1 Authentication Scheme from One-Way Permutations

Let PPT algorithms \((\text{Gen}, \text{Sample}, \text{Eval}) \) define an OWF (or OWP) \(\{f_i\}_{i \in I} \). Suppose that players \(U \) and \(B \) use the following authentication scheme. For example, say that \(B \) is a bank’s web portal and \(C \) is a web applet run by the bank’s client. The scheme is designed to last for one year, and needs to be reinitialized after that:

- **Initialization Protocol**: Let \(n = 365 \). \(B \) runs \(\text{Gen}(1^\tau) \) to pick a one-way function \(f_i \) with security parameter \(\tau \) and runs \(\text{Sample}(i) \) to pick a random element \(x^{(n)} \) in the domain \(D_i \) of \(f_i \). Then \(B \) computes, for \(k \) going from \(n \) down to 1, values \(x^{(k-1)} = f_i(x^{(k)}) = \text{Eval}(i, x^{(k)}) \). (You’ll see in a second why we are computing them backward rather than forward.) \(B \) keeps for himself \(x^{(0)} \) as the “verification value” for \(C \), and gives to \(C \) (over some secure channel) the “root authentication secret” \(x^{(365)} \).

\(C \) then re-generates all the \(x^{(k)} \) values for \(k = 0, \ldots, 364 \) by consecutive applications of \(f_i \). Let’s denote \(k \)-times repeated application of \(f_i \) as a function \((f_i)^{(k)} : D_i \to \{0, 1\}^* \). With this notation we have \(x^{(n-k)} = (f_i)^{(k)}(x^{(n)}) \) for every \(k \).

- **Authentication Protocol**: To authenticate himself to \(B \) on day \(t \), \(C \) sends to \(B \) value \(x = x^{(t)} \) and announces that he is “\(C \)”. \(B \) then picks the yesterday’s verification value \(x^{(t-1)} \) for that client, and authenticates this client as indeed “\(C \)” if \(f_i(x) = x^{(t-1)} \).

Assume that the adversary \(E \), who tries to authenticate himself as “\(C \)” to \(B \) too, can eavesdrop on all instances of the \((C, B)\) authentication protocol but cannot interrupt any such instance. On the other hand \(E \) can initiate an instance of the authentication protocol with \(B \) himself and try to make \(B \) authenticate him as “\(C \)”.

1.1 \([25 \text{ points}]\)

Prove that if the function collection \(\{f_i\} \) defined by \((\text{Gen}, \text{Sample}, \text{Eval}) \) is a One Way Permutation collection then the above authentication protocol is secure against the eavesdropping adversary \(E \) in the following sense: Show that if there exists a PPT \(E \) which, after listening to some number \(k \in [1, n] \) of authentication sessions \((C, B)\), has a non-negligible chance of being authenticated by \(B \) as “\(C \)” on a session that \(E \) initializes, then you can use such adversary \(E \) to create a PPT algorithm \(A \) which has a non negligible advantage in an attack against one-wayness of the OWP collection \(f_i \). In other words, algorithm \(A \) should succeed with non negligible probability in inverting permutation \(f_i \) on value \(y = f_i(x) \) for a random \(x \in D_i \). This will show that if the above authentication protocol is insecure against eavesdroppers (i.e. there exists a PPT attacker \(E \) which cheats the scheme with a significant
enough probability) then the function collection \(\{ f_i \} \) cannot be a OWP collection. Therefore, by counterpositive, if \(\{ f_i \} \) is a OWP collection then this is a secure authentication scheme. Note that in this way you showed that one can build a provably secure authentication scheme (but against eavesdroppers only!) based on either the DL assumption or the RSA assumption (because either of these assumptions implies a OWP family \(\{ f_i \} \)).

Solution: Assume that there exists an eavesdropping adversary \(E \), which is a PPT algorithm and which succeeds in the attack defined above, with non-negligible probability \(\epsilon \). Let \(k \) be the number of authentication sessions \(E \) listens to before initializing his own session with \(B \).

