Causal Inference Without Counterfactuals

A. P. DAWID

A popular approach to the framing and answering of causal questions relies on the idea of counterfactuals: outcomes that would
have been observed had the world developed differently; for example, if the patient had received a different treatment. By definition,
one can never observe such quantities, nor assess empirically the validity of any modeling assumptions made about them, even
though one’s conclusions may be sensitive to these assumptions. Here I argue that for making inference about the likely effects of
applied causes, counterfactual arguments are unnecessary and potentially misleading. An alternative approach, based on Bayesian
decision analysis, is presented. Properties of counterfactuals are relevant to inference about the likely causes of observed effects,
but close attention then must be given to the nature and context of the query, as well as to what conclusions can and cannot be
supported empirically. In particular, even in the absence of statistical uncertainty, such inferences may be subject to an irreducible

degree of ambiguity.
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PART I: INTRODUCTION

1. CAUSAL MODELING

Association is not causation. Many have held that statis-
tics, though well suited to investigate the former, strays into
treacherous waters when it makes claims to say anything
meaningful about the latter. Yet others have proceeded as if
inference about the causes of observed phenomena were in-
deed a valid object of statistical enquiry; and it is certainly
a great temptation for statisticians to attempt such “causal
inference.” Among those who have taken the logic of causal
statistical inference seriously, I mention in particular Rubin
(1974, 1978), Holland (1986), Robins (1986, 1987), Pearl
(1995a), and Shafer (1996). This article represents my own
attempt to contribute to the debate as to the appropriate
statistical models and methods to use for causal inference,
and what causal conclusions can be justified by statistical
analysis.

There are many philosophical and statistical approaches
to understanding and uncovering causation, and here I do
not attempt to attack the problem on a broad front. I con-
tinue my attention to a simple decision-based understanding
of causation, wherein an external agent can make interven-
tions in, and observe various properties of, some system.
Rubin (1978) and Heckerman and Shachter (1995), among
others, have emphasized the importance of a clear decision-
theoretic description of a causal problem. Understanding of
the “causal effects” of intervention will come through the
building, testing, and application of causal models, relating
interventions, responses, and other variables.

In my view, the enterprise of causal statistical modeling
is not essentially different from any other kind of statistical
modeling, and is most satisfactorily understood from a Pop-
perian hypothetico-deductive viewpoint. A model is not a
straightforward reflection of external reality, and to propose
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a model is not to assert or to believe that nature behaves in
a particular way. (Nature is surely utterly indifferent to our
attempts to ensnare her in our theories.) Rather, a model is a
construct within the mental universe, through which we at-
tempt somehow to describe certain, more or less restricted,
aspects of the empirical universe. To do this, we need to
have a clear understanding of the semantics of such a de-
scription. This involves setting up a clear correspondence
between the very different features of these two universes.
In particular, we require very clear (if possibly implicit)
understandings of:

+ what the system modeled is (and so in particular how
to distinguish a valid from an invalid instance of the
system)

* what real world quantities are represented by variables
appearing in the model

» what an intervention involves (for example, “setting”
a patient’s treatment to “none” by (a) withholding it
from him, (b) wiring his jaw shut, or (c) killing him are
all very different interventions, with different effects,
and must be modeled as such. We must also be clear
as to what variables are affected by the intervention,
directly or indirectly, and how.)

+ what is meant by replication (in time, space, etc.).

Also vital are clearly defined methods for understanding,
assessing, and measuring the empirical success of any such
attempt at description of the real world by a mathematical
model. (One approach to such understanding and assess-
ment in the case of ordinary probability modeling, based
on the concept of probability calibration, may be found in
Dawid 1985.)

As long as a model appears to describe the relevant as-
pects of the world satisfactorily, we may continue, cau-
tiously, to use it; when it fails to do so, we need to search for
a better one. In particular, any causal understandings that
we may feel we have attained must always be treated as
tentative and subject to revision should further observation
of the world require it.
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To be fully general, I should consider models for complex
problems, such as those discussed by Robins (1986) and
Pearl (1995a), wherein interventions of various kinds are
possible at various points in a system, with effects that can
cascade through a collection of variables. Although such
problems can be modeled and analyzed (using structures
such as influence diagrams) within the general philosophical
and methodological framework of this article, that would
involve additional theoretical development. To keep things
simple, I restrict attention here to systems on which it is
possible to make a single external intervention, which I re-
fer to as treatment, and observe a single eventual response.
I also suppose, with no further real loss of generality, that
just two treatments are available. Another restriction, that
could again be relaxed at the cost of further elaboration, is
that I do not address the important and challenging prob-
lems arising from nonignorable treatment assignment or ob-
servational studies (e.g., Rubin 1974, 1978); see, however,
Section 8.1 for some related analysis.

2. COUNTERFACTUALS

Much recent analysis of causal inference is grounded
in the manipulation of counterfactuals. Philosophically, a
counterfactual statement is an assertion of the form “if X
had been the case, then Y would have happened,” made
when it is known to be false that X is the case. In a famous
historical counterfactual, Pascal (1669, sec. 162), opined:

Le nez de Cléopitre: s’il eiit été plus court, toute la face de

la terre aurait changé.
(If Cleopatra’s nose had been shorter, the whole face of the
world would have been altered.) More recently, an intrigu-
ing, seemingly self-referring, assertion was made by Shafer
(1996, p. 108):

Were counterfactuals to have objective meaning, we might

take them as basic, and define probability and causality in

terms of them.
One of the aims of this article is to persuade the reader of
the genuinely counterfactual nature of this claim.

An archetype of the use of counterfactuals in a causal sta-
tistical context is the assertion “if only I had taken aspirin,
my headache would have gone by now.” It is implicit that I
did not take aspirin, and I still have the headache. Such an
assertion, if true, could be regarded as justifying an infer-
ence that not taking aspirin has “caused” my headache to
persist this long; and that if I had taken aspirin, that would
have “caused” my headache to disappear by now. The as-
signment of cause is thus based on a comparison of the real
and the counterfactual outcomes.

If Ya denotes the duration of my headache when I take
aspirin, and Y} its duration when I don’t, then the foregoing
assertion is of the form “Yz > y, Ya < y” and relates jointly
to the pair of values for (Ya,Y3). An important question,
which motivates much of the development in this article,
is to what extent such assertions can be validated or re-
futed by empirical observation. My approach is grounded
in a Popperian philosophy, in which the meaningfulness of a
purportedly scientific theory, proposition, quantity, or con-
cept is related to the implications it has for what is or could
be observed, and, in particular, to the extent to which it is
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possible to conceive of data that would be affected by the
truth of the proposition or the value of the quantity. When
this is the case, assertions are empirically refutable and are
considered “scientific.” When this is not so, they may be
branded “metaphysical.” I argue that counterfactual theories
are essentially metaphysical. This in itself might not be au-
tomatic grounds for rejection of such a theory, if the causal
inferences that it led to were unaffected by the metaphys-
ical assumptions embodied in it. Unfortunately, this is not
so, and the answers that the approach delivers to its inferen-
tial questions are seen, on closer analysis, to be dependent
on the validity of assumptions that are entirely untestable,
even in principle. This can lead to distorted understandings
and undesirable practical consequences.

3. TWO PROBLEMS

There are several different problems of causal inference,
which are often conflated. In particular, I consider it impor-
tant to distinguish between causal queries of the two types
(Holland, 1986):

I. “I have a headache. Will it help if I take aspirin?”
II. “My headache has gone. Is it because I took aspirin?”

Query I requires inference about the effects of causes; that
is, comparisons among the expected consequences of var-
ious possible interventions in a system. Such queries have
long been the focus of the bulk of the standard statistical
theory of experimental design (which, it is worth remark-
ing, has in general displayed little eagerness for counter-
factual analyses). Query II, in contrast, relates to causes
of effects; one seeks to understand the causal relationship
between an already observed outcome and an earlier in-
tervention. Queries of this second kind might arise in legal
inquiries; for example, into whether responsibility for a par-
ticular claimant’s leukemia can be attributed to the fact that
her father worked in a nuclear power station for 23 years.
The distinction between queries I and II is closely related to
that sometimes made between problems of general and of
singular causation (Hitchcock 1997), although in our for-
mulation both queries relate to singular circumstances.

I consider both types of query valid and important, but
they are different, and require different, though related treat-
ments. Evidence, (e.g., findings from epidemiological sur-
veys) that is directly relevant to query I, is often used, in-
appropriately, to address query 11, without careful attention
to the difference between the queries.

4. PREVIEW

In Part II I consider the problem of “effects of causes.”
Section 5 introduces the essential ingredients of the prob-
lem and distinguish two varieties of model: a metaphysical
model, which allows direct formulation of counterfactual
quantities and queries, and a physical model, which does
not. By means of a simple running example, I illustrate how
certain inferences based on a metaphysical model are not
completely determined by the data, however extensive, but
remain sensitive to untestable additional assumptions. I also
delimit the extent of the resulting arbitrariness. Section 6
describes an entirely different approach, based on physical
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modeling and decision analysis, and shows how it delivers
an unambiguous conclusion, avoiding the above problems.
Section 7 questions the role of an implicit attitude of “fa-
talism” in some counterfactual causal models and methods.
Section 8 extends the discussion to cases in which addi-
tional covariate information is available on individual sys-
tems. Section 9 investigates whether certain analyses stem-
ming from a counterfactual approach nevertheless might be
acceptable for “physical” purposes; examples are given of
both possible answers. Section 10 asks whether it might
ever be strictly advantageous to base physical analyses on
a metaphysical structure. This appears to be sometimes the
case for causal modeling, but arguably not so for causal
inference.

In Part III I address the distinct problem of “causes of
effects.” For this, purely physical modeling appears inade-
quate, and the arbitrariness already identified in metaphys-
ical modeling becomes a much more serious problem. Sec-
tion 11 explains how this arbitrariness can be reduced by
taking account of concomitant variables. Section 12 intro-
duces a convention of conditional independence across al-
ternative universes, which helps clarify the counterfactual
inference and possibly reduce the intrinsic ambiguity. Sec-
tion 13 considers the possibility of using underlying deter-
ministic relations to clarify causal questions and inferences.
I argue that to be useful, these must involve genuine con-
comitant variables. A contrast is drawn with “pseudodeter-
ministic models,” which are always available in the counter-
factual framework. These have a deterministic mathemati-
cal structure, but need not involve true concomitants. Such
a purely formal structure, I argue, is not enough to support
meaningful inferences about the causes of effects. Section
14 discusses in more detail the meaning of concomitance
and argues that this is partly a matter of convention, rela-
tive to a specific causal inquiry, rather than a property of
the physical world.

The general message of this article is that inferences
based on counterfactual assumptions and models are gen-
erally unhelpful and frequently plain misleading. Alterna-
tive approaches can avoid these problems, while continu-
ing to address meaningful causal questions. For inference
about the effects of causes, a straightforward “black box”
decision-analytic approach, based on models and quantities
that are empirically testable and discoverable, is perfectly
adequate. For inference about the causes of effects, causal
models must be suited to the questions addressed as well as
to the empirical world, and understanding of the relation-
ships between observed variables and possibly unobserved,
but empirically meaningful, concomitant variables becomes
important. The causal inferences justified by empirical find-
ings will still in general retain a degree of arbitrariness and
convention, which should be fully admitted.

PART Ill: EFFECTS OF CAUSES

5. COMPARISON OF TREATMENTS:
COUNTERFACTUAL APPROACH

As a simple and familiar setting to discuss and contrast
different approaches to inference about the effects of causes,
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I investigate the problem of making comparisons between
two treatments, ¢ and c (e.g., aspirin and placebo control)
on the basis of an experiment. In this section I consider
counterfactual approaches to this problem and show how
they can produce ambiguous answers, unless arbitrary and
unverifiable assumptions are imposed.

Consider a large homogeneous population ¢/ of clearly
distinguishable individuals, or systems, or (as we shall gen-
erally call them) units, u, to each of which one can choose
to apply any one treatment, 4, out of the treatment set
T = {t,c}, and observe the resulting response, Y. Once
one treatment has been applied, the other treatment can
no longer be applied. This property can be ensured by ap-
propriate definition of experimental unit w (e.g., headache
episode rather than patient) and treatment (combinations of
treatments, if available, being redefined as new treatments).

Experimentation consists in selecting disjoint sets of
units U; C U (i = t,c¢), applying treatment ¢ to each unit
in U;, and observing the ensuing responses (e.g., time for
the headache to disappear). The experimental units might
be selected for treatment by some form of randomization,
but this is inessential to my argument. For further clarifica-
tion of the argument, I assume that the treatment groups are
sufficiently large so that all inferential problems associated
with finite sampling can be ignored.

Homogeneity of the population is an intuitive concept,
which can be formalized in a number of ways. From a clas-
sical standpoint, the individuals might be regarded as drawn
randomly and independently from some large population; a
Bayesian might regard them as exchangeable. In this con-
text, homogeneity is also taken to imply that no specific
information is available on the units that might serve to
distinguish one from another (this constraint is relaxed in
Sec. 8). In particular, the experimenter is unable to take any
such information into account, either deliberately or inad-
vertently, in deciding which treatment a particular unit is
to receive. To render this scenario more realistic and ver-
satile, suppose that he did in fact have additional measured
covariate information on each unit, determined by (but not
uniquely identifying) that unit. Then one would confine at-
tention to a subpopulation having certain fixed covariate
values, and this subpopulation might then be reasonably re-
garded as homogeneous. That is, this discussion should be
understood as applying at the level of the residual variation,
after all relevant observed covariates have been allowed for.
(One can then also allow treatment assignment to take these
observed covariates into account.)

Counterfactual Framework. The counterfactual ap-
proach to causal analysis for this problem focuses on the
collection of potential responses Y := (Yi(u): ¢ € T,u €
U), where Y;(u) is intended to denote “the response that
would be observed if treatment ¢ were assigned to unit w.”
One can consider ) as arranged in a two-way layout of
treatments by units, with Y;(u) occupying the cell for row
¢ and column u. Note that many of the variables in ) are
(to borrow a term from quantum physics) complementary,
in that they are not simultaneously observable. Specifically,
for any unit u, one can observe Y;(u) for at most one treat-
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ment ¢. Assignment of treatments to units will determine
just which (if any) of these complementary variables are to
be observed, yielding a collection X" of responses that I call
a physical array—in contrast to the metaphysical array ).
Although the full collection Y is intrinsically unobservable,
counterfactual analyses are based on consideration of all
of the (Y;(u)) simultaneously. Current interest in the coun-
terfactual approach was instigated by Rubin (1974, 1978),
although it can be traced back at least to Neyman (1935;
see also Neyman 1923).

5.1 Metaphysical Model

What kind of models can be reasonably entertained
for the metaphysical array )? The assumption of homo-
geneity essentially requires us to model the various pairs
(Yi(u),Ye(u)) for v € U as iid, given their (typically
unknown) bivariate distribution P. T denote the implied
marginal distributions for Y; and Y, by P; and P.. It is
important to note that the full bivariate distribution P is
not completely specified by these marginals, without fur-
ther specification of the dependence between Y; and Y.

Although the major points of the discussion apply to a
general model of the foregoing form, for definiteness I con-
centrate on the following specific bivariate normal model.

Example 1. The pairs {(Yz(u), Ye(u)): u € U} are mod-
eled as iid, each with the bivariate normal distribution with
means (6, 6.), common variance ¢y, and correlation p.

