_2 r)O(n^2)$ where N is n bits long. Note, the algorithm takes linear time in the length of r.

2
7. Efficient exponentiation modulo $N = pq$ when the factorization of N is known: to compute $a = x^s \mod N$ one does the following:

(a) Compute $a_1 = x^s \mod p$ and $a_2 = x^s \mod q$. Note that it suffices to compute $a_1 = x^{s \mod p-1} \mod p$ and $a_2 = x^{s \mod q-1} \mod q$.

(b) Use the Chinese Remainder Theorem to construct $a \in \mathbb{Z}_N$ such that $a = a_1 \mod p$ and $a = a_2 \mod q$. Then $a = x^s \mod N$ since this relation holds modulo p and modulo q.

Since p and q are half the size of N arithmetic modulo p and q is four times as fast (recall, multiplication takes quadratic time). Furthermore, $s \mod p-1$ and $s \mod q-1$ are each roughly half that size of s (we are assuming s is as large as N). Hence, computing of $a_1 = x^{s \mod p-1} \mod p$ is eight times faster than computing $a = x^s \mod N$.

Since we repeat this step twice, once for p and once for q, exponentiation using CRT is four times faster overall.

Summary

Let N be a 1024 bit integer which is a product of two 512 bit primes. Easy problems in \mathbb{Z}_N:

2. Computing $g^r \mod N$ is easy even if r is very large.

Problems that are believed to be hard if the factorization of N is unknown, but become easy if the factorization of N is known:

1. Finding the prime factors of N.

2. Testing if an element is a QR in \mathbb{Z}_N.

3. Computing the square root of a QR in \mathbb{Z}_N. This is provably as hard as factoring N. When the factorization of $N = pq$ is known one computes the square root of $x \in \mathbb{Z}_N^*$ by first computing the square root in \mathbb{Z}_p of $x \mod p$ and the square root in \mathbb{Z}_q of $x \mod q$ and then using the CRT to obtain the square root of x in \mathbb{Z}_N.

4. Computing ϵ'th roots modulo N when $\gcd(\epsilon, \varphi(N)) = 1$.

5. More generally, solving polynomial equations of degree d. This is believed to be hard when the factorization of N is unknown, but can be done in polynomial time in d when the factorization is given. When the factorization of N is given one solves the polynomial equation by first solving it modulo p and q and then using the CRT to obtain the roots in \mathbb{Z}_N.
Problems that are believed to be hard in \mathbb{Z}_N:

1. Let g be a generator of \mathbb{Z}_N^*. Given $x \in \mathbb{Z}_N^*$ find an r such that $x = g^r \bmod N$. This is known as the
 discrete log problem.

2. Let g be a generator of \mathbb{Z}_N^*. Given $x, y \in \mathbb{Z}_N^*$ where $x = g^{r_1}$ and $y = g^{r_2}$. Find $z = g^{r_1 r_2}$.
 This is known as the Diffie-Hellman problem.

One-way functions

Recall: a function $f : \{0, 1\}^n \to \{0, 1\}^m$ is a (t, ϵ) one-way function if

1. There is an efficient algorithm that for any $x \in \{0, 1\}^n$ outputs $f(x)$.

2. The function is hard to invert. More precisely, for any algorithm \mathcal{A} whose running time is at most t we have

$$\Pr_{x \in \{0, 1\}^n} \left[f(\mathcal{A}(f(x))) = f(x) \right] < \epsilon$$

In other words, when given $f(x)$ as input algorithm \mathcal{A} is unlikely to output a y such that $f(y) = f(x)$.

Based on block ciphers If $E(M, k)$ is a block cipher secure against a chosen ciphertext attack then $f(k) = E(0, k)$ is a one way function. Such general one-way functions can be used for symmetric encryption, but cannot be used for efficient key-exchange.

Discrete log Fix a prime p and an element $g \in \mathbb{Z}_p^*$ of “large” order.

Define $f_{\text{Dlog}}(x) = g^x \bmod p$.

Main property: linear: Given $a \in \mathbb{Z}$ and $f(x)$, $f(y)$ one can easily compute $f(a \cdot x)$ and $f(x + y)$.

The one-wayness of this function is essential for the security of the Diffie-Hellman protocol and ElGamal public key system.

RSA Let $N = pq$ be a product of two large primes. Let e be an integer relatively prime to $\varphi(N)$. Define $f_{\text{RSA}}(x) = x^e \bmod N$.

Main property: trapdoor. Given the factorization of N the function can be inverted efficiently.

The one wayness of this function is essential to the security of the RSA public key system.

Rabin Let $N = pq$ be a product of two large primes. Define $f_{\text{Rabin}}(x) = x^2 \bmod N$. This function is one-way if there is no efficient algorithm to factor integers of the form $N = pq$. As in the case of RSA, the factorization of N enables efficient inversion. The one wayness of this function is essential to the security of Rabin’s signature scheme.