First question you should ask is: What does the adversary \(E \) see? I.e., what are the inputs to \(E \)? He sees \(k \) instances of the authentication protocol, which in our case is simply \(k \) numbers \(x^{(1)}, ..., x^{(k)} \), where for every \(j = 1, ..., k-1 \), we have \(x^{(j)} = f_i(x^{(j+1)}) \). Now you should ask yourself: What is that \(E \) outputs? We know that with probability \(\epsilon \), \(E \) succeeds, on day \(k+1 \), in authenticating himself to \(B \) as “C” with probability \(\epsilon \). Therefore, with probability \(\epsilon \), \(E \) must be outputing value \(x \) s.t. \(f_i(x) = x^{(k)} \).

Let’s denote \(x^{(k)} \) as \(y \). Let’s first see what distribution does \(y \) come from. I claim that it is simply a randomly chosen number in the domain \(D_k \) of \(f_i \). That’s because \(y = x^{(k)} = (f_i)^{(365-k)}(x^{(365)}) \), and first of all, \(x^{(365)} \) was picked at random in \(D_k \), and second, since \(f_i \) is a permutation on \(D_k \), then function \((f_i)^{(365-k)} \) is also a permutation on \(D_k \), and hence picking its argument, \(x^{(365)} \), at random in \(D_k \) implies that the function value, \(y = x^{(k)} \), is also random in \(D_k \).

Using the above notation, \(E \)’s inputs are \(\{ y, f_i(y), (f_i)^{(2)}(y), ..., (f_i)^{(k-1)}(y) \} \), for a randomly chosen \(y \) in \(D_k \), and its output, with probability \(\epsilon \), is \(x \) s.t. \(f_i(x) = y \).

Well, this already looks very close to \(E \) simply inverting function \(f_i \) on random input \(y \) in \(D_k \), which would mean that \(E \) is really breaking the assumption that \(f_i \) is a OWP. But there is a difference: \(E \) gets as inputs not just \(y \), but also all these other values, \(\{ f_i(y), (f_i)^{(2)}(y), ... \} \). However, all these values can all be efficiently computed from \(y \), which means that they do not in fact offer any extra help to \(E \), since \(E \) could just as well receive just \(y \) and then compute the remaining \((f_i)^{(j)}(y) \) values, for \(j = 1, ..., k-1 \), himself.

This intuition can be formalized as follows: Algorithm \(E \) can be used to construct a PPT \(A \) which breaks the one-way property of the OWP family \(\{ f_i \} \). Constructing such \(A \) out of \(E \) will show that if attacker \(E \) exists, i.e. if the authentication scheme is insecure, then this would imply that the function family \(\{ f_i \} \) is not a OWP family. Hence, by the counterpositive, since we assume that \(\{ f_i \} \) is a OWP family, this implies that attack \(E \) cannot exist, and hence that our authentication scheme is secure.

Here is how \(A \) works: On input \(y \), a random number in \(D_k \), \(A \) computes \(f_i \) on \(y \) for \(k-1 \) times to get a string of number \(s = \{ y, f_i(y), (f_i)^{(2)}(y), ..., (f_i)^{(k-1)}(y) \} \), and then \(A \) feeds this string of numbers to the algorithm \(E \). Whatever output \(x \) algorithm \(E \) outputs, \(A \) passes this \(x \) as its own output. Now, it’s easy to see that \(A \) breaks the OWP property of the \(\{ f_i \} \) family with probability \(\epsilon \). First of all, as we argued above, the set of numbers \(s \) is distributed exactly as the inputs that \(E \) expects. Therefore, with probability \(\epsilon \), value \(x \) returned by \(E \) will satisfy equation \(f_i(x) = y \). Hence, with probability \(\epsilon \), algorithm \(A \), on random input \(y \) in \(D_k \), outputs \(x \) s.t. \(f_i(x) = y \). Since \(E \) is PPT, and the work of \(A \) is the work of \(E \) plus \(k-1 < n = 365 \) computations of \(f_i \), \(A \) is polytime if \(E \) is. (Formally, since \(n = 365 \) is a constant, is is definitely polynomial in the security parameter \(\tau \).)
1.2 [10 points]