When p > 0, which seems a reasonable judgment (see
section 12), one can also represent this structure by means
of the mixed model

Yi(u) = 6; + B(u) + vi(u), (1)

where all of the (3(u)) and (;(u)) are mutually indepen-
dent normal random variables, with mean 0 and variances
¢ = poy and ¢, = (1 — p)¢y. One can also regard
(1) as a (fictitious) representation of the bivariate normal
model even when p < 0, in which case we must have
—¢y < ¢ < 0and 0 < ¢, < 2¢y. Then the calculations
below, though based on this fictitious representation, are
still valid. Inversely, one could start with (1) as the model,
in which case

Py = ¢p + by 2)

and
__ % 3
r b+ Py ®

In the usual parlance of the analysis of variance, (1) ex-
presses Y;(u) as composed of a fixed treatment effect 0; as-
sociated with the applied treatment i, common to all units;
a random unit effect 5(u), unique to unit u, but common to
both treatments; and a random unit—treatment interaction,
vi(w), varying from one treatment application to another,
even on the same unit. [This last term could also be inter-
preted as incorporating intrinsic random variation, which
can not be distinguished from interaction because replicate
observations on Y;(u) are impossible.]
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5.2 Causal Effect

The counterfactual approach typically takes as the fun-
damental object of causal inference the individual causal
effect: a suitable numerical comparison, for a given unit,
between the various potential responses it would exhibit,
under the various treatments that might be applied. Note
that such a quantity is meaningless unless one regards the
several potential responses, complementary though they are,
as having simultaneous existence.

Here the individual causal effect (ICE) for unit « is iden-
tified with the difference

7(u) := Yi(u) — Yo(u). (4)

Alternative possibilities might be log Y;(u) — log Y.(u) and
Yi(u)/Ye(u). There seems no obvious theoretical reason,
within this framework, to prefer any one such compari-
son to any other, the choice perhaps being made according
to one’s understanding of the applied context and the type
of inferential conclusion desired. But however defined, an
ICE involves direct comparison of complementary quanti-
ties and is thus intrinsically unobservable.

In most studies, the specific units used in the experiment
are of no special interest in themselves, but merely provide
a basis for inference about generic properties of units under
the influence of the various treatments. For this purpose,
it is helpful to conceive of an entirely new test unit, w,
from the same population, that has not yet been treated,
and to regard the purpose of the experiment as to assist in
making the decision as to which treatment to apply to it.
If one decides on treatment ¢, then one obtains response
Yi(uo); if ¢, one obtains Y(ug). Thus inference needs to
be made about these two quantities, and they need to be
compared somehow. Note that although Y;(ug) and Y (ug)
are complementary, neither is (as yet) counterfactual.

The counterfactual approach might focus on the ICE
T(uo) = Yi(ug) — Ye(up), or a suitable variation thereon.
Under (1),

T(u) =7+ Au), (5)

with 7 := 6; — 0., the average causal effect (ACE), and
AMu) == w(u) — 7.(u), the residual causal effect, having
distribution

Au) ~N(0, 2¢). (6)

Thus
7(u) ~ N(1,2¢,). (7)

This model holds in particular for the inferential target
7(uo). Because 7(ug) is probabilistically independent of any
data on the units in the experiment, inference about 7(ug)
essentially reduces to inference about the pair (7, ¢.).

5.3 Physical Model

Suppose that a particular experimental assignment has
been specified. Label, arbitrarily, the units receiving treat-
ment ¢ as Ui, U2 - - -, Ui, - Then the observed response
on unit ug; is X;; = Yj(us;). The collection (Xj;: ¢ =
t,e;7 = 1,...,n;) constitutes the physical array X. The



Dawid: Causal Inference Without Counterfactuals

mean response on all units receiving treatment i is X; :=
(1/mq) 37551 Xij

It follows trivially from the model assumptions of Exam-
ple 1 that the joint distribution over X is described by

Xij ~N(bs, 9y ), (8)
independently for all (i, 7). Equivalently, from (1),
Xij = 0; + €44, )

with €;; 1= B(us;) + vi(ui;) ~ N(0, ¢y) independently for
all (, 7).

Now to the extent that the (1) says anything about the
empirical world, this must be fully captured in the im-
plied models (8) (one such for each possible physical ar-
ray). Clearly, from extensive data having the structure (8),
one can identify 6,, 6., and ¢y, but the individual compo-
nents ¢g and ¢, in (2)—or, equivalently, the correlation p
satisfying (3)—are not identifiable; one has intrinsic alias-
ing (McCullagh and Nelder 1989, sec. 3.5) of unit effect
and unit—treatment interaction. As far as the desired infer-
ence about 7(ug) is concerned, one can identify its mean,
7 = ACE, in (7). However, its variance, 2¢., is not identi-
fiable from the data, beyond the requirement ¢, < ¢y (if
one restricts to p > 0) or ¢, < 2¢y (for p unrestricted).

5.4 A Quandary

This poses an inferential quandary. Consider two statis-
ticians, both of whom believe in (1). However, statistician
S1 further assumes that ¢g = 0 (p = 0), and statistician S2
assumes that ¢, = 0 (p = 1). Both S1 and S2 accept (8) for
the physical array, with no further constraints on its param-
eters. Extensive data, assumed to be fully consistent with
(8) for the physical array, lead to essentially exact estimates
of 6;,0., and ¢y. However, S1 infers ¢g = 0 and ¢, = ¢y,
whereas S2 has ¢3 = ¢y and ¢, = 0. When they come to
inference about 7(ug), from (7), they will agree on its mean,
7, but differ about its variance, 2¢,. A third statistician,
making different assumptions (e.g., ¢g = ¢, equivalent to
p = 1/2) will come to yet another distinct conclusion. Is
it not worrisome that models that are intrinsically indis-
tinguishable, on the basis of any data that could ever be
observed, can lead to such different inferences? How can
one possibly choose between these inferences?

The aforementioned state of affairs is clearly in violation
of what, in another context (Dawid 1984, sec. 5.2), I have
called Jeffreys’s law: the requirement that mathematically
distinct models that cannot be distinguished on the basis of
empirical observation should lead to indistinguishable infer-
ences. This property can be demonstrated mathematically
in cases where those inferences concern future observables,
and I consider it to have just as much intuitive force in the
present context of causal inference.

There is one important, but very special, case where the
foregoing ambiguity vanishes: when ¢y is essentially 0, and
hence so are both ¢g and ¢,. In this case the units are not
merely homogeneous, but uniform, in that for each ¢, Y;(u)
is the same for all units u. The property ¢y = 0 can, of
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course, be investigated empirically, and might be regarded
as a distinguishing feature of at least some problems in the
“hard” sciences. When it holds, one can in effect observe

. both Y;(u) and Y, (u) simultaneously, by using distinct units,

thus enabling direct measurement of causal effects. I fur-
ther consider this case of uniformity, and its extensions, in
Section 13.

5.5 Additional Constraints

How should one proceed if one does not have uniformity?
It is common in studies based on counterfactual models to
impose additional constraints. In the present context, a com-
mon additional constraint is that of treatment—unit additiv-
ity (TUA), which asserts that 7(u) in (4) is the same for all
u € U. In terms of (1), this is equivalent to ¢, =0 (p = 1)
and leads to a simple inference: 7(ug) = 7, with no further
uncertainty (7 having been identified, from a large experi-
ment, as X; — X.). However, as pointed out earlier, there is
simply no way that TUA can be tested on the basis of any
empirically observable data in the context of (1), and it is
intuitively clear that the same holds for any other models
that might be considered. When for each pair (Y;(u), Ye(u)),
it is never possible to observe both components, how can
one ever assess empirically the assertion that Y;(u) — Yz (u)
(unobservable for each u) is the same for all «? If I had used
a more general model in Example 1, whereby I allowed the
variance to be different for two responses, say ¢; and ¢,
then TUA does have the testable implication ¢; = ¢., and
so could be rejected on the basis of data casting doubt on
this property. But such data would still not distinguish be-
tween TUA and any of the other models considered earlier,
all of which would likewise be rejected. I have assumed
throughout that the data are consistent with the physical
model (8), so that this issue does not arise.

A similar untestable assumption commonly made in the
case of binary responses (Imbens and Angrist 1994) is
monotonicity, which requires that P (Y. = 1,Y; =0) =0
(where the response 1 represents a successful, and 0 an un-
successful, outcome).

5.6 What Can Be Said?

If inferences are restricted to those that are justified by
the data, without the imposition of untestable additional
constraints, then the most that can be said about 7(ug) [as-
suming (1)] is

T(ug) ~ N(7,2¢5), (10)

with 7 estimated precisely but ¢, subject only to the in-
equality 0 < ¢, < ¢y (or 0 < ¢, < 2¢y if one allows
p < 0), whose right side only is estimated precisely. Only
if one is fortunate enough to find that ¢y is negligible (the
situation of uniformity) can one obtain an unambiguous in-
ference for 7(ug).

A very similar analysis can be conducted for other meta-
physical models. Although the physical model only al-
lows one to identify the marginal distributions P; and P,
of the joint distribution P, the distribution of an individ-
ual causal effect (however defined) will depend further on
the dependence structure of P. (There is a large literature
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on properties and inequalities for joint distributions with
known marginals; see, e.g., Riischendorf, Schweizer, and
Taylor 1996.) Consequently, even when very large experi-
ments have been conducted, unambiguous inferences about
such causal effects cannot be made without making further
untestable assumptions, such as TUA or monotonicity.

Two contrasting morals may be drawn from the forego-
ing analysis, both grounded in the principle that one should
be careful not to make “metaphysical inferences” sensitive
to assumptions that can not be put to empirical test. Moral
1 is that inference about individual causal effects should
be carefully circumscribed, as following (10). Alternatively,
one might draw the more revolutionary Moral 2, that if one
cannot get a sensible answer to the question, then perhaps
the question itself, with its focus on inference for 7(uy), is
not well posed. In the next section I reformulate the ques-
tion in an entirely different manner that allows a clear and
unambiguous answer.

6. DECISION-ANALYTIC APPROACH

As demonstrated in the foregoing example, the princi-
pal difficulty with the counterfactual approach is that the
desired inference depends on the joint probability structure
of the complementary variables (Y;(u), Y.(u)), whereas one
is only ever able to observe (at most) one of these for each
u. One can, however, consistently estimate both marginal
distributions P;, and P,. Can these separate marginal distri-
butions be put to good use?

I take a straightforward Bayesian decision-analytic ap-
proach (see, e.g., Raiffa 1968). One has to decide whether
to apply treatment ¢ or treatment c to a new unit ug. The
marginal distributions P; and P, of Y; and of Y, having
been identified, from extensive experimental data on each
separate treatment group, these now express the appropri-
ate predictive uncertainty about the response on ug, con-
ditional on its being given ¢ or c¢. The consequence (loss)
of the decision may be measured by some function L(-) of
the eventual yield Y. The decision tree for this problem is
given in Figure 1.

At node v;,Y ~ P;, and the (negative) value of being at
v, is measured by the expected loss Ep, {L(Y)}. Similarly,
v, has value Ep {L(Y)}. The principles of Bayesian deci-

Decision Tree.

Figure 1.
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sion analysis now require that at the decision node v, that
treatment ¢ leading to the smaller expected loss be chosen.

Note that whatever loss function is used, this solution in-
volves only the two identifiable marginal distributions, P,
and P,. In particular, our statisticians S1 and S2 of Sec-
tion 5.4, who agree on (1) and obtain common estimates
of 6;,0., and ¢y, while disagreeing about p, will be led to
the identical decision. It simply does not matter that S2 be-
lieves that the time for a headache to disappear if aspirin is
taken will be exactly 10 minutes less than if it is not taken,
whereas S1 regards the difference of these times as uncer-
tain, although again with expectation 10 minutes; there is
no way in which such differences in beliefs can affect the
decision problem.

It is only for simplicity of the argument that I have as-
sumed that the experiment is large enough to allow full
identification of P; and P.. With a more limited experi-
ment, one could either replace these with suitable estimates
or, for a wholeheartedly Bayesian approach, use the appro-
priate predictive distributions for the response on ug (under
either hypothetical treatment application, separately), given
the experimental data.

My analysis extends readily to the case where one wants
to decide how to apply treatments to a number of future
units. In a quality control setting, the loss might be a combi-
nation of the sample mean and variance of all the responses,
for example.

One can also consider models for more complex prob-
lems, involving nonhomogeneous populations. For exam-
ple, in earlier work (Dawid 1988) I used symmetry argu-
ments to justify the construction of certain random-effects—
type models for complex experimental layouts, generalizing
models such as those of (1) for the metaphysical array or (9)
for the physical array. In the general case, one again needs
to use the data of the experiment to make appropriate pre-
dictive inferences for test units, under varying hypothetical
treatment assignments; but these predictive inferences will
now be more complex and will also depend on the rela-
tionship assumed between the test units and the experimen-
tal units. For example, if the experiment involved planting
different varieties of cereal on plots (units) nested within
blocks nested within fields, and recording their yields, then
one might wish to consider predictions for the yield of each
variety if planted on a new plot in an old (i.e., experimental)
block in an old field, a plot in a new block in an old field,
or (more usefully) a plot in a new field. As long as one’s
models relate the responses of the new and the old units
(under arbitrary treatment assignments), and so support the
required predictive inferences, one can conduct whatever
decision-analytic analysis appears most relevant to one’s
purpose, eschewing counterfactuals entirely.

7. FATALISM

Many counterfactual analyses are based, explicitly or im-
plicitly, on an attitude that I term fatalism. This considers
the various potential responses Y;(u), when treatment i is
applied to unit u, as predetermined attributes of unit u, wait-
ing only to be uncovered by suitable experimentation. (It is
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implicit that that the unit w and its properties and propensi-
ties exist independently of, and are unaffected by, any treat-
ment that may be applied.) Note that because each unit label
u is regarded as individual and unrepeatable, there is never
any possibility of empirically testing this assumption of fa-
talism, which thus can be categorized as metaphysical.

The fatalistic worldview runs very much counter to the
philosophy underlying statistical modeling and inference in
almost every other setting. For example, it leaves no scope
for introducing realistic stochastic effects of external influ-
ences acting between the times of application of treatment
and of the response. Any account of causation that requires
one to jettison all of the familiar statistical framework and
machinery should be treated with the utmost suspicion, un-
less and until it has shown itself completely indispensable
for its purpose.

7.1  Some Fatalistic Concepts

I do not wish to give the impression that all counterfac-
tual analyses must be fatalistic; there are notable excep-
tions (e.g., Robins and Greenland 1989). However, it is a
very natural bedfellow of counterfactual inference, much of
which can not proceed without it. For example, only if one
takes a fatalistic attitude does it make sense even to talk of
such properties as treatment-unit additivity or monotonicity
(Sec. 8).

A fundamental use of fatalism underlies certain coun-
terfactual analyses of treatment non-compliance (see, e.g.,
Imbens and Rubin 1997), where each patient is supposed
categorizable as a complier (who would take the treatment
if prescribed, and not take it if not prescribed), a defier
(not take it if prescribed, take it if not prescribed), an al-
ways taker (take it whether or not prescribed), or a never
taker (not take it whether or not prescribed). Some causal
inferences are based on consideration of the responses to
treatment of, say, the group of compliers. However, it is
only under the unrealistic assumption of fatalism that this
group has any meaningful identity, and thus only in this
case could such inferences even begin to have any useful
content.

7.1.1 Stable Unit-Treatment Value Assumption. An
assumption that has often been considered essential to use-
ful causal inferences is the stable unit-treatment value as-
sumption (SUTVA) (Rubin 1980, 1986). To describe this,
one has to start from a more general metaphysical model
of the effect of experimentation on responses, wherein the
response Ye(u) of unit u could in principle depend on the
full treatment assignment £ over all units, not just on the
specific treatment ¢ applied to u. Then SUTVA requires that
in fact this potential complicating feature be absent, so that
one can replace Y¢(u) by Y;(u), thus returning to the sit-
vation already considered. But again, without the fatalistic
assumption of preexisting values of the (Y¢(u)), for any
assignment &, it is not possible to make sense of SUTVA
(but see Sec. 10.1.1 for a nonfatalistic reinterpretation of
SUTVA).

7.1.2  Decision Analysis and Fatalism. By contrast,
the decision-analytic approach requires no commitment to
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(or, for that matter, against) fatalism. There is no concep-
tual or mathematical difficulty in regarding the probability
distributions of the response (i.e., P, and P, in Example 1)
as incorporating further uncontrollable influences over and
above effects attributable directly to treatment. As far as
SUTVA is concerned, the decision analyst has no need of
it. In the context of Example 1, SUTVA can be replaced by
the much weaker assumption that the application of treat-
ments does not destroy the homogeneity of the units, be-
yond the obvious difference that some will now have one
treatment and some will have another. Then one will still
have complete homogeneity of the responses for all units
(experimental or future) receiving the same treatment, and
can thus use the experimental data to identify the distribu-
tion, P;, of response within treatment group i, which also
expresses the uncertainty about the response Y;(ug) of a
new unit wy, if it were given treatment <. Hence one is still
in a position to set up, and solve, the basic decision problem
for Uug.

8. USE OF ADDITIONAL INFORMATION

Now suppose that it is possible to gather, or at least to
conceive of gathering, additional information about individ-
ual units, which might be used to refine uncertainties about
their responses to treatments. Any such information can be
described in terms of a generic variable K, determined by a
measurement protocol that, when applied to unit «, leads to
a measurement K (u). For the analysis of effects of causes
I restrict attention to generic variables that are covariates;
that is, features of units that can be observed prior to exper-
imentation. Nevertheless, before it is observed, each K (u)
must be treated as a random variable.

There are several cases to consider, according as whether
or not the covariates are observed on the experimental units
and/or on test units:

1. Covariates on experimental and test units. Suppose
that a covariate K is measured on all experimental units,
and also that for a test unit ug, K{ug) will be measured
before the treatment decision has to be made.

If K takes values in a finite set, then one can simply
restrict attention to the subset (assumed large) of the exper-
imental units for which K(u) = K (ug). Then one essen-
tially recovers the homogeneous population problem that
has already been analyzed.

Otherwise, or if the aforementioned restricted subset is
not sufficiently large, one can conduct appropriate statis-
tical modeling. A counterfactual treatment would need to
model a joint conditional distribution of (Y., Y;) given K;
for the decision-analytic treatment, one only needs to use
the data to assess and compare the associated predictive dis-
tributions of Y (ug) given K (ug), for each treatment. Again,
the decision-analytic approach, in contrast to the counter-
factual approach, is essentially insensitive to any further
assumptions about, or modeling of, the joint distribution of
potential responses.

2. Covariates on experimental units only. In this case it is
appropriate to ignore altogether the covariate information
on the experimental units—except that when the experiment
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is not large, modeling this more detailed information might
enhance the accuracy of estimation of the required marginal
predictive distributions of Y (ug) for each treatment.

3. Covariate on test unit only. This is more problematic,
because even for the less demanding decision-analytic ap-
proach, the experiment gives no direct information about
the required predictive distributions of response given co-
variate and treatment. Whichever approach one takes, there
is no escape from the fact that the solution will be highly de-
pendent on untested (though in principle testable) assump-
tions about these distributions. One possibility would be to
ignore K (ug) altogether, but this is itself tantamount to an
empirically untested assumption of independence between
K and Y for each treatment. In any event, however one
proceeds, there is no advantage to be gained from the intro-
duction of counterfactuals. Similar comments apply when
information of differing extents is available on the experi-
mental and test units.

8.1

One argument that can be made for the need for a meta-
physical assumption such as treatment-unit additivity (Sec.
5.5) is the following. An experiment (e.g., a clinical trial)
will often have very specific inclusion criteria that render
the experimental units nonrepresentative of the population
to which it is intended to generalize the findings. Then, al-
though one may still have homogeneity of units within the
experiment, it might no longer be reasonable to regard the
test unit uo as exchangeable with the experimental units.
But if we can assume TUA, so that Y;(u) — Y.(u) = 7 for
all units, experimental and test, then an estimate of the treat-
ment effect 7 from the experiment will still be applicable
to ug. Thus counterfactual analysis based on TUA appears
unaffected by this modification to the framework. For the
decision-analytic approach, however, the required separate
predictive inferences about the response Y (ug), given either
treatment, for a test unit uo would be simultaneously more
complicated and less reliable when the experimental units
cannot be regarded as representative of the test units.

An alternative way of proceeding avoids metaphysical
assumptions. For each unit u, let Q(u) be a variable tak-
ing values 0, ¢, and ¢, generated by the experimenter as part
of the process of designing his experiment. He intends to
include v in the experiment and apply treatment ¢ to it if
Q(u) = ¢, to include v in the experiment and apply treat-
ment c to it if Q(u) = ¢, and to exclude u from the ex-
periment if Q(u) = 0. These intentions do not, however,
preclude one from considering other possibilities; one can,
for example, meaningfully assess probabilistic uncertainty
about Y (u), given that the assignment Q(u) = ¢ has been
made, on the hypothesis that v will receive treatment c.

I assume that, for some covariate K, the distribution of
Q(u) given K(u) is the same for all units u. Thus K is
the information that the experimenter takes into account
in generating (@, and so embodies the inclusion and treat-
ment criteria. The distribution of ¢ given K is assumed
unaffected by further conditioning on the applied treat-
ment ¢ and the eventual response Y. Using the notation
and properties of conditional independence (Dawid 1979),
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Q1 (i,Y)| K, whence

Y 1 Q|K,i. (11)
Consider now the model assumption
E(YlKal) :91+’Y(K) (7’ =t,C), (12)

for some unknown parameters ¢, and 6, and parametric
function (). If this holds, define 7 = 6, — 6..

Note that by (11), the left side of (12) is unaffected
by further conditioning on Q. In particular, (12) implies
E{Y|K,i,Q =i} =0;+~v(K) (i =t,c), so that for any &,

E{Y|K=kt,Q=t}—E{Y|K=k,c,Q=c}=71. (13)

Conversely, (13) with (11) implies (12). But F {Y|K =
k,i,QQ = i} can be estimated straightforwardly from the
measurements of covariate K and outcome Y on the set of
experimental units to which treatment ¢ has been applied.
Consequently, property (12) is testable from the experimen-
tal data, and, if it can be assumed to hold, the parameter 7
is estimable. (A simple unbiased estimator of 7 is given by
the difference of the mean responses for the two treated
groups.)

Also, one can compare hypothetical treatment applica-
tions on a test unit ug, with observed K(ug) = k and, by
construction, Q(ug) = 0, as follows:

E {Y (uo)|K (uo) = k,t} — E {Y (u0)| K (uo) = k, c}
= E{Y|K=kt,Q=0}—E{Y|K =k, c,Q=0}
= E{Y|K =k,t} - E {Y|K =k, c},

once again using (12). But this is just 7, as identified from
the experiment. (If K(ug) is not observed, then one must
take a further expectation over K, but this clearly has no
effect.)

The foregoing approach, based on the testable assumption
(12) rather than the metaphysical assumption of TUA, thus
allows one to generalize readily from the experiment to the
target population, even in the face of differential selection
and treatment criteria. A

It has been assumed in the foregoing that it is appropriate
to focus directly on the expected response. In the general
framework of Section 6, with a loss function L, one could
replace E(Y) by E{L(Y)} throughout. (A counterfactual
analysis would similarly require that TUA be modified to
L{Y;(u)} — L{Y (u)} = 7, all u.)

9. SHEEP AND GOATS

I have argued that any elements of a theory that have
no observable or testable consequences (e.g., TUA) are to
be regarded as metaphysical, and, in accordance with Jef-
freys’s law, should not be permitted to have any inferential
consequences either. Causal analyses can be classified into
sheep (those obeying this dictum) and goats (the rest). 1
have shown that the decision-analytic approach is a sheep.

What of the counterfactual approach? It certainly has the
potential to generate goats. In particular, any inference de-
pendent on assumptions requiring the acceptance of fatal-
ism (e.g., TUA, or monotonicity, or assertions about the
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group of compliers in clinical trial) must be a goat. How-
ever, specific inferential uses of counterfactual models may
turn out to be sheep. The following section describes one
such use.

9.1

Suppose that in the counterfactual approach, one were to
define the ICE for unit w as f{Y;(u)} — f{Yz(u)}, for some
function f. For example, one might use the linear form
Yi(u) — Ye(u), or the logarithmic form log{Y;(u)/Y.(u)}.
If U is effectively infinite, then the ACE [population av-
erage of ICE(u)] is Ep{f(Y;) — f(Y.)}. But this is just
Ep{f(Y)} — Ep,{f(Y)} and thus depends only on the
marginal distributions P, and P, (and is exactly the criterion
determining the solution of the decision problem having
L = f). Hence this particular use of counterfactual anal-
ysis, focusing on an infinite-population ACE, is consistent
with the decision-analytic approach and involves only terms
subject to empirical scrutiny. It is fortunate that many of
the superficially counterfactual analyses in the literature,
from Rubin (1978) onward, have in fact confined attention
to ACE and thus lead to acceptable conclusions.

However, seemingly minor variations of the foregoing
form for ICE, such as Y;(u)/Y.(u), can not be handled in
this way. Ep(Y;/Y.) is not determined by the marginals
P, and P, alone, although these can be used to set bounds
(Rachev 1985). So any form of inference focusing on such
causal effects, at either the individual or the population av-
erage level, would be a metaphysical goat, dependent on
untestable ingredients of the metaphysical model and hence
likely to be misleading.

Average Causal Effect

9.2 Neyman and Fisher

Here is a variation on ACE, using even the simple def-
inition (4), that is nevertheless a goat. It is the basis of
the approach introduced by Neyman (1935) and followed
through by Wilk and Kempthorne (1955, 1956, 1957).

Let U* := U, UU, be the set of experimental units, say
N in total. (In the literature, the units are not completely
homogeneous, but are classified in an experimental lay-
out; e.g., a row-column structure with treatments imposed
to form a latin square. However, this does not affect the
essential logic.) Neyman expressed the null hypothesis of
“no treatment effect” as asserting that Y;* = Y, where
Y= N~1% o Yi(u) is the average response that would
have been observed in the experiment had all units been
given treatment  (thus both Y;* and Y are genuinely coun-
terfactual quantities). Wilk and Kempthorne (1955) consid-
ered averages over a larger, but still finite, population &/
from which &/* was drawn. In these approaches, inference
is based on the distribution generated by random treatment
assignment (and, where appropriate, random sampling of
the levels used for the experiment), under assumed values
for the metaphysical array of all potential responses (Y;(u)),
these values playing the role of parameters in the random-
ization model. Such an approach (even when extended by
introducing random errors of observation) is clearly based
on a fatalistic worldview.

415

Neyman showed that for the latin square, the usual ¢
test was an unbiased test of his null hypothesis only if
TUA could be assumed; similarly, the analyses of Wilk and
Kempthorne give different answers, according to whether
or not one assumes TUA. These workers concluded that
one needs to think very carefully, in each particular con-
text, about the validity of the TUA assumption, and tailor
one’s inferences accordingly. However, because there are no
conceivable data that could shed any light on this validity, it
is not clear how to act on this advice. Two statisticians with
observationally equivalent models could arrive at discrepant
conclusions. This suggests very strongly that Neyman’s ap-
proach is not a helpful one, and that his metaphysical null
hypothesis is misguided.

Fisher, in the rapporteur’s account of his comments on
Neyman (1935), rejected this approach, arguing instead that
the appropriate null hypothesis was

Hy: 7=0,

for which the standard ¢ test is valid.
Fisher’s null hypothesis is often taken to have been

Hi: 7(u) = 05

that is, 7 = 0 and ¢, = 0, implying Y;(u) = Y(u) for all
u. This, too, is a metaphysical hypothesis. However, it is
not certain that this was Fisher’s intention. In any case, as
far as the observable structure (8) is concerned, these two
hypotheses are indistinguishable, as are the resulting tests.
This identity extends to more complex layouts; in earlier
work (Dawid 1988), I showed how the standard tests may be
justified purely on the basis of a hypothesis of invariance of
the joint distribution of responses under suitable relabelling
of units, which is very much weaker than H{ (see also Cox
1958). The broader hypothesis Hy is equivalent to P; = P,,
which is all that is needed for indifference in the decision
problem—and is, of course, a sheep, being testable from
the data.

10. INSTRUMENTAL USE OF COUNTERFACTUALS

Even if one accepts that the output of a causal analysis
should not involve any direct assertions about counterfac-
tuals, the example of Section 9.1 demonstrates that it is at
least possible to use counterfactual models for acceptable
purposes. However, that example also shows no obvious ad-
vantage to doing so, and the use of counterfactual models
always lays one open to the danger of producing “goat-like”
inferences, without signalling when that is the case (as for
the variant forms of ACE considered at the end of Sec. 9.1).

It nevertheless remains conceivable that purely mathe-
matical use of the richer structure inherent in the model-
ing of the metaphysical array might actually simplify some
derivations and analyses of acceptable “sheep-like” infer-
ences. An analogy might be the fruitfulness of coupling
arguments in probability theory, or of complex analysis in
number theory.

In my view, there may be a limited place for such in-
strumental use of counterfactuals in the context of causal
model-building. However, I remain to be persuaded of the
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usefulness of counterfactuals, even in a purely instrumental
role, for causal inference.

10.1 Counterfactuals for Modeling

The model (9) for the physical array was derived by
marginalizing the metaphysical model of Example 1, so as
to focus on the subcollection of variables picked out by the
experimental design. This may be regarded as an instru-
mental use of counterfactuals for the purposes of modeling.
However, in this simple example this looks like overkill; (9)
is itself a very natural structure to impose on the physical
array directly.

In more complicated problems, there may be some gen-
uine advantage to modeling at the metaphysical level. Thus,
suppose that the experimental units are laid out in a row-
column structure. One way to build appropriate models
for outcomes is to apply the ideas of symmetry modeling
(Dawid 1988). If one associates with each plot the full vec-
tor of (complementary) potential responses it would exhibit
under the various different possible treatment applications,
then it might be reasonable to regard the joint distribution
for all of these vectors as invariant under separate rela-
bellings of rows and columns. If (less compellingly, and
purely for simplicity of exposition) we also impose invari-
ance under relabellings of the treatments, symmetry argu-
ments imply that we can represent the probability structure
of the metaphysical array ) = (Y;,.) (where 7 labels treat-
ments, 7 labels rows, and c labels columns) by the random-
effects model

Yire=p+a; +6r +7c + (aﬁ)ir

+ (aY)ic + (BY)re + (@BY)ire, (14)

with all the terms uncorrelated, var(a;) = o2, and so on.

If one considers the implications of this model for the
marginal joint distribution of some physical array X =
(Xr¢), in which a specified treatment i = i(r, ¢) is applied
to the unit in row r and column ¢, then one finds a simi-
lar representation, but with the last two terms intrinsically
confounded, just as the separate terms 3(u) and +;(u) in (1)
are confounded in the term e;; of (9). If one further con-
fines attention to latin square designs, so that no treatment
appears more than once in any row or column, then there is
additional (extrinsic) confounding, resulting in the model

ch=,u+ai+,8r+70+5rca (15)
where, with ¢ = i(r, ¢),
Erc = (aﬂ)ir + (a’)/)ic + (/8'7)7"0 + (aﬂ')')irc- (16)

This is of course the (random-effects version of) the usual
model for the observables in the latin square design. The
extrinsic confounding between the (o), (ay), and (87) +
(afBy) terms in (16) will, however, make predictive infer-
ences, which depend on these terms individually, especially
sensitive to assumptions that cannot be tested with such a
design.

On the other hand, one could initially restrict attention to
the physical array X' and consider the group of symmetries
that preserve its structure. Such a symmetry is represented
by the combination of a row permutation and a column
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permutation having the additional property that any two
units receiving identical treatments before permutation also
receive identical treatments after permutation. This group
will depend very specifically on the way in which treat-
ments are assigned to units, and can have highly variable
structure for different latin square layouts (Bailey 1991, ex.
4). Because of these additional restrictions on the symme-
try of the physical array X, the implied symmetry model
constructed directly for X' can be considerably more com-
plex than that expressed by (15). In such a case, modeling
the metaphysical array directly, for the purely instrumental
use of deriving an appropriate model for the physical array,
appears to be the more fruitful approach.

Another example of the usefulness (or at least conve-
nience), for constructing models of the physical domain, of
direct modeling of the metaphysical domain (using “pseu-
dostructural nested distribution models”) was given by
Robins and Wasserman (1997).