What goes wrong with this argument if \(\{ f_i \} \) is only a family of one-way functions, i.e. not necessarily permutations? In particular, assume that each for every \(i \), the range of \(f_i \), \(R_i = \{ f(x) \mid x \in D_i \} \) is twice smaller than its domain, i.e. \(|R_i|/|D_i| \leq 1/2 \). A one-way function can indeed have this property.\(^1\) What if \(f_i \) is “domain-halving” not just on its domain but also on all consecutive iterations too, so that \(|R_i^{(k)}|/|D_i| \leq (1/2)^k \) where \(R_i^{(k)} = \{ (f_i^{(k)})(x) \mid x \in D_i \} \). Assume that \(n \), the number of days you want the scheme to be good for, is polynomial in \(\tau \). Show an efficient attack \(E \) that breaks this authentication scheme even if \(\{ f_i \} \) is a OWF collection.

Solution: If these \(\{ f_i \} \) are “domain-halving” as above, i.e. if the ranged \(R_i^{(k)} \) get smaller and smaller, then the value \(x^{(1)} = (f^{(n-1)}(x^{(n)}) \) must belong to set \(R_i^{(n-1)} \) whose size at most \((1/2)^{n-1} * |D_i| = 2^{-n+1}|D_i| \). Since \(D_i \) is sampled by a PPT algorithm Sample, the binary length of elements in \(D_i \) must be bounded by some fixed polynomial, say \(p(\cdot) \) in the security parameter \(\tau \). In other words, for every \(x \in D_i \), \(|x| \leq p(\tau) \). Therefore, the size of the domain \(D_i \) can be at most \(|D_i| \leq 2^{p(\tau)} \). Hence, prepare the scheme for \(n = p(\tau) + 1 \) days (which is polynomial in \(\tau \)) and you get

\[
|R_i^{(n-1)}| = 2^{-n+1} * |D_i| \leq 2^{(p(\tau)+1)-1} * 2^{p(\tau)} = 1
\]

So the authenticating value on day 1 is chosen from a set with at most 1 element! So OK, there is only one possible value for \(x^{(1)} \), but can a PPT attacker \(E \) find this value easily? All he needs to do is to take any \(\alpha \in D_i \) and try \(\beta = (f_i^{(n-1)})(\alpha) \). Since \((f_i^{(n-1)}) \) maps \(D_i \) into a 1-element set, we must have that \((f_i^{(n-1)})(\alpha) = (f_i^{(n-1)})(x^{(n)}) \), i.e. that \(\beta = x^{(1)} \).

(If anyone noticed that the condition that \(|R_i^{(k)}|/|D_i| \leq 2^{-k} \) cannot be true for all \(k \), because for some \(k_0 \), all sets \(R_i^{(k)} \), for \(k \geq k_0 \) must have at least one element, you were right! I forgot to take it into account. But it’s still true that one-way function does not guarantee security in this application. Fortunately, as we have seen, both the Discrete-Log and the RSA assumptions give rise to one-way permutations.)

\(\square \)

2 One-Way Encryption Implies One-Way Function [15 points]

Show that if one-way encryption scheme \(\Sigma = (KGen, Enc, Dec) \) exists then there exists a OWF collection. Construct such collection \(\{ f_i \}_{i \in I} \). (Hint: unlike in the DL and RSA examples of OWF collections, the index set can be very easy here, e.g. \(I = \{1^\tau\}_{\tau=1,2,\ldots} \).) Remember that each function \(f_i \) must be deterministic, so all the randomness used by the encryption scheme will probably need to be an input to \(f_i \).