10.1.1 Compatibility. Taking the approach of model-
ing each possible physical array by marginalising from a
single joint model for the metaphysical array, the result-
ing collection of physical models will have a property that
I term compatibility: For two different experimental lay-
outs that both result in unit » receiving treatment 4, the
marginal models for the associated response on that unit
are identical. This identity extends to the joint model for
the responses of a collection of units that happen to be
treated in the same way in both experiments. This property
can be regarded as a noncounterfactual counterpart of the
counterfactual SUTVA (see Sec. 7).

I further distinguish two forms, strong and weak, of com-
patibility for a collection of physical models under varying
treatment assignments. Weak compatibility (which seems
the more natural, and makes no reference whatsoever to
counterfactuals) simply requires the earlier stated property
of identity of common marginal models. Strong compat-
ibility requires the existence of a single joint model for
the metaphysical array that can be used to generate, by
appropriate marginalization, the various different physical
models. To extend the analogy with quantum theory, strong
compatibility requires the existence of “hidden variables,”
underlying all observations that might be made. Although
strong compatibility always implies weak compatibility, in
full generality the converse need not hold. Consider, for ex-
ample, variables (Y7, Ys, Y3), where Y; is either 1 or —1 and
where one can observe any of the pairs (Y7, Y5), (Ys,Ys),
and (Y3,Y7) but cannot observe all three variables simulta-
neously. The corresponding bivariate distributions are spec-
ified by Y7 = Ys,Y5 = Y3, and Y3 = —Y7, with Y; either 1
or —1, each with probability 1/2. Then these distributions
are weakly, but not strongly, compatible. (I am grateful to
Steffen Lauritzen for this example.) Although the structure
of this example is not quite the same as that of the current
problem, it is conceivable that causal models also could
have weak compatibility without strong compatibility. This
opens up the possibility of a still deeper analogy with quan-
tum theory, where observable behavior cannot be explained
by means of a “hidden variable” theory.
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In the decision-analytic approach, the property of com-
patibility, although possibly very useful in streamlining the
modeling, has no fundamental role to play. All that is
needed is to construct appropriate models relating the out-
comes on the experimental units, according to the treatment
assignments actually made, with those on as-yet untreated
units, under various assumptions about how those new units
might be treated. Then these can be used to make predictive
inferences under the varying assumptions, and so assess the
relative value of future interventions.

10.2 Counterfactuals for Inference?

There are many problems where workers who have
grown familiar and comfortable with counterfactual mod-
eling and analysis evidently consider that it forms the only
satisfactory basis for causal inference. However, I have not
as yet encountered any use of counterfactual models for in-
ference about the effects of causes that is not either (a) a
goat, delivering misleading inferences of no empirical con-
tent, or (b) interpretable, or readily reinterpretable, in non-
counterfactual terms. I have already given examples of (a)
and also, in Section 9.1, of (b). Here are some more cases
of (b).

Robins (1986) initially developed causal inferential meth-
ods on the basis of a counterfactual model. However, in
recent work (Robins and Wasserman 1997), both the un-
derlying model and the associated methods are reexpressed
in noncounterfactual terms.

Conversely, Pearl (1993), in introducing a semantics for
graphical models of causal structures, did so in a way that
avoided counterfactuals. Later (Pearl 1995a), he translated
this into a counterfactual language, based on functional
models, but to no obvious advantage; his specific analyses
(e.g., in Pearl 1995a, app.) make no necessary use of this
additional structure.

An interesting problem that did initially appear to re-
quire a counterfactual model is the development of inequal-
ities for (sheep-like) causal effects in clinical trials with
imperfect treatment compliance (Balke and Pearl 1994b).
However, I have been able to derive the identical inequali-
ties without the additional baggage of functional models or
counterfactuals (indeed, an example of just such a deriva-
tion was given in Pearl 1995b).

Another interesting recent example of (b) given by Green-
land, Robins, and Pearl (1999) purports to define confound-
ing in terms of counterfactuals, but explicitly introduces an
alternative interpretation based on exchangeability. Most
of its analyses make no essential use of counterfactuals.
Two appendixes, considering carefully the interpretation of
counterfactual assertions in a number of cases, represent to
me convincing demonstrations of their meaninglessness and
pointlessness (although the authors themselves stop short of
this conclusion).

PART lll: CAUSES OF EFFECTS

11. INFERENCE ABOUT CAUSES OF EFFECTS

I now address the problem of inference about the causes
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of effects. As I demonstrate, this is still more problematic
than inference about the effects of causes, and it may be
impossible to avoid a degree of ambiguity in the resulting
inferences.

The major new ingredient is that, along with having the
experimental data, one now has a further unit ug, of indi-
vidual interest, to which treatment ¢ has already been ap-
plied and the response Y;(ug) = yo observed. (One may
also have further relevant information about uq or its en-
vironment, perhaps even gathered between the application
of treatment and observation of response. I consider this
possibility later but for the moment assume that this is
not so.) Interest centers on whether, for the specific unit
ug, the application of ¢ “caused” the observed response.
It appears that, to address this question, there is no al-
ternative but to somehow compare the observed valued yq
with the counterfactual quantity Y.(up), the response that
would have resulted from application of ¢ to ug. Equiva-
lently, inference about the individual causal effect 7(ug) =
yo — Ye(uop) is required. However, the fact that such an in-
ference may be desirable does not, in itself, render it possi-
ble. I now explore what can be justified scientifically from
data.

Example 2. Consider again the bivariate normal coun-
terfactual model of Example 1. Suppose that there is no
possibility of ever measuring any other relevant informa-
tion on any unit, beyond its response to treatment.

The conditional distribution of 7(ug) = Y;(uo) — Ye(uo),
given Y;(ug) = yo, is normal, with mean and variance

A= E {1(u0)|Y¢(uo) =y} = yo — 0c — p(yo — 0¢)

and

17)

82 := var{7 (uo)|Y:(uo) = yo} = (1 — p*)¢py.  (18)

Now, as already emphasised, from the extensive exper-
imental data [even when extended with the additional ob-
servation Y;(ug) = yol, only 6, 6., and ¢y can be learned.
The correlation p cannot be identified. Hence, even with
extensive data, residual arbitrariness remains. When p = 0
(¢g = 0, or independence of ¥; and Y), A = yo — 6,
and 62 = ¢y. The value p = 1 (¢, = 0, or TUA) yields
A =0, — 6, and 62 = 0 (or, at the other extreme, if p = —1,
then \ = 2yo — 0; — 6., and 6% = 0 again). Assuming p > 0,
only the inequalities

A lies between 6; — 6. and yo — 6,

and

5 < ¢y
can be inferred. Thus only when y, is sufficiently close to
0, will one get an unambiguous conclusion about ), insen-
sitive to empirically untestable assumptions about p; and
only when ¢y is sufficiently small will one be able to say
anything empirically supportable and unambiguous about
52. If one takes p = 1, equivalent to TUA, then one ob-
tains a seemingly deterministic inference, 7(ug) = 6; — 6.,
but this is of little real value when the data give no reason
to choose any particular value of p over any other. (The
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inequalities developed here rely on the assumption, itself
untestable, of joint normality. Even though the data may
support marginal normality for each of Y; and Y., any fur-
ther aspects of the joint distribution must remain unknow-
able, and, in principle, the distribution of Y., given the ob-
served value Y; = y, could be anything so long as ¢y > 0.
Thus a complete skeptic could hold that inference about
the causes of effects, on the basis of empirical evidence, is
impossible.)

Note that, if one does assume TUA, but not otherwise,
then the retrospective inference about 7(ug) is not affected
by the additional information Y;(ug) = yo on the new unit,
and thus is the same as for the case of arguing about effects
of causes. Because the TUA assumption is so prevalent in
the literature, the essential distinction between inference
about the effects of causes and inference about the causes
of effects has not usually been noted.

The aforementioned sensitivity to assumptions extends
to, for example, Bayesian inference, which would re-
quire integration of the distribution defined by (17) and
(18) over the posterior distribution of all the parameters.
In this posterior, 6;,6., and ¢y will be essentially de-
generate at their sample estimates, so that one can sub-
stitute these in (17) and (18), and just integrate over
the conditional distribution of the nonidentified parame-
ter p, given (6, 8., ¢y ). However, this will be exactly the
same in the posterior as in the prior, and thus the in-
ference will remain sensitive to the assumed form of the
prior.

No amount of wishful thinking, clever analysis, or ar-
bitrary untestable assumptions can license unambiguous in-
ference about causes of effects, even when the model is sim-
ple and the data are extensive (unless one is lucky enough
to discover uniformity among units).

11.1 Concomitants

It appears from the foregoing that there is an inherent
ambiguity in inference about the causes of effects. How-
ever, some progress toward reducing this may be possible
if one can probe more deeply into the hidden workings of
the units, by observing suitable additional variables. This is
the basis and purpose of scientific investigation. As demon-
strated in Sections 6 and 8, such deeper scientific under-
standing is not essential for assessing “effects of causes,”
which can proceed by essentially a “black box™ approach,
simply modeling dependence of the response on whatever
covariate information happens to be observed for the test
unit. However, it is vital for any study of inference about
“causes of effects,” which must take into account what has
been learned from experiments about the inner workings of
the black box.

Thus suppose that it is possible to measure concomitant
variables associated with a unit. These might be covariates,
as already considered. However, other quantities can also be
allowed, as long as they can be assumed to be unaffected by
the treatment applied (although use of the term “unaffected”
itself begs many causal and counterfactual questions; see
sec. 14). An example might be the weather between the
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times of planting and of harvesting a crop. Typically the
variation in the response conditional on concomitants will
be smaller than that unconditionally.

Example 3.  Suppose that, in the context of Example 1,
detailed experiments have measured a concomitant X and
have found that, conditional on K(u) = k and the appli-
cation of treatment i, the response Y (u) is normally dis-
tributed with residual variance g, say, and mean 6; + k.
From these experiments, the values of 1, and the 6’s have
been calculated.

Define ¢k := var(K) and v := ¢y = ¢x + ¥x. Then
cov(K,Y,) = cov(K,Y:) = ¢x. Combining these with the
covariance structure for the complementary pair (Y, Y;) im-
plied by (1), the full dispersion matrix of (K,Y,,Y}) is seen
to be

¢x Px  Px
bx by poy
¢k PPy Py

Thus the conditional correlation between Y, and Y;, given
K, is

ek = PPy — O
R ey — K

In parallel to Example 2, the arbitrary parameter p:.x €
[—1,1] cannot be identified from these more refined exper-
iments (although it might be reasonable to take ps.x > 0).
Now consider inference about “causes of effects” on a
test unit ug. I again distinguish between the cases where
concomitant information is, or is not, available for ug:

Vo,

=1—(1—p)¢K (19)

1. If one observed K (ug) = k, say, then one could con-
duct an analysis very similar to that of Example 2. In
particular, (17) would be replaced by E{r(uo)|Y:i(ug) =
y, K(ug) =k} = (y — 0. — k) — per.x (y — 0 — k), which,
because the final term in parentheses is now of order /¢,
rather than /1) as before, should be less sensitive to the
arbitrariness in the correlation, now pe;.r. Similarly, (18)
would be replaced by var{r(u)|Y;(uo) =y, K(uo) = k} =
(1—p2, )¢k, now bounded above by i < 1o, rather than
by ¢y = 1)o. Clearly these improvements are more substan-
tial with smaller residual variance ¢ x of ¥ given K.

2. Now suppose that one does not observe K (ug), or any
other concomitant variable, on ug. In this case—in contrast
to case 2 of in Section 8 for effects of causes—the analysis
is affected by the more detailed findings in the experiments
performed.

Define vx = ¢x/dy = 1 — ¥k /1po. By (19), one has
(assuming that p.;.x > 0)

Tk <p<1 (20)

(or, for pei.r unrestricted, 2yx — 1 < p < 1). Consequently,
the experimental identification of K, even though it can not
be observed on wg, has reduced the “interval of ambiguity”
for p from [0, 1] to [yx, 1] (or, for pe:.x unrestricted, from
[~1,1] to [2vx — 1,1]), and thus yields tighter limits on A
and 62 in (17) and (18).
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From this perspective, the ultimate aim of scientific re-
search may be seen as discovery of a concomitant variable,
K* say, that yields the smallest achievable residual vari-
ance 9* := g, and thus, with v* := vg- = 1 — ¥* /2o,
the shortest possible interval of ambiguity, [v*, 1], for p. (I
am here assuming, for simplicity, that the model of Example
3 applies for any concomitant K that might be considered.
Although the mathematics are more complicated if this as-
sumption is dropped, the essential logic continues to apply.)
I term such a variable a sufficient concomitant. (The collec-
tion of all concomitants is always sufficient in this sense,
but one would hope to be able to reduce it without explana-
tory loss.) However, unless ¢* = 0, and rarely even then, it
will not usually be possible to know whether this goal has
been attained.

Nonetheless, using (20) with (17) and (18), one can still
make scientifically sound (though imprecise) inferences on
the basis of whatever current level of understanding, in
terms of discovered explanatory concomitant variables K,
has been attained. This will take into account that there is a
nonstatistical component of uncertainty or arbitrariness in
the inferences, expressed by interval bounds on the quanti-

" tative causal conclusions.

I have assumed that the experiments performed have been
sufficiently large that purely statistical uncertainty can be
ignored. In practice this will rarely be the case. However,
an appropriate methodology for combining such statistical
uncertainty with the intrinsic ambiguity that still remains in
the limit is not yet available. Techniques for dealing with
this problem are urgently needed.

12. CONDITIONAL INDEPENDENCE

Suppose that K™ is a sufficient concomitant. Assuming
that pe.x+ > 0, one has, from (19), the ultimate residual
variance ¢* > (1 — p)io. In particular, p < 1 implies that
¥* > 0. If ¥* = 0 (and thus p = 1), then the value of
K* determines both potential responses Y; and Y., without
error, and so, once K™ is identified, the ambiguity in the
inferences entirely disappears. I call such a situation deter-
ministic, and consider it further in Section 13.

However, for reasons discussed in Section 14, I regard
determinism as exceptional, rather than routine. In this sec-
tion I consider further the nondeterministic case, having
¥* > 0, and, by (19), p constrained only to the interval of
ambiguity [v*,1] (as p.t. x~ ranges from 0 to 1), with p* =1
~ 4" [1bo.

As far as any empirical evidence is concerned, there is
no constraint whatsoever on p;. i «. However, it would seem
odd to hypothesize, for example, p.;.x+« = 1, because this
would imply p = 1, complete dependence between real and
counterfactual responses, at the same time as asserting non-
determinism, in the sense that there is no concomitant in-
formation one could gather that would allow one to predict
the response perfectly. Likewise, to hypothesize any other
value of p.i.x+« > 0 would appear to leave open the pos-
sibility of finding a more powerful set of predictors that
would explain away this residual dependence, thus further
reducing the residual variance.
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To limit the arbitrariness in the value of p, one could
attempt to give p further meaning by requiring that pg;. o« =
0; the totally inexplicable components of variation of the
response, in the real and in the counterfactual universes,
should be independent. Extending this, one might require
that all variables be treated as conditionally independent
across complementary universes, given all the concomitants
(which are, of course, constant across universes). Under this
assumption, the interval of ambiguity for p shrinks to the
point v* = 1 — 9* /.

The foregoing conditional independence assumption is
best regarded as a convention, providing an interpretation
of just what one intends by a counterfactual query. It leads
to a factor-analysis—type decomposition of the joint prob-
abilistic structure of complementary variables, into (a) a
part fully explained by the concomitants, and common to
all the complementary universes, and (b) residual “purely
random” errors, modeled as independent (for any given
unit) across universes. In this way, one can at last give a
clear structure and meaning (albeit partly conventional) to
a metaphysical probability model for the collection of all
potential responses. Note that if one accepts this conditional
independence convention, then one obtains, on using (19),
p = yg~ > 0—providing some justification for imposing
this condition. (Without the convention, and with no con-
straints on pes.x«, one can only assert p > 2vg+ — 1.)

Once a sufficient concomitant K™ is identified, leaving
aside for the moment the question of how one could know
this, the conditional independence convention renders coun-
terfactual inference in principle straightforward and un-
ambiguous. In the context of Example 3, one can take
p = v* = ¢* /1o, thus eliminating the ambiguity. More
generally, from detailed experiments on treated and un-
treated units, we can discover the joint distribution of K*
and Y;, and of K* and Y,. For a new unit ug on which
no concomitants are observed, on observing Yi(ug) = y
one can condition (using, e.g., Bayes’s theorem) in the joint
distribution of (K*,Y;) to find the revised distribution of
K*, and then combine this with the conditional distribu-
tion of Y. given K™ to obtain the appropriate distribu-
tion of the counterfactual Y.. This two-stage procedure is
valid if and only if one accepts the conditional indepen-
dence property. Alternatively (and equivalently), one can
use this property to combine the two experimentally de-
termined distributions into a single joint distribution for
(K*,Y:,Y.) and marginalize to obtain that of (Y;,Y.), then
finally condition on Y;(up) = y in this bivariate distri-
bution. Minor variations will handle the case where one
has also observed the value of some concomitant variables
on ug.

Example 4 (with acknowledgment to V. G. Vovk). A cer-
tain company regularly needs to send some of its work-
ers into the jungle. It knows that the probability that a
typical worker will die (D) if sent to the jungle (J) is
pr(D|J) = 3/4, compared with pr(D|J) = 1/4 if the worker
is retained at the head office. Joe is sent to the jungle, and
dies. What is the probability that Joe would have died if he
had been kept at the head office?
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1. Suppose first that all workers are equally robust, and
that the risk of dying is governed purely by the unspeci-
fied dangers of the two locations. One might then regard
the complementary outcomes as independent, so that the
answer to the question is 1/4.

2. Now suppose that, in addition to external dangers, the
fate of a worker depends in part on his natural strength.
With probability 1/2 each, a worker is either strong (S)
or weak (S5). A strong worker has probability of dying
in the jungle pr(D|J,S) = 1/2, and at the head office
pr(D|J,S) = 0. A weak worker has respective probabil-
ities pr(D|J,S) = 1 and pr(D|J,S) = 1/2. [These val-
ues are consistent with the earlier probabilities assigned to
pr(D|J) and pr(D|J).] Given that Joe died in the jungle,
the posterior probability that he was strong is 1/3. If one
assumes conditional independence, given strength, between
the complementary outcomes, the updated probability that
he would have died if kept at the head office now becomes
1/3x0+2/3x1/2=1/3.

3. In fact, Joe was replaced at the head office by Jim,
who took his desk. Jim died when his filing cabinet fell on
him. This gives additional information about the dangers
Joe might have faced had he stayed behind. How should
one take it into account? There is no right answer. If one
regards the toppling of the filing cabinet, killing whoever is
at the desk, as unaffected by who that occupant may be, and
include it as a concomitant, then the answer becomes 1. Or
one could elaborate, allowing the probability that the occu-
pant is killed by the falling cabinet to depend on whether
he is strong or weak. But it would be equally reasonable to
consider that had Joe stayed behind, the dangers he would
have met would have been different from those facing Jim.
In this case the previous arguments and answers (according
as whether or not one accounts for strength) could still be
reasonable. ‘

As should be clear from the foregoing example, even
with the conditional independence convention the answer
to a query about “causes of effects” must depend in part
on what variables it is considered reasonable to regard as
concomitants. I consider this issue further in Section 14.

12.1 Undiscovered Sufficient Concomitants

What if, as will usually be the case, one has measured
concomitants K in experiments, but has not yet identified
a sufficient concomitant K*? In Example 3, one could then
only assert * < 9k and thus, using the conditional inde-
pendence property p = ~v*,p > yx. Hence the convention
of conditional independence at the level of the sufficient
concomitant has not, in this case, resulted in any reduction
in the interval of ambiguity for p.

Nevertheless, one can think, in the light of current knowl-
edge and having regard to the potentially available con-
comitants (see sec. 14 below), about plausible values of the
ultimate residual variance ¥ x~, and use this in setting rea-
sonable limits, or distributions, for p = 1 — vk« /1g. This
still leaves the inference dependent on (as yet) experimen-
tally unverified assumptions, but it might at least be possible
to present reasoned arguments for the assumptions made.
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This approach based on conditional independence also ob-
viates the need for new methods of statistical inference,
combining ambiguity and uncertainty.

13. DETERMINISM

In certain problems of the ‘hard’ sciences, it can happen
that, by taking account of enough concomitant variables, the
residual variation in the response for any treatment can be
made to disappear completely (at least for all practical pur-
poses), thus inducing at this more refined level the situation
of uniformity considered in Section 5.4 when all problems
of causal inference and prediction disappear. In Example 3,
this would occur if one found ¢ x = 0, which would imply
p = 1 and so eliminate all ambiguity. Such problems may
be termed deterministic, because the response is then given
as a function Y = f(i, D) of the appropriate determining
concomitant D (which is then necessarily sufficient) and the
treatment ¢, without any further variability. This property is
in principle testable when D is given. (If it is rejected, it
may be possible to reinstate it, at a deeper level, by refining
the definition of D.) However, even when such underlying
determinism does exist, discovering that this is the case and .
identifying the determining concomitant D and the form
of f may be practically difficult or impossible, requiring a
large-scale, detailed, and expensive scientific investigation
and sophisticated statistical analyses.

If one had a deterministic model, one could use it to
define potential responses: Y;(u) = f(i, D(u)). (Necessary
here is the property that D, being a concomitant, is unaf-
fected by treatment. But because D need not be a covariate,
this model is not necessarily fatalistic.) One could determine
the value of any potential response on unit « by measuring
D(u). Thus in this special case one can indeed consider the
complementary variables (Y;(u)) = (f(¢, D(u))), for fixed
unit v but varying treatment 4, as having real, rather than
merely metaphysical, simultaneous existence.

Note in particular that even in this rare case where one
can give empirical meaning to counterfactuals, the causal
modeling is not based on a primitive notion of counterfac-
tual; rather, the counterfactuals are grounded in, and take
their meaning from, the model. [In the same way, I con-
sider that Lewis’s (1973) interpretation of counterfactuals in
terms of “closest possible worlds” is question-begging, be-
cause closeness cannot be sensibly defined except in terms
of an assumed causal model.]

A deterministic model, when available, can also be used
to make sense of nonmanipulative accounts of causation.
Given D, the potential responses, for various real or hypo-
thetical values of the variable “treatment,” are determined
and can be compared directly, however the specification of
treatment may be effected.

For inference about the causes of effects, assume that one
has observed Y;(ug) = o, but not D(ug), and wishes to as-
sess uncertainty about Y,(up). In the context of Example
3, p = 1, eliminating all ambiguity and (in this rare case)
justifying TUA and the inference 7(ug) = 6; — 6.. More
generally, suppose that detailed experimentation has iden-
tified a deterministic model Y;(u) = f(z, D(u)). Although
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one has not observed D(ug), one can assess a distribution
for it. This should reflect both typical natural variation of D
across units (as discovered from experiments) and any addi-
tional concomitant information one may have on . From
this distribution, one can derive the induced joint distribu-
tion over the collection (f(z, D(ug))) of complementary po-
tential responses. Then one can condition the distribution of
D(ug) on the observation f(t, D(ug)) = yo and thus arrive
at appropriate posterior uncertainty about a genuine coun-
terfactual such as Y, (ug) = f(c, D(up))-. In this way, a fully
deterministic model (if known) allows an unambiguous so-
lution to the problem of assessing the “causes of effects.”
The essential step is generation of the joint distribution over
the set of complementary responses (together with any ob-
served concomitants), this being fully grounded in an under-
standing of their dependence on determining concomitants,
and a realistic probabilistic assessment of the uncertainty
about those determining concomitants.

The foregoing procedure is merely a special case of that
described in Section 12, but not now dependent on the con-
vention of conditional independence of residual variation
across parallel universes—because in this case there is no
residual variation.

Example 5. Suppose that a major scientific investiga-
tion has demonstrated the validity of the model (1), but now
reinterpreted as a deterministic model, with all of the §’s
and ~’s identified as concomitant variables that can, with
suitable instruments, be measured for any unit and have
been so measured in the experimental studies. Further, from
these studies, the previously specified independent normal
distributions for these quantities have been verified, and all
of the parameters (6:, 6., ¢3, ¢~) have been identified.

One now examines a new unit ug, which has been given
treatment ¢, and observes the associated response Y;(ug) =
y. The individual causal effect 7(up) is vi(uo) — Ve(uo),
which is now in principle measurable. In practice, measure-
ment of the 3’s and ~’s for unit 1, may not be possible.
Then (in the absence of any further relevant information)
one might describe the uncertainty about their values using
their known joint population distribution. The appropriate
uncertainty about 7(ug) is then expressed by the normal
distribution with mean )\ and variance 62 given by (17) and
(18); however, because the value of p = ¢g/(dg + ¢) is
now available from the scientific study, the ambiguity in
this inference has been eliminated.

Note that it is vital for the foregoing analysis that the
quantities v¢(u) and v.(u) be simultaneously measurable,
with the specified independent distributions. It is not enough
only to identify S(u) and define the +’s as error terms,
vi(u) = Y;(u) — 6; — B(u); in that case, because one cannot
simultaneously observe both Y;(u) and Y.(u), one cannot
verify the required assumption of independence between

¥t (w) and e (u).

13.1 Undiscovered Determinism

If one believes that the problem is deterministic, but
has not yet completely identified the determining concomi-
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tant D or the function f, then one can propose parametric
forms for f and the distribution of D, and attempt to esti-
mate these (or integrate out over the posterior distribution
of their parameters) using the available data. In principle,
sufficiently detailed experimentation would render such as-
sumptions empirically testable and identify the parameters.
In practice, however, this may be far from the case. Thus
consider Example 2, in which no concomitants have been
measured. One could propose an underlying deterministic
model of the form
Y =0; + D, (i:t’c>>

with D; and D, determining concomitants, supposedly mea-
surable on any unit by further, more refined, experiments.
In the current state of knowledge, however, one can say no
more than D; ~ N(0, ¢y ). Further, one has no information
on the correlation p between D, and D.. It is clear that,
until one is able to conduct the more detailed experiments,
merely positing such an underlying deterministic structure
makes no progress toward removing current ambiguities,
and our inferences remain highly sensitive to our assump-
tions. In such a case there seems to be no obvious advantage
in assuming determinism; one might just as well conduct
analyses such as that of Example 3, basing them only on ex-
perimentally observed quantities and deriving suitably qual-
ified inferences encompassing the remaining ambiguity—
which should not be artificially eliminated by imposing un-
verified constraints on the model. (Nevertheless, it may be,
as suggested in sec. 12.1, that thinking about the possibil-
ities for what one might discover in further experiments
could aid a reasonable and defensible resolution—subject
to later empirical confirmation or refutation—of some of
the ambiguities.)

13.2 Pseudodeterminism

It seems to me that behind the popularity of counter-
factual models lies an implicit view that all problems of
causal inference can be cast in the deterministic paradigm
(which in my view is only rarely appropriate), for a suitable
(generally unobserved) determining concomitant D. If so,
this would serve to justify the assumption of simultaneous
existence of complementary potential responses. Hecker-
man and Shachter (1995), for example, take a lead in this
from Savage (1954), who based his axiomatic account of
Bayesian decision theory on the supposed existence of a
“state of nature,” entirely unaffected by any decisions taken,
which, together with those decisions, determines all vari-
ables. Shafer (1986) has pointed up some of the weaknesses
of this conception.

The functional graphical model framework of Pearl
(1995a) posits that underlying observed distributional sta-
bilities of observed variables are functional relationships,
involving the treatments and further latent variables. When
such a deterministic structure can be taken seriously, with
all its variables in principle observable, it leads to the pos-
sibility (at least) of well-defined counterfactual inferences,
as described earlier. These will again, quite reasonably, be
sensitive to the exact form of the functional relationships in-
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volved, over and above any purely distributional properties
of the manifest variables; but these functional relationships
are in principle discoverable. Balke (1995) and Balke and
Pear] (1994a) investigated the dependence of causal infer-
ences on the functional assumptions.

However, often the “latent variables” involved in such
models are not genuine concomitants (measurable variables,
unaffected by treatment). Then there is no way, even in prin-
ciple, of verifying the assumptions made—which will nev-
ertheless affect the ensuing inferences, in defiance of Jef-
freys’s law. I term such functional models pseudodetermin-
istic and regard it as misleading to base analyses on them. In
particular, I regard it as unscientific to impose intrinsically
unverifiable assumed forms for functional relationships, in
a misguided attempt to eliminate the essential ambiguity in
our inferences.

Within the counterfactual framework, it is always pos-
sible to construct, mathematically, a pseudodeterministic
model: Simply define D(u) to be the complementary col-
lection of all potential outcomes on unit w. In Example 1
one would thus take D = (Y%,Y;). One then has the trivial
deterministic functional relationship Y = f(¢, D), where f
has the canonical form f(i,(y,y.)) = y; (i = t,c). If a
joint distribution were now assigned to (¥%,Y;), then the
analysis presented earlier for inferring “causes of effects”
in deterministic models could be formally applied.

This is not a true deterministic model: D is not a true con-
comitant, because it is not, even in principle, observable.
Construction of such a pseudodeterministic model makes
absolutely no headway toward addressing the nonunique-
ness problems exposed in Sections 5.4 and 11; it remains the
case that no amount of scientific investigation will suffice
to justify any assumed dependence structure for (V;,Y.),
or eliminate the sensitivity to this of the inferences about
causes of effects. This can be done only by taking into ac-
count genuine concomitants.

14. CONTEXT

In basing inference about the causes of effects on con-
comitant variables (as in Sec. 11.1), it appears that I am de-
parting from my insistence that metaphysical assumptions
should not be allowed to affect inferences. This is because
to say that a variable is a concomitant involves an asser-
tion that it is unaffected by treatment, and hence would
take the same value, both in the real universe and in par-
allel counterfactual universes in which different treatments
were applied. Such an assumption is clearly not empirically
testable. Nevertheless, one’s causal inferences will depend
on the assumptions made as to which variables are to be
treated as concomitants. This arbitrariness is over and above
the essential inferential ambiguity that I have already iden-
tified, which remains even after the specification of con-
comitants has been made.

My attitude is that there is indeed an arbitrariness in
the models that one can reasonably use to make inferences
about causes of effects, and hence in the conclusions that
are justified. But I would regard this as relating, at least
in part, to differences in the nature of the questions being
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addressed. The essence of a specific causal inquiry is cap-
tured in the largely conventional specification of what may
be termed the context of the inference—namely, the collec-
tion of variables one considers it appropriate to regard as
concomitants; see Example 4. Appropriate specification of
context, relevant to the specific purpose at hand, is vital to
render causal questions and answers meaningful. It may be
regarded as providing necessary clarification of the ceteris
paribus (“other things being equal”) clause often invoked in
attempts to explicate the idea of cause. Differing purposes
will demand differing specifications, requiring differing sci-
entific and statistical approaches and yielding differing an-
swers. In particular, whether it is reasonable to use a deter-
ministic model must depend on the context of the problem
at hand, as this will determine whether it is appropriate to
regard a putative determining variable D as a genuine con-
comitant, unaffected by treatment. For varying contexts one
might have varying models, some deterministic (involving
varying definitions of D) and some nondeterministic.

Example 6. Consider an experiment in which the treat-
ments are varieties of corn and the units are field plots.
Suppose that variety 1 has been planted on a particular
field plot, and its yield measured. One might ask “What
would the yield have been on this plot if variety 2 had been
planted?.” Before this question can be addressed, it must be
made more precise; and this can be done in various ways,
depending on one’s meaning and purpose.