Side Note: Remember that in the previous homework you showed that indistinguishable encryption implies one-way encryption? Taking the two together means that indistinguishable encryption also implies OWFs. In fact, you can show a similar implication for most cryptographic notions, like secure signature schemes, secure authentication schemes, etc. In other words you can show that if any of them exist (i.e. are secure according to their

\(^1\) You can actually easily construct such function from any assumed one-way functions like RSA or Exp and show that it is both “domain-halving” and still one-way if the original one is.
arithmetics. Recall the fact that \(p \) for some polynomials \(p \) for polynomials \(p \), in other words, for every PPT algorithm \(A \), probability that \(A(c) \) outputs \(m \) on \(c \) a random encryption \(Enc(k, m) \) for random \(k \) output by \(KGen(1^\tau) \) and random \(m \in \{0, 1\}^{p_3(\tau)} \), is negligible (in \(\tau \)).

This sounds very close to one-way functions, but it involves a lot of randomness. So, To convert probabilistic algorithms \(KGen \) and \(Enc \) to a deterministic function \(f_\tau \), we need to make the random coins of \(KGen \) and \(Enc \) explicit. We can do that by treating both \(KGen \) and \(Enc \) as deterministic functions of their inputs and of a random tape they use. I.e.,

\[
KGen : 1^\tau \times \{0, 1\}^{p_1(\tau)} \rightarrow \{0, 1\}^{p_2(\tau)} , \quad KGen(1^\tau, r_1) = k
\]

for some polynomials \(p_1, p_2 \), where \(p_1(\tau) \) bounds the length of the random tape \(r_1 \) used by \(KGen \) on input \(1^\tau \), and \(p_2(\tau) \) bounds the length of the output key \(k \) of such run of \(KGen \). Similarly, we can treat \(Enc \) as a deterministic function

\[
Enc : \{0, 1\}^{p_2(\tau)} \times \{0, 1\}^{p_3(\tau)} \times \{0, 1\}^{p_4(\tau)} \rightarrow \{0, 1\}^{p_5(\tau)} , \quad Enc(k, m, r_2) = c
\]

for polynomials \(p_3, p_4, p_5 \), where \(p_3(\tau) \) bounds the length of the message \(m \), \(p_4(\tau) \) bounds the length of the random tape \(r_2 \) used by \(Enc \) on such \((k, m)\) pairs, and \(p_5(\tau) \) bounds the length of the output ciphertext \(c \) of such run of \(Enc \).

Now we can construct the one-way function \(f_\tau \) as

\[
f_\tau : \{0, 1\}^{p_1(\tau)} \times \{0, 1\}^{p_3(\tau)} \times \{0, 1\}^{p_4(\tau)} \rightarrow \{0, 1\}^{p_5(\tau)} , \quad f_\tau(r_1, m, r_2) = Enc(KGen(1^\tau, r_1), m, r_2)
\]

I.e., \(f_\tau(r_1, m, r_2) \) is the ciphertext output by algorithm \(Enc \) executed on \((k, m)\) with random tape \(r_2 \), where \(k \) is the key output by \(KGen \) executed on \(1^\tau \) with random tape \(r_1 \).

Why is \(f_\tau \) a one-way function if \(\Sigma \) is a one-way secure encryption on message space \(\{0, 1\}^{p_3(\tau)} \)? Assume it’s not, i.e. assume a PPT \(A \) which given \(c = f_\tau(r_1, m, r_2) \) for random \((r_1, m, r_2) \in \{0, 1\}^{p_1(\tau)+p_3(\tau)+p_4(\tau)} \), outputs \((r_1’, m’, r_2’) \) s.t. \(c = f_\tau(r_1’, m’, r_2’) \) with some non-negligible probability \(\epsilon \). In this case we could easily use such \(A \) to construct a PPT \(A’ \) which would violate the one-way security assumption of the encryption scheme \(\Sigma \): \(A’ \), on input \(c \), runs \(A \) on \(c \), interprets the output of \(A \) as a triple \((r_1’, m’, r_2’) \), and returns just the \(m’ \) part as its output. Note that the input \(c \) to \(A \) is just what \(A \) expects, and therefore with probability \(\epsilon \), its output satisfies equation \(c = f_\tau(r_1’, m’, r_2’) \). But that means that \(c \) is an encryption of \(m’ \) for a randomly chosen key \(k’ \). Hence, with probability \(\epsilon \), \(A’ \) decrypts \(c \) and thus violates the one-way security assumption on the encryption scheme \(\Sigma \).