First, the answer must depend in part on the treatment
protocol. For example, this might lay down the weight, or
alternatively the number, of seeds to be planted. In the for-
mer case, the counterfactual universe would be one in which
the weight of variety 2 to be planted would the same as
the weight of variety 1 actually planted; in the latter case,
“weight” would need to be changed to “number,” so spec-
ifying different counterfactual conditions and leading one
to expect a different answer. (In either case the actual and
counterfactual responses will depend in part on the particu-
lar seeds chosen, introducing an irreducibly random element
into each universe.) One might choose to link the treatments
in the two universes in further ways; for example, if one
had happened to choose larger than average seeds of va-
riety 1, then one might want to consider a counterfactual
universe in which we also chose larger than average seeds
of variety 2. This would correspond to a fictitious protocol
in which the treatment conditions were still more closely
defined.

The same counterfactual question might be asked by a
farmer who had planted variety 1 in nonexperimental condi-
tions. In this case there was no treatment protocol specified,
and there is correspondingly still more freedom to specify
the fictitious protocol linking the real and the counterfac-
tual universe. But only when one has clearly specified one’s
hypothetical protocol can one begin to address the counter-
factual query.

This done, one must decide what further variables one
will regard as concomitants, unaffected by treatment. It
might well be reasonable to include among these certain
physical properties of the field plot at the time of planting,



Dawid: Causal Inference Without Counterfactuals

and perhaps also the weather in its neighbourhood, subse-
quent to planting.

One might also want to take into account the effect of
insect infestation on yield. It would probably not be reason-
able to treat this as a concomitant, because different crops
are differentially attractive to insects. Instead, one might
use some specification of the abundance and whereabouts
of the insects prior to planting. However, it would be sim-
ply unreasonable to expect this specification to be in any
sense complete. Would one really want to consider the ex-
act initial whereabouts and physical and mental states of
all insects as identical in both the real and the counterfac-
tual universe, and so link (though still far from perfectly)
the insect infestations suffered in the two universes? If one
did, then one would need a practically unattainable under-
standing of insect behaviour before one could formulate
and interpret, let alone answer, the counterfactual query.
Furthermore, to insist (perhaps in an attempt to justify a de-
terministic model) on fixing the common properties of the
two universes at an extremely fine level of detail risks be-
coming embroiled in unfathomable arguments about deter-
minism and free will. Would one really have been at liberty
to apply a different treatment in such a closely determined
alternative universe? To go down such a path seems to me
to embark on a quest entirely inappropriate to any realis-
tic interpretation of the query. Instead, one could imagine
a counterfactual universe agreeing with the real one at a
much less refined level of detail (in which initial insect po-
sitions are perhaps left unspecified). This corresponds to a
broader view of the relevant context, with fewer variables
considered constant across universes. It is up to the person
asking the counterfactual query, or attempting causal infer-
ence, to be clear about the appropriate specification, explicit
or implicit, of the relevant context.

The conditional independence convention further allows
one to tailor counterfactual inferences to the appropriate
context, as in Example 4, without embarking on fruitless
searches for “ultimate causes.” In Example 6, one may wish
to omit from specification of context any information about,
or relevant to, the population and behavior of the insects.
One could then take the amounts of insect infestation, in
the real and the counterfactual universes, as independent,
conditionally on whatever concomitants are regarded as de-
termining context. This choice may be regarded as making
explicit one’s decision to exclude insect information from
the context, rather than as saying anything meaningful about
the behavior of the world. With this understanding, the very
meaning (and hence the unknown value) of the correlation
p between Y; and Y, (or of any other measure of the depen-
dence between such complementary quantities) will involve,
in part, one’s own specification of the context considered
appropriate to the counterfactual questions.

The relation between the partly conventional specifica-
tion of context and general scientific understanding is a
subtle one. Certainly the latter should inform the former,
even when it does not determine it; general scientific or
intuitive understandings of meteorological processes must
underlie any identification of the weather as a concomitant,
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unaffected by treatment. Moreover, it is always possible that
further scientific understanding might lead to a refinement
of what is regarded as the appropriate context; thus the
discovery of genetics has enabled identification of previ-
ously unrecognized invariant features of an individual and
thus discarding of previously adequate, but now superseded,
causal theories. Causal inference is, even more than other
forms of inductive inference, only tentative; causal models
and inferences need to be revised, not only when theories
and assumptions on which they are based cease to be ten-
able in the light of empirical data, but also when the speci-
fication of the relevant context has to be reformulated—be
this due to changing scientific understanding or to changing
requirements of the problem at hand.

15. CONCLUSION

I have argued that the counterfactual approach to causal
inference is essentially metaphysical, and full of tempta-
tions to make “inferences” that cannot be justified on the
basis of empirical data and are thus unscientific. An alter-
native approach based on decision analysis, naturally ap-
pealling and fully scientific, has been presented. This ap-
proach is completely satisfactory for addressing the prob-
lem of inference about the effects of causes, and the familiar
“black box” approach of experimental statistics is perfectly
adequate for this purpose.

However, inference about the causes of effects poses
greater difficulties. A completely unambiguous solution can
be obtained only in those rare cases where it is possible to
reach a sufficient scientific understanding of the system un-
der investigation as to allow the identification of essentially
deterministic causal mechanisms (relating responses to in-
terventions and concomitants, appropriately defined). When
this is not achievable (whether the difficulties in doing so
be fundamental or merely pragmatic), the inferences jus-
tified even by extensive data are not uniquely determined,
and one must be satisfied with inequalities. However, these
may be refined by modeling the relevant context and con-
ducting experiments in which concomitants are measured.
A major and detailed scientific study may be required to re-
duce the residual ambiguity to its minimal level (and, even
then, there can be no prior guarantee that it will do so).

Thus, if one wants to make meaningful and useful asser-
tions about the causes of effects, then one must be very clear
about the meaning and context of one’s queries. And then
there is no magical statistical route that can bypass the need
to do real science to attain the clearest possible understand-
ing of the operation of relevant (typically nondeterministic)
causal mechanisms.

[Received October 1997. Revised July 1999.]
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Comment

I very much admire Professor Dawid’s original, lucid,
and penetrating discussion of causality. And yet: has the
philosophical coherence, if not thrown the baby out with
the bathwater, at least left the baby seriously bruised in
some vital organs? Dawid’s formulation of the purpose of
causal discussion involves a decision about treatment allo-
cation to a new individual. Most experiments with which
I have been involved have as their purpose the gaining

D. R. Cox, Department of Statistics and Nuffield College, Oxford,
UK.

of some understanding of a phenomenon. This may lead
eventually to recommendations on specific decisions but
that comes later. The noun “understanding” is probably too
vague for merciless philosophical discussion, and I realize
that the decision making does not have to be taken too lit-
erally, but has something been lost in the decision-oriented
formulation?
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Journal of the American Statistical Association
June 2000, Vol. 95, No. 450, Theory and Methods
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Causality is thus from one viewpoint bound up with un-
derstanding, of course approximate and tentative, of an un-
derlying generating process (Cox 1992; Cox and Wermuth
1996, pp. 219-227). (For a cogent discussion in a sociolog-
ical context, see Goldthorpe 1999.) Dawid himself seems
to edge toward this view in his final sentence. Causality
is also connected with the notions of generalizability and
specificity; that is, of the extent to which conclusions can
be applied in new situations and of the extent to which an
effect applies to a potential new individual and not just in
some average sense. The latter point clearly connects with
Dawid’s discussion. Here the two crucial features are un-
derstanding of underlying process and the demonstration
of absence of interaction with baseline features—the latter
playing an interesting and important role also in Dawid’s
discussion.

The distinction between these two versions of causality
(and there are others) can be seen as follows. Imagine that a
careful experiment, preferably randomized, or even a whole
series of such experiments shows that 7" produces a higher
response than C' but that there is no understanding, no mat-
ter how tentative, of why this is. Has causality been es-
tablished? In one sense it has, and yet I believe that many
working scientists would be uneasy using the term in such
situations.

Dawid is rightly critical of naive interpretations of the as-
sumption of unit-treatment additivity. But surely it is clear
that average effects are all that can be estimated and the de-
terministic formulation is just a convenient simplification?
At least some very applied accounts (Cox 1958, pp. 15-19)
are absolutely explicit on this point.

It is hard to disagree with Dawid’s distaste for assump-
tions that can never be tested even in principle, and his
distinction between sheep and goats is valuable. Yet at a
work-a-day level, the point is more that any assumptions
should not be pressed too far beyond the limits to which
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they can be tested and, importantly, that assumptions can be
tested indirectly via their consequences as well as directly.
Thus unit-treatment additivity also implies that the distri-
butions in different treatment groups differ only by transla-
tion. In particular, they have equal variance—a much more
important reason for being interested in equality of vari-
ance than possible effects on tests of significance or other
factors. Further, it can be regarded as a major limitation
of the Popperian viewpoint that it gives no account of how
the ideas to be subject to test are to be obtained. In this,
not directly testable assumptions may play a vital role and
goats and sheep may interact fruitfully; think of, for exam-
ple, the role of genes in classical genetics and of atoms in
eighteenth or nineteenth century physics.

I am a bit puzzled by the sharp distinction drawn in the
discussion of effects of causes and causes of effects, al-
though I see why it is needed in Dawid’s formulation. It
would be widely agreed that the interpretation of retrospec-
tive studies tends to be more hazardous than that of corre-
sponding prospective studies. But this is partly because of
the greater possibility of measurement biases in recording
past events and partly because there is often a lack of clarity
about the definition of an appropriate control group. These
do not seem to figure in the present discussion. Is the second
point related in some way to Dawid’s account?

Finally, I repeat that I learned much from the arti-
cle, which is an important contribution to an important
topic.
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Comment

1. INTRODUCTION

Professor Dawid has presented a thought-provoking anal-
ysis of causal inference, and has certainly caused us to think
hard about these matters. We comment on three main top-
ics: the structure of models, the object of inference, and the
philosophy of inference.

George Casella is Liberty Hyde Bailey Professor of Biological Statistics,
Department of Biometrics, Cornell University, Ithaca, NY 0000 (E-mail:
gcl5@cornell.edu). Stephen P. Schwartz is Professor, Department of Phi-
losophy and Religion, Ithaca College, Ithaca, NY 0000. This is technical
report BU-1452-M in the Department of Biometrics, Cornell University.
The research was supported by National Science Foundation grant DMS-
9971586.

The desire to make a causal inference leads one to a par-
ticular class of models. From the model (and the data), an
inference need be made. The model, and an associated pa-
rameter of interest, directs the possible type of inference.
We then must decide on a reference set (or population)
to which the inference will be made. All of these pieces
work together in an inferential philosophy. There are many
choices to be made at each stage of the process (model, pa-

tameters, inference). Dawid insists that such choices, and
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inferences, must be based on strict principles that can be
verified empirically. We believe that such a program is so
overly rigid that, in the end, science is not served.

2. INFERRING FROM ...

An individual counterfactual model necessarily involves
unobservable quantities. These quantities can lead to
unidentifiable models such as (1). When faced with such a
model, we would normally think that the statistician would
try to refine the model to make valid individual causal ef-
fects inferences possible, if such inferences are the desire
of the experimenter.

One way of doing this is to shift the target of inference
to average causal effects. Then (8), which is free of non-
identifiability baggage, can be used. To us, this is a way out
of the problems inherent in (1). Let us look at this switch
of inferential target a bit more closely.

To switch, one is forced to place assumptions on the
structure of the parameters, thus bringing in a “metaphys-
ical component” that Dawid finds so distasteful. But, in a
sense, this is a reality of inference. When faced with an un-
wieldy model, we must make assumptions to obtain usable
inferences.

One assumption that results in average causal effects be-
coming the inferential target is that of treatment unit addi-
tivity (TUA), which Dawid does not like. But there is an-
other road to average causal effect, based on the thinking
of the eighteenth century philosopher David Hume (1748):

It appears, then, that this idea of a necessary connection
among events arises from a number of similar instances
which occur, of the constant conjunction of these events; nor

can that idea ever be suggested by any one of these instances
surveyed in all possible lights and positions.

Following Hume, causal inference is necessarily shifted
from the individual to the group. This eliminates any coun-
terfactual problems because, at the group level, the coun-
terfactual is observable (one group did not get aspirin).

Dawid’s insistence on empirical verification would re-
ject the foregoing line of reasoning. Such an insistence not
only severely restricts the range of possible models, but also
may disregard the scientific input of the subject matter ex-
pert (who may insist that TUA is entirely plausible for the
experiment at hand).

A crucial point is that if we can reduce the inferential
target to one based only on marginal distributions, then we
can provide a reasonable inference (to us, this means that
we are working with an identifiable model). As Dawid re-
jects TUA (and presumably the argument based on Hume)
as metaphysical, he applies Bayesian decision theory to re-
duce the inference to a marginal one. However, in doing
so, he has substantially changed the inferential target. The
primary target of inference is Y;(u) — Y.(u), the individ-
ual difference, which is unobservable. Using either TUA or
Hume, this target becomes 6, —0,, the average causal effect.
Dawid’s decision theory argument leads to the inferential
target being wug|treatment = ¢, the distribution of the re-
sponse given that the treatment was ¢. Although this may
be a reasonable target of inference, it may not be the one
that the experimenter cares about.
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3. INFERRING TO ...

Whatever the chosen target of inference, an inference
must be drawn. Some of us think in terms of populations
or reference sets, often described by the experimenter. For
example, in Dawid’s Example 6, we can specify a number
of reference sets. We have usually left the choice of such to
the experimenter, whose greater subject matter knowledge
can be used to choose the appropriate frame of inference.

3.1 Empirical Verification

Relying strictly on empirical verification, Dawid deals
with the shortcomings of a model like (1) by invoking a
principle known as Jeffreys’s law to decree what types of
inferences are allowed from nonidentifiable models.

Jeffreys’s law is the likelihood principle in another guise.
The likelihood principle states that if x and y are two sam-
ple points such that the likelihood L(f|x) is proportional to
L(f|y) for all 6, then the conclusions drawn from x and y
should be identical.

Since the landmark work of Birnbaum (1962), the like-
lihood principle has been the focus of much debate. It is
probably fair to say that with the exception of the strictest
Bayesian, most statistical practice violates the likelihood
principle. Why this is so is perhaps best explained by Berger
and Wolpert (1984):

We emphatically believe that the LP (likelihood principle)
is always valid, in the sense that the experimental evidence
concerning  is contained in [ x (8) (the likelihood function).
Because of limited time and resources, however, interpreting
or making use of this evidence may involve use of measures
violating the LP.

This sentiment may be closest to what most statisticians
feel. There are compelling arguments for embracing the
likelihood principle, but in reality, we need to go beyond
it. We must use, among other things, metaphysical assump-
tions to thoroughly evaluate an inference.

To adhere to empirical verification and the limitations
imposed on inferences by Jeffreys’s law leads inexorably to
a Popperian view, as Dawid explains:

My approach is grounded in a Popperian philosophy, in
which meaningfulness of a purportedly scientific theory,
proposition, quantity, or concept is related to the implica-
tions it has for what is or could be observed and, in particu-
lar, to the extent to which it is possible to conceive of data
that would be affected by the truth of the proposition or the
value of the quantity. When this is the case, assertions are
empirically refutable and considered “scientific.” When not
so, they may be branded “metaphysical.”

However, this view is based on a philosophical orientation
that is outmoded and has been rejected by virtually all main-
stream philosophers of science.

3.2 Popper is Out

The “Popperian” philosophy that grounds Dawid’s ap-
proach was part of the much larger logical positivist philo-
sophical movement that had great currency up to perhaps
40 years ago. Logical positivism’s main tenet is that mean-
ingful propositions must be either analytic (mathematical)
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or empirically falsifiable or verifiable by possible sensory
observations. Karl Popper emphasized falsifiability and, for
example, famously directed an attack against Marxism, ar-
guing that it was unscientific and just a matter of faith. To
that extent, positivism served a useful purpose, helping rid
the intellectual arena of much philosophical and pseudo-
scientific dross. It was like a breath of fresh air. Logical
positivism has also been influential in science. For exam-
ple, behaviorism is based on the idea that we can observe
behavior but cannot directly observe other people’s minds.
Therefore, behavior, but not the mind, is a fit subject of
scientific study.

Starting in about 1950, logical positivism was subjected
to a withering series of criticisms and has now entirely lost
favor among philosophers. The attack was based primarily
on the logical work of W. V. Quine (1961) and the his-
torical work of Thomas Kuhn (1970), with much help from
many other thinkers and researchers. The criticisms demon-
strated that the logical positivist program was too rigid and
technically unworkable and that logical positivism did not
represent the actual practice of scientists. If held to the
rigid standard of Popperian philosophy, then little or no
actual science would get done. The demise of logical pos-
itivism has had the beneficial effect of expanding the hori-
zons of scientific pioneers. For example, cognitive science
has now replaced behaviorism as the leading orientation in
psychology.

3.3 Counterfactuals are In

Among the many technical problems facing logical pos-
itivists was what to do about counterfactuals. Certainly,
many counterfactuals are unverifiable and do not seem to
be scientifically meaningful. For example, “If I had been
born in China, I would now be able to speak Chinese.” On
the other hand, many other counterfactuals clearly seem to
be meaningful and indeed true; for example, “If Nixon had
not resigned, he would have been impeached.” The fact is
that counterfactuals are indispensable in many areas, but
attempts to analyze them in terms of direct observation
foundered. The problem of how to understand them is still
a matter of philosophical controversy. Probably the most
widely accepted view today is that of David Lewis cited
by Dawid. Lewis analyzes counterfactuals in terms of other
possible worlds, ways that things could have been but are
not—anathema to the logical positivists and Dawid.

3.4 A Fatal Flaw?

Dawid’s use of tendentious vocabulary clouds his argu-
ment and obscures the motivation for his views. For exam-
ple, besides the questionable empirical versus metaphysical
distinction, Dawid rejects a view he terms “fatalism”:

Many counterfactual analyses are based, explicitly or implic-
itly, on an attitude that I term fatalism. This conceives of the
various potential responses Y;(u), when treatment 7 is ap-
plied to unit u, as predetermined attributes of unit u, waiting
only to be uncovered by suitable experimentation. (It is im-
plicit that the unit u, and its properties and propensities, exist
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in dependently of, and are unaffected by, any treatment that
may be applied.)

If by this Dawid means that the world and its objects exist
independently of our attempts to know them, then this view
is quite respectable and usually goes under the rubric “re-
alism.” And it seems that even Dawid sometimes embraces
a “fatalist” view, as he says, “Nature is surely utterly indif-
ferent to our attempts to ensnare her in our theories.” “Fa-
talism” seems to be a highly misleading name for a rather
commonplace and obvious idea. If Dawid means something
else by his use of “fatalism,” then we fear that he is attack-
ing a “straw man” view that no one holds.

4. AND FINALLY ...

Clearly, there is something right about the positivist ap-
proach in general. Certainly we want our scientific theories
to be verifiable or falsifiable in some sense, but it turns out
that verifiability and falsifiability are much more flexible,
elastic, and looser notions than the logical positivists sup-
posed. The upshot is that we need to take a more tolerant
approach to verification and falsification and abandon the
kind of tendentious and rigid distinctions that the logical
positivists, and following them Dawid, use. Scientific the-
ories are not verified or falsified by direct observation or
crucial experiment, except in very rare instances. Rather,
theories are accepted or rejected by scientists on the basis
of how well they explain selected sets of data, how ele-
gant, simple, and useful they are, how well they do against
competing theories, and so on. In fact, in his discussion of
Barndorff-Nielsen’s paper, Dawid (1976) expressed a simi-
lar sentiment when he said (our italics):

A constant theme in the development of statistics has been
the search for justification for what statisticians do. To read
the textbooks, one might easily get the distorted idea that
“Student” proposed his ¢ test because it was the uniformly
most powerful test of a normal mean, but it would be more
accurate to say that the concept of UMPU gains much of its
appeal because it produces the ¢ test, and everyone knows the
t test is a good thing.

Everyone knows that the simple, elegant, and useful ¢ test is
a good thing because it has performed admirably for almost
100 years. In the interest of science, performance counts for
more than rigid adherence to philosophical principles.
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1. BACKGROUND

The field of statistics has seen many well-meaning cru-
sades against threats from metaphysics and other heresy.
In its founding prospectus of 1834, the Royal Statistical
Society resolved “to exclude carefully all Opinions from
its transactions and publications—to confine its attention
rigorously to facts.” This clause was officially struck out
in 1858, when it became obvious that facts void of the-
ory could not take statistics very far (Annals of the Royal
Statistical Society 1934, p. 16).

Karl Pearson launched his own metaphysics “red scare”
about causality in 1911: “Beyond such discarded fundamen-
tals as ‘matter’ and ‘force’ lies still another fetish amidst the
inscrutable arcana of modern science, namely, the category
of cause and effect” (Pearson 1911, p. iv). Pearson’s objec-
tion to theoretical concepts such as “matter” and “force”
was so fierce and his rejection of determinism so absolute
that he consigned statistics to almost a century of neglect
within the study of causal inference. Philip Dawid was one
of a handful of statisticians who boldly protested the stale-
mate over causality: “Causal inference is one of the most
important, most subtle, and most neglected of all the prob-
lems of statistics” (Dawid 1979).

In the past two decades, owing largely to progress in
counterfactual, graphical, and structural analyses, causal-
ity has been transformed into a mathematical theory with
well-defined semantics and well-founded logic, and many
practical problems that were long regarded as either meta-
physical or unmanageable can now be solved using elemen-
tary mathematics. (See Pearl 2000 for a gentle introduction
to the counterfactual, graphical, and structural equation ap-
proaches to causality.) In the article, Professor Dawid wel-
comes the new progress in causal analysis but expresses
mistrust of the quasi-deterministic methods by which this
progress has been achieved.

Attitudes of suspicion toward counterfactuals and struc-
tural equation models are currently pervasive among statis-
ticians, and Dawid should be commended for bringing such
concerns into the open. By helping to dispel misconcep-
tions about counterfactuals, Dawid’s article may well have
rescued statistics from another century of stagnation over
causality.

2. THE EMPIRICAL CONTENT OF
COUNTERFACTUALS

The word “counterfactual” is a misnomer. Counterfac-
tuals carry as clear an empirical message as any scientific
laws, and indeed are fundamental to them. The essence of
any scientific law lies in the claim that certain relation-
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ships among observable variables remain invariant when
the values of those variables change relative to our imme-
diate observations. For example, Ohm’s law (V = IR) as-
serts that the ratio between the current (I) and the voltage
(V') across a resistor remains constant for all values of I,
including yet-unobserved values of I. We usually express
this claim in a function or a hypothetical sentence: “Had the
current in the resistor been I (instead of the observed value
Ip) the voltage would have been V = I(Vy/Iy),” know-
ing perfectly well that there is no way to simultaneously
measure [ and Iy. (Every mathematical function is inter-
preted hypothetically, and the study of counterfactuals is
merely a study of standard mathematical functions.) Such
sentences appear to be counterfactual, because they deal
with unobserved quantities that differ from (and hence seem
to contradict) those actually observed. Nonetheless, this cir-
cumstantial nonobservability and apparent contradiction do
not diminish whatsoever the ability to submit physical laws
to empirical tests. Scientific methods thrive on attempts to
confirm or falsify the predictions of such laws.

The same applies to stochastic processes (or data-
generation models), usually written in the form of func-
tional relations y = f(z,u), where X and U stand for two
sets of random variables, with joint distribution P(z,u),
and f is a function (usually of unknown form) that deter-
mines the value of the outcome Y = y in terms of ob-
served and unobserved quantities, X = z and U = u. To
see how counterfactuals and joint probabilities of counter-
factuals emerge from such a stochastic model, I consider
a simple case where Y and X are binary variables (e.g.,
treatment and response) and U is an arbitrary complex set
of all other variables that may influence Y. For any given
condition U = u, the relationship between X and Y must
be one of the (only) four binary functions

fory = 0or {Yy =0,Y; =0},

firy =zor {Yo=0,Y; =1},

fary # zor {Yo=1Y, =0},
and

f3: Yy = 1or {Y0=1,1/1=1} (1)

As u varies along its domain, the only effect it can have
on the model is to switch the relationship between X and
Y among these four functions. This partitions the domain
of U into four equivalence classes, where each class con-
tains those points u that correspond to the same function.
The probability P(u) thus induces a probability function
over the potential response pairs {Y, Y1 } shown in (1). This
construction is the inverse of the one discussed in Dawid’s
Section 13; one starts with genuine concomitants U, and
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they turn into jointly distributed counterfactual concomi-
tants {Yp, Y1} that Dawid calls metaphysical and fatalistic.

Admittedly, when u stands as the identity of a person,
the mapping of u into the pair {Y;, Y1} appears horridly
fatalistic, as if that person is somehow doomed to react in
a predetermined way to treatment (X = 1) and no treat-
ment (X = 0). However, if one views u as the sum total
of all experimental conditions that might possibly affect
that individual’s reaction (including biological, psychologi-
cal, and spiritual factors, operating both before and after the
application of the treatment), then the mapping is seen to
evolve reasonably and naturally from the functional model
y = f(z,u). This quasi-deterministic functional model mir-
rors Laplace’s conception of nature (Laplace 1814), accord-
ing to which of nature’s laws are deterministic, and random-
ness surfaces merely due to our ignorance of the underlying
boundary conditions. (The structural equation models used
in economics, biology, and stochastic control are typical
examples of Laplacian models.) Dawid detests this concep-
tion. This is not because it ever failed to match macro-
scopic empirical data (only quantum mechanical phenom-
ena exhibit associations that might conflict with the Lapla-
cian model), but rather because it appears to stand contrary
to the “familiar statistical framework and machinery” (Sec.
7). 1 fail to see why a framework and machinery that did
not exactly excel in the causal arena should be deprived of
enhancement and retooling.

3. EMPIRICISM VERSUS IDENTIFIABILITY
Dawid’s empiricism is summarized in his abstract:

By definition, one can never observe such [counterfactual]
quantities, nor assess empirically the validity of any model-
ing assumption made about them, even though one’s conclu-
sions may be sensitive to these assumptions.

This warning is not entirely accurate. Many counter-
factual modeling assumptions do have testable implica-
tions; for example, exogeneity (or ignorability) (Y71 X)
and monotonicity (Y7 (u) > Y(u)) each can be falsified by
comparing experimental and nonexperimental data (Pearl
2000, p. 294). More important, the warning is either empty
or self-contradictory. If one’s conclusions have no practi-
cal consequences, then their sensitivity to invalid assump-
tions is totally harmless, and Dawid’s warning is empty.
If, on the other hand, one’s conclusions do have practical
consequences, then their sensitivity to assumptions auto-
matically makes those assumptions testable, and Dawid’s
warning turns contradictory.

The two queries about aspirin and headache, which
Dawid uses to distinguish effects of causes from causes of
effects (“sheep” from “goats”), may serve well to illustrate
the inconsistency in Dawid’s philosophy. The two queries
are

I. I have a headache. Will it help if I take aspirin?
II. My headache has gone. Is it because I took aspirin?

Letting X = 1 stand for “taking aspirin” and and Y =1
stand for “having a headache” (after 1/2 hour, say), the
counterfactual expressions for the probabilities of these two
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queries read:
Q=P Y1 =0)-P (Yo=0)
and
Qu=P Yo=1X=1,Y =0). (2)

In words, Q1 stands for the probability that my headache
would have stayed had I not taken aspirin (Y = 1), given
that I did in fact take aspirin (X = 1) and the headache
has gone (Y = 0). (I restrict the population to persons who
have headaches prior to considering aspirin.) Dawid is cor-
rect in stating that the two queries are of different types,
and the language of counterfactuals displays this difference
and its ramifications in vivid mathematical form. By exam-
ining their respective formulas, one can immediately detect
that Qr1 is conditioned on the outcome Y = 0, whereas Q1
is unconditioned. This implies that some knowledge of the
functional relationship (between X and Y') must be invoked
in estimating Q1 (Balke and Pearl 1994). I challenge Dawid
to express Qqr, let alone formulate conditions for its esti-
mation in a counterfactual-free language. For background
information, the identification of @ requires exogeneity
(i.e., randomized treatment), whereas that of Q requires
both exogeneity and monotonicity; both assumptions have
testable implications (Pearl 2000, p. 294). Epidemiologists
are well aware of the difference between Q; and Qg [they
usually write Q1 = Q1/P (Y = 0|X = 1)], though the cor-
responding identification conditions for @iy are often not
spelled out as clearly as they could (Greenland and Robins
1988).

What is puzzling in Dawid’s article is that he considers
Q1 to be, on one hand, valid and important (Sec. 3) and, on
the other hand, untestable (Sec. 11); the two are irreconcil-
able. If Qg is valid and important, then one should expect
the magnitude of Q1 to affect some future decisions, and
can then use the correctness of those decisions as a test
(hence interpretation) of the empirical claims made by Q.
What are those claims, and how can they be tested?

According to the interpretation given in the previous sec-
tion, counterfactual claims are merely conversational short-
hand for scientific predictions. Hence Qq stands for the
probability that a person will benefit from taking aspirin
in the next headache episode, given that aspirin proved ef-
fective for that person in the past (i.e., X = 1,Y = 0).
Therefore, Qq is testable in sequential experiments where
subjects’ reactions to aspirin are monitored repeatedly over
time. (One needs to assume that a person’s characteristics
do not change over time, an assumption that is testable in
principle.) In such tests one can easily verify whether sub-
jects who have had one positive experience with aspirin
(X = 1,Y = 0) have a higher than average probability of
benefiting from aspirin in the future.

I have argued elsewhere (Pearl 2000, p. 217) that counter-
factual queries of type II are the norm in practical decision
making, whereas causal effect queries (type I) are the excep-
tion. The reason is that decision-related queries are usually
brought into focus by observations that could be modified
by the decision (e.g., a patient suffering from a set of symp-
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toms). The case-specific information provided by those ob-
servations is essential for properly assessing the effect of
the decision, and conditioning on these observations leads
to queries of type II, as in Qy1. The Bayesian approach pro-
posed by Dawid cannot properly handle conditioning on
factors that are affected by the treatment, and thus pre-
cludes answering the most common type of decision-related
queries. (Detailed dynamic models or temporally indexed
data for every conceivable set of observations would be
needed for specifying the probabilities in the decision trees
of such analyses.)

I agree with Dawid that certain assumptions needed for
identifying causal quantities are not easily understood (let
alone ascertained) when phrased in counterfactual terms.
Typical examples are assumptions of ignorability (Rosen-
baum and Rubin 1983), which involve conditional inde-
pendencies among counterfactual variables. However, this
cognitive difficulty comes not because counterfactuals are
untestable, but rather because dependencies among counter-
factuals are derived quantities that are a few steps removed
from the way we conceptualize cause-effect relationships.
To overcome this difficulty, a hybrid form of analysis can
be used, in which assumptions are expressed in the friendly
form of functional relationships (or diagrams), and causal
queries (e.g., Q) are posed and evaluated in counterfactual
vocabulary (Pearl 2000, p. 215-7, 231-4). Functional mod-
els, in the form of nonparametric structural equations, thus
provide both formal semantics and conceptual basis for a
complete mathematical theory of counterfactuals.

In Section 5.4, Dawid restates his empiricist philosophy
in the form of a requirement which he calls Jeffreys’s law:

. mathematically distinct models that cannot be distin-
guished on the basis of empirical observation should lead
to indistinguishable inference.

This requirement reads like a tautology: If two models en-
tail two distinguishable inferences, and if the difference be-
tween the two inferences matters at all, then the two mod-
els can easily be distinguished by whatever (empirical) cri-
terion used to distinguish the two inferences. Dawid may
have meant the following:

. mathematically distinct models that cannot be distin-
guished on the basis of past empirical observation should
lead to indistinguishable inference regarding future observa-
tion (which may be obtained under new experimental condi-
tions).