(To make this reasoning hold for a public key encryption scheme \(\Sigma \), you can define \(f_\tau \) as \(f_\tau(r_1, m, r_2) = (PK, c) \) where \((PK, k) = KGen(1^\tau, r_1) \) and \(c = Enc(PK, m, r_2) \).

\[\square\]

3 Prime Modular Arithmetics [25 points]

Let \(p \) be a prime. Recall groups \(\mathbb{Z}_p \) and \(\mathbb{Z}_p^* \) from lecture and the handout on modular arithmetics. Recall the fact that \(\mathbb{Z}_p^* \) is cyclic and has a generator (in fact it has many of them). Recall set \(QR_p \) of squares modulo \(p \).
3.1
Write out the elements of group \mathbb{Z}_{11}. How many elements are there? Pick an element g which is a generator of this group. For every element $a \in \mathbb{Z}_{11}$, write down $DL_{(g,11)}(a)$.

Solution: There was a typo here: I wanted you to consider group \mathbb{Z}^*_1 instead of \mathbb{Z}_{11}:

$$\mathbb{Z}_{11} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
$$\mathbb{Z}^*_1 = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

The generators of \mathbb{Z}^*_1 are $\{2, 6, 7, 8\}$. The easiest one is $g = 2$:

$$2^0 = 1, \quad 2^1 = 2, \quad 2^2 = 4, \quad 2^3 = 8, \quad 2^4 = 5, \quad 2^5 = 10, \quad 2^6 = 9, \quad 2^7 = 7, \quad 2^8 = 3, \quad 2^9 = 6, \quad 2^{10} = 1$$

and therefore the discrete logarithms of elements

$$\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} = \{2^0, 2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7\}$$

are, correspondingly,

$$\{0, 1, 8, 2, 4, 9, 7, 3, 6, 5\}$$

\[\square \]

3.2
Let g be a generator of \mathbb{Z}^*_p. Prove that if $g^x = g^y \mod p$ then $x = y \mod p - 1$.

Side note: In lecture we showed that for any p (even composite), if $x = y \mod \phi(p)$ then $g^x = g^y \mod p$ for any $g \in \mathbb{Z}^*_p$, which of course includes g which is a generator of \mathbb{Z}^*_p.

Solution: Assume that $x \neq y \mod p - 1$, i.e. that $x = y + r + i(p - 1)$ for some $r \in [1, ..., p - 2]$. But that would mean that

$$g^x = g^{y+r+i(p-1)} = g^{y+r}(g^i)^{p-1} = g^{y+r} \mod p$$

(note that by Fermat’s theorem, for any $a \in \mathbb{Z}^*_p$, $a^{p-1} = 1 \mod p$, thus $(g^i)^{p-1} = 1 \mod p$)

Now, if $g^x = g^y \mod p$ then $g^r = g^y + i(p - 1) \mod p$, and therefore $g^r = 1 \mod p$.

But that means that g could not a generator of \mathbb{Z}^*_p, because if $g^r = 1$ for $r < p - 1$ then set

$$\{g^i \mod p \mid i \in \mathbb{Z}_{p-1}\}$$

cannot cover the whole of \mathbb{Z}^*_p, which has $p - 1$ elements.

\[\square \]

3.3
Let g be a generator of \mathbb{Z}^*_p. Prove that $y \in QR_p$ if and only if $x = DL_{(g,p)}(y)$ is even. (Note that since g is a generator then for every $y \in \mathbb{Z}^*_p$ there is $x = DL_{(g,p)}(y)$.) Which of the elements of \mathbb{Z}_{11} are squares?

Solution: If $x = DL(y)$ is even, i.e. $x = 2i$ for some i, then $y = g^x = g^{2i} = (g^i)^2 \mod p$, and hence $y \in QR_p$.

To show the other side of “if and only if”, consider $x = DL(y)$ is odd, i.e. $x = 2i + 1$ for some i. Then $y = g^x = g^{2i+1} = (g^i)^2g \mod p$. If y was a square, i.e. if there was some s s.t. $y = s^2 \mod p$ then we’d have that $g = s^2/(g^i)^2 = (s/g^i)^2 \mod p$. But that would mean that g is a square itself, i.e. $g = r^2 \mod p$ for $r = s/g^i \mod p$. In this case g could not be
a generator, because we’d have that \(g^{(p-1)/2} = (r^2)^{(p-1)/2} = r^{p-1} = 1 \mod p \), and hence, similarly as in the above exercise, set \(\{ g^i \mod p \mid i \in \mathbb{Z}_{p-1} \} \) can have at most \((p-1)/2 \) elements, and hence cannot cover the whole of \(\mathbb{Z}_p^* \).

So which elements of \(QR_{11} \) are squares? Those with even discrete logs base 2, i.e. \(\{ 2^0, 2^2, 2^4, 2^6, 2^8 \} = \{ 1, 4, 5, 9, 3 \} \). \(\square \)

3.4

Prove that \(y \in QR_p \) if and only if \(y^{(p-1)/2} = 1 \mod p \).

Solution: Clearly, if \(y = s^2 \) for some \(s \) then \(y^{(p-1)/2} = s^{p-1} = 1 \mod p \) by Fermat’s theorem.

If \(y \) is a non-square, then by the above exercise we know that \(y = g^{2i+1} \) for some \(i \), where \(g \) is a generator. Therefore,

\[
y^{(p-1)/2} = (g^{2i})^{(p-1)/2} = (g^{2i})^{p-1/2}g^{(p-1)/2} = (g^i)^{p-1}g^{(p-1)/2} = g^{(p-1)/2} \mod p
\]

And, as we argued above, this cannot be equal to 1 if \(g \) is a generator.

Since modular exponentiation is polytime, this gives us an efficient way to test if a number is a square in prime modular group. (Btw, if \(n \) is a composite, testing if \(y \in QR_n \) is possible only if you know factorization of \(n \) !) \(\square \)

3.5

Prove that if \(y, z \) are quadratic residues modulo \(p \) then so is \(yz \mod p \) and \(y^{-1} \mod p \). (In fact this holds for any \(p \), not necessarily prime one.)

Solution: If \(y = s^2 \mod p \) and \(z = r^2 \mod p \) then \(yz = (sr)^2 \mod p \) and \(y^{-1} = (s^{-1})^2 \mod p \), so \(yz \) and \(1/y \) are squares too. \(\square \)

3.6

Recall that an order \(ord_p(a) \) of an element \(a \in \mathbb{Z}_p^* \) is defined as the smallest \(i \) s.t. \(a^i = 1 \mod p \). The order of the group is the maximum order of any of the group’s elements. For each element in \(\mathbb{Z}_{11} \) tell its order. Can you see a relation between orders of elements of \(\mathbb{Z}_{11} \) and number \(\phi(11) = 10 \)? Can you formulate a general hypothesis about orders of group elements and \(\phi(p) \)? Can you prove it?

Solution: The orders of the elements in \(\mathbb{Z}_{11}^* \) are as follows: \(ord(1) = 1, ord(10) = 2, \)

\(ord(3, 4, 5, 9) = 5 \), and \(ord(2, 6, 7, 8) = 10 \). Clearly, these orders are all divisors of \(\phi(11) = 10 = 2 \times 5 \).

This in fact always holds, i.e. for every \(p, a, ord_p(a) \) divides \(\phi(p) \) (this is true for any \(p \), both prime and composite). We’ll show it for cyclic groups, which have generators, like the \(\mathbb{Z}_p^* \) for prime \(p \) (e.g. \(p = 11 \)). Let \(a = g^i \) where \(g \) is a generator of \(\mathbb{Z}_p^* \). Assume that \(ord_p(a) = \alpha \). Then \(1 = a^\alpha = g^{i\alpha} \mod p \), and hence

\[
\alpha \alpha = j\phi(p)
\]
for some integer \(j\). If \(gcd(\alpha, j) = f \neq 1\) then \(i\alpha' = j'\phi(p)\) for (integers) \(\alpha' = \frac{\alpha}{f}\) and \(j' = \frac{j}{f}\), but that would mean that \(a^{\alpha'} = g^{i\alpha'} = g^{j'\phi(p)} = 1 \mod p\), and since \(\alpha' < \alpha\), \(\alpha\) cannot be the order of \(a\). Therefore \(\alpha\) cannot have common factors with \(j\), and hence \(\alpha\) must divide \(\phi(p)\).

\[\square\]

4 Composite Modular Arithmetics [25 points]

Let \(n = pq\) for prime \(p, q\). Recall that by the Chinese Reminder Theorem [CRT], for every \(r_1 \in \mathbb{Z}_p\) and \(r_2 \in \mathbb{Z}_q\) there is a unique \(s \in \mathbb{Z}_n\) s.t. \(s = r_1 \mod p\) and \(s = r_2 \mod p\), and vice versa.

4.1

Show how to reconstruct \(s\) from \((r_1, r_2)\) if you know elements \(a, b\) s.t. \(ap + bq = 1\). (Note that \(ap = 0 \mod p\), \(ap = 1 \mod q\), \(bq = 0 \mod q\) and \(bq = 1 \mod p\)...)\n
Solution: \(s = (bq)r_1 + (ap)r_2 \mod n\). Then we have \(s \in \mathbb{Z}_n\), \(s = r_1 \mod p\), and \(s = r_2 \mod q\). \(\square\)

4.2

Consider group \(\mathbb{Z}_{35}^*\). List its elements. How many of them are there? What’s \(\phi(35)\)?

Solution:

\[G = \mathbb{Z}_{35}^* = \{1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 26, 27, 29, 31, 32, 33, 34\}\n
There are 18 = 4 * 6 = \(\phi(35)\) elements in \(G\), because 35 = 5 * 7 and 5 and 7 are primes. \(\square\)

4.3

Consider the CRT theorem for \(n = 35\), \(p = 5\), \(q = 7\). Find \(a, b\) s.t. \(ap + bq = 1\) (you can find them by hand or by a Euclidean algorithm). Compute 205\(^{140}\) mod 35 without a computer. Show your work. (Hint: CRT helps here.)

Solution: We can find \(a, b\) by hand, since the formula must be true for some \(a \in [1, 6]\) and some \(b \in [1, 4]\). Note that 3 \(* 5 = 15 = 1 \mod 7\), so \(a = 3\) makes \(ap = 0 \mod p\) and \(ap = 1 \mod q\); and that 3 \(* 7 = 21 = 1 \mod 5\), and hence \(b = 3\) makes \(bq = 0 \mod q\) and \(bq = 1 \mod p\).

To compute 205\(^{140}\) mod 35 first note that 205\(^{140}\) = 30\(^{140}\) mod 35, because 205 = 30 mod 35. Second, note that 30\(^{140}\) = 30\(^{20}\) mod 35 because 140 = 20 mod 24 and 24 = \(\phi(35)\). (Recall that \(a^b = a^{b \mod \phi(n)} \mod n\).)

Third, by the CRT idea above, to compute \(s = 30^{20}\) mod 35, we can first compute \(r_1 = 30^{20}\) mod 5 and \(r_2 = 30^{20}\) mod 7 and then combine them using the \(ap = 15\) and \(bq = 21\) values. You’ll see how much easier this is than computing 30\(^{20}\) mod 35 directly. First, \(r_1 = 30^{20} = 0 \mod 5\) because 30 = 0 mod 5. Then \(r_2 = 30^{20} = 2^{20}\) mod 7 because 30 = 2 mod 7, and then \(r_2 = 2^{20} = 2^4 = 4 \mod 7\), because 20 = 2 mod 6 and 6 = \(\phi(7)\).

So \(s = 205^{140} = (bq)r_1 + (ap)r_2 = 15 * 4 = 60 = 25 \mod 35\). \(\square\)