This is none other but the requirement of identifiability (see,
e.g., Pearl 1995). It requires, for example, that if our data are
nonexperimental, then two models that are indistinguishable
on the basis of those data entail the same value of the av-
erage causal effect (ACE)—a quantity discernible in exper-
imental studies. It likewise requires that if one’s data come
from static experiments, then two models that are indistin-
guishable on the basis of those data entail the same value
of Q—a quantity discernible in sequential experiments.
If the aim of Dawid’s empiricism is to safeguard identi-
fiability, his proposal would be welcome by all causal an-
alysts, including adventurous counterfactualists. Unfortu-
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nately, careful reading of his article shows that David aims
to impose an overly restrictive and unworkable type of safe-
guard, a type rejected in almost every branch of science.

4. PRAGMATIC VERSUS DOGMATIC EMPIRICISM

The requirement of identifiability, as just stated, is a re-
striction on the type of queries one may ask (or inferences
one may make) and not on the type of models one may use.
This brings up the difference between pragmatic and dog-
matic empiricism. A pragmatic empiricist insists on asking
empirically testable queries, but leaves the choice of theo-
ries to convenience and imagination; the dogmatic empiri-
cist insists on positing only theories that are expressible in
empirically testable vocabulary. As an extreme example, a
strictly dogmatic empiricist would shun the use of negative
numbers, because negative quantities are not observable in
isolation. For a less extreme example, a pragmatic empiri-
cist would welcome the counterfactual model of individual
causal effects (ICE) (see Sec. 5.2) as long as it leads to
valid and empirically testable estimation of the quantity of
interest (e.g., ACE). Dawid rejects this model a priori be-
cause it starts with unobservable unit-based counterfactual
terms, Y7 (u) and Yy (u), and thus fails the dogmatic require-
ment that the entire analysis, including all auxiliary sym-
bols and all intermediate steps, “involve only terms subject
to empirical scrutiny.” What is gained by this prohibition,
according to Dawid, is protection from asking nonidentifi-
able queries. His proposal, in the form of Bayesian decision
trees, indeed ensures that one does not ask certain forbidden
questions, but unfortunately, it also ensures that one never

- asks or answers important questions (such as Qy) that can-

not be expressed in his restricted language. It is a stifling
insurance policy, analogous to banning division from arith-
metics to protect one from dividing by 0. (Overprotection
may also tempt the counterfactual camp; see Imbens and
Rubin 1995.)

Science rejected this kind of insurance long ago. The
Babylonians astronomers were masters of black box pre-
diction, far surpassing their Greek rivals in accuracy and
consistency (Toulmin 1961, pp. 27-30). Yet science favored
the creative-speculative strategy of the Greek astronomers,
which was wild with metaphysical imagery: circular tubes
full of fire, small holes through which the fire was visible as
stars, and hemispherical earth riding on turtle backs. It was
this wild modeling strategy, not Babylonian rigidity, that
jolted Eratosthenes (276-194 B.C.) to perform one of the
most creative experiments in the ancient world and measure
the radius of the earth.

This creative speculate-test-reject strategy (which is
my understanding of Popperian empiricism) is practiced
throughout science because it aims at understanding the
mechanisms behind the observations and thus gives rise to
new questions and new experiments, which eventually yield
predictions under novel sets of conditions. Quantum me-
chanics was invented precisely because J. J. Thomson and
others dared take deterministic classical mechanics very se-
riously, and boldly asked “metaphysical” questions about
physical properties of electrons when electrons were un-
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observable. The language of counterfactuals likewise en-
ables the statistician to pose and reject a much richer set
of “what if” questions than does the language of Bayesian
decision theory. Giving up this richness is the price to pay
for Dawid’s insurance.

5. COUNTERFACTUALS AS INSTRUMENTS

Dawid reports (at the end of Sec. 10.2) that the bounds
for causal effects in clinical trials with imperfect com-
pliance (Balke and Pearl 1997) are “sheep-like”—namely
valid, meaningful, and safe even for counterfactually averse
statisticians. Ironically, when we examine the conditional
probabilities that achieve those bounds, we find that they
represent subjects with deterministic behavior, compliers,
never-takers, and defiers, precisely the kind of behavior that
Dawid rejects as “fatalistic” (Sec. 7.1). The lesson is illu-
minating: Even starting with the best sheep-like intentions,
there is no escape from counterfactuals and goat-like deter-
minism in causal analysis.

This lesson leads to a new way of legitimizing coun-
terfactual analysis in the conservative circles of statistics.
Researchers who mistrust the quasi-deterministic models
of Laplace (i.e., y = f(z,u)) can now view these mod-
els as limit points of a space of nondeterministic models
P(y|z) constrained to agree with the observed data. Ac-
cordingly, the mistrustful analysis of counterfactuals can
now be viewed as a benign analysis of limit points of or-
dinary probability spaces, in much the same way that irra-
tional numbers can be viewed as limit points (or Dedekind
cuts) of benign sets of rational numbers.

Dawid is correct in noting that many problems about the
effects of causes can be reinterpreted and solved in non-
counterfactual terms. Analogously, some of my colleagues
can derive De-Moivre’s theorem, cosnf = Re[(cosd +
1sin @)™, without the use of those mistrustful imaginary
numbers. So, should we strike complex analysis from our
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math books? Examining the major tangible results in causal
inference in the past two decades (e.g., propensity scores,
identification conditions, covariate selection, asymptotic
bounds) reveals that, although these results could have been
derived without counterfactuals, they simply were not. This
may not be taken as a coincidence if one asks why it was
Eratosthenes that measured the size of the earth and not
some Babylonian astronomer, master in black box predic-
tion. The success of the counterfactual language stems from
two ingredients necessary for scientific progress in general:
(a) the use of modeling languages that are somewhat richer
than the ones needed for routine predictions, and (b) the use
of powerful mathematics to filter, rather than muzzle, the
untestable queries that such languages tempt us to ask.

Dawid is inviting causality to submit to the Babylonian
safeguard of black box mentality. I dare predict that causal-
ity will reject his offer.
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Comment

By narrowly concentrating on randomized experiments
with complete compliance, Dawid, in our opinion, incor-
rectly concludes that an approach to causal inference based
on “decision analysis” and free of counterfactuals is com-
pletely satisfactory for addressing the problem of infer-
ence about the effects of causes. We argue that when at-
tempting to estimate the effects of causes in observational
studies or in randomized experiments with noncompliance
(termed broken experiments by Barnard et al. (1998),
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reliance on counterfactuals or their logical equivalents can-
not be avoided.

Causal inference from observational data and broken
experiments historically has been viewed as problematic,
and even illegitimate, by most statisticians. Thus we re-
gard it as a serious oversight for Dawid to deny the
usefulness of a counterfactuals without a more careful
consideration of observational studies and broken exper-
iments. The purpose of this discussion is to redress that
oversight, by reviewing the considerations that have led
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so many to adopt a counterfactual approach to causal
inference.

1. THE PROBLEM OF CONFOUNDING

Suppose that we have discrete pretreatment covariates A
and B in an observational study. At each level of A, suppose
that treatment T taking values in {¢,c} is positively corre-
lated with a disease outcome Y, but at each joint level AB
of A and B, treatment is independent of outcome. In the
language of the school of probabilistic causality (PC), AB
screens off 7' from Y (Suppes 1970). Some PC texts would
then say that treatment does not probabilistically cause YV
relative to the causal field determined by A and B. How-
ever, this statement does not reflect the common language
and appropriate policy meaning of a cause, which is that
manipulating 7' would change Y. Indeed, there is a poten-
tial for an infinite regress wherein the association of 7" and
Y varies among positive, negative, and null as one adjusts
for additional covariates.

In epidemiology, it has been common to view the associ-
ation adjusted for all measured pretreatment covariates as
most likely to be causal. But Greenland and Robins (1986)
noted that additional adjustment can increase confounding,
in that the more adjusted association could be further from
the true average causal effect than the less adjusted associa-
tion. This problem has also been noted in the PC literature.
As a result, the most sophisticated PC texts state that an
adjusted effect is guaranteed to have a causal interpretation
only when one has succeeded in adjusting for all nontreat-
ment causes X of the outcome. It then follows as a theorem
that the association of treatment and the outcome within
levels of the measured covariates, say W, has a causal in-
terpretation if either (a) the other elements X \ W of X are
independent of 7" given W or (b) X \ W is independent of
Y given W and T (Robins and Morgenstern 1987).

Unfortunately, these sufficient “conditions for no con-
founding” are never empirically testable from observational
data, because by definition X contains all nontreatment
causes, including those unmeasured and those not even
known to exist. Hence the question of the existence and
magnitude of confounding by the unmeasured factors X \W
in an observational study is metaphysical in Dawid’s sense,
even under his preferred PC theory. It follows that causal in-
ference from observational data is a Dawidian goat. In more
standard statistical parlance, the average causal effect of a
treatment is not identified from observational data without
making nonidentifiable assumptions about the magnitude
and direction of confounding. We are confident that Dawid
does not wish to join R. A. Fisher (1959) in thereby con-
cluding that causal inferences from observational data are
illegitimate, including the inference that cigarette smoking
is a cause of lung cancer (Stolley 1991). If we are correct,
then Dawid has no choice but to recognize the need for
untestable assumptions.

In an attempt to stave off the need for untestable assump-
tions, some commentators have argued that one should con-
sider as potential confounders only those (often few) vari-
ables for which one can make a plausible case that they are
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common causes of treatment and the outcome. We find this
reasoning unacceptable. Not only does it make confounding
a property of the mind rather than of the physical world,
but it rewards ignorance. The less one knows about possible
causes, the freer one is to make definitive causal statements.
The price of this freedom is that more, if not most, of these
statements will be false.

1.1 Counterfactuals

As Dawid recognizes, in a deterministic (i.e., Newtonian
or Laplacian) world with a single time-independent treat-
ment 7', the “all causes” approach to causal inference im-
plies the existence of counterfactuals: If the world is de-
terministic (i.e., fatalistic) and X = X (u) includes all non-
treatment causes for subject u, then the outcome must be a
deterministic function f (i, X (u)) of X (u) and the treatment
i € {t,c}. We can then define the counterfactual Y; = Y;(u)
to be f(i,X(u)). In the general case with time-varying
treatments, covariates, and outcomes, Robins (1995a, 1997)
proved that Pearl’s “all causes” nonparametric structural
equation model is mathematically equivalent to a special
case of the general counterfactual causal model of Robins
(1986, 1987) (see also Galles and Pearl 1997). Indeed, the
counterfactuals Y;(u), € {t,c} are exactly the ultimate co-
variates needed for adjustment. Because Y = Y (u) is a de-
terministic function of (7'(u), Y:(u), Ye(uw)), all other vari-
ables are independent of Y (u) given treatment 7' = T'(u)
and (Y:(w), Ye(w)).

Allowing stochastic counterfactuals as done by Robins
(1986, 1988), Greenland (1987), and Robins and Greenland
(1989, 1991), we can show that even in nondeterministic
settings, the “all causes” approach implies the existence of
counterfactuals. Hence we reject Dawid’s argument that the
“all causes” approach is less metaphysical than the counter-
factual approach because of the latter’s reliance on “com-
plementary” variables. To be specific, suppose that Y (u)
is Bernoulli. Consider a stochastic counterfactual model
with the following properties: (a) There exist counterfactual
probabilities (6;,6;) = (0:(u),0.(w)) that are deterministic
functions of the individual w; (b) the function Y;(u) is the
outcome of a Bernoulli experiment with success probabil-
ity 0;(u) when T'(u) = 4; Y;(w) is undefined when 7'(u) # i;
and (c) Y (u) = Yp(y)(u). This model implies that 6;(u) and
6.(u) have a joint distribution but Y;(u) and Y;(u) do not.
If we take the “all causes” approach as a primitive, we can,
in complete parallel with our argument in the deterministic
case, define the counterfactuals 6;(u) to be the deterministic
function f (¢, X (u)) for which (a)—(c) hold.

1.2 Stochastic Versus Deterministic Worlds

The deterministic counterfactual model is the limiting
special case of the stochastic in which 6;(u) and 6.(u) are
always either 1 or 0. As it is impossible to use observational
data to empirically decide whether the world is determin-
istic versus stochastic, we now investigate the inferential
consequences of this inability.

1.2.1 No Unmeasured Confounders. . Let W denote
the measured pretreatment covariates. In a counterfactual
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model, we say there are no unmeasured confounders if
6; 1T |W for i € {t,c}. This assumption will always hold in
a randomized experiment with complete compliance. Given
no unmeasured confounders, the marginal distributions P,
and P, of Y, and Y; given W are identified and equal to the
distributions of Y given W and T' = c and T" = t. Thus, as
discussed by Dawid and by Robins (1986), if the goal is to
determine treatment for a subject uo exchangeable with the
study subjects by comparing P; to P, then it does not not
matter whether the world is stochastic or deterministic.

We agree with Dawid’s concern that an analyst may ob-
tain inconsistent estimates of P, and P, by specifying a
parametric model for nonidentifiable features of the joint
distribution of (Y, Y.). Our conclusion is not to reject coun-
terfactuals models, however, but rather to criticize mod-
els and measures of effect that depend on nonidentifiable
features (Greenland 1987) and to develop semiparamet-
ric counterfactual models (i.e., structural nested models,
marginal structural models, and models based on the g-
computation algorithm) that place no restrictions on those
features (Robins 1997, 1999). Our approach completely ob-
viates Dawid’s concern.

1.2.2  Unmeasured Confounders. Because of the po-
tential for confounding by unmeasured factors, causal ef-
fects are not identified by observational data, and the dis-
tribution of those data only implies bounds on the causal
effect. For deterministic counterfactual models, the bounds
always include the causal null hypothesis (Robins 1989).
For the stochastic model in which for each ¢ € {t,c}, the
6;(u) have the same value for all subjects u within a stratum
of the measured covariates, there is no possibility of con-
founding, association is causation, and the upper and lower
bounds coincide. Other assumptions concerning the joint
distribution of (7, 6;, 6.) will result in bounds intermediate
in length. Because whether the world is deterministic is not
testable, any value lying within the deterministic bounds can
never be rejected by the data. When bounds are too wide
to be useful, other approaches to incorporating uncertainty
due to unmeasured confounding include sensitivity analy-
sis and formal Bayesian inference (Robins, Scharfstein, and
Rotnitzky 1999). As with bounds, the resulting inferences
may depend on whether one specifies a deterministic versus
a stochastic counterfactual model.

1.2.3  Counterfactual Analyses That Make a Fundamen-
tal Use of Determinism. Dawid notes that in certain coun-
terfactual analyses, the causal contrasts of interest may have
no meaning if the world is stochastic. Dawid cites Imbens
and Rubin (1997) for one example. The counterfactual anal-
ysis of death as a competing risk by Robins (1986, remark
12.2; 1995b) is a second. We describe a simplified single-
occasion discrete-time version of Robins’s analysis and pro-
vide a new approach that yields meaningful causal contrasts
in both deterministic and stochastic worlds.

Example: Competing risks in a deterministic world. We
observe data (ZY,Y,T), where T = T'(u) is a random-
ized treatment, Y = Y (u) = 1 if subject w is alive at 6
months and Y (u) = 0 otherwise, and Z = Z(u) is blood
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pressure measured at 6 months, which is observed only if
Y (u) = 1. We refer to death as a “competing risk” for the
ability to observe Z(u). In the literature, the counterfac-
tuals (Z;(u),Yi(u)),i € {t,c}, are often assumed to exist,
in which case average causal effect of treatment on blood
pressure is E[Z;(u) — Z.(u)]. This assumption implies that
blood pressure Z;(u) at 6 months under treatment ¢ is de-
fined (although never observable) even though the subject
u would be dead; that is, Y;(u) = 0. Odd though it may
seem, this may sometimes be a useful assumption; for ex-
ample, if we were studying young children in a developing
country. It would be much less reasonable if we were study-
ing adults for whom hypertension is an important cause of
death. Even when assumed to be well defined, the measure
E|Z(u) — Z.(u)], like the other measures of the effect of
treatment on blood pressure considered later, is not non-
parametrically identified from the data (ZY,Y,T); the dis-
tribution of the data only imply bounds for the measure.
In contrast, an-effect measure relevant for choosing the op-
timal treatment under a particular utility function for the
joint outcome (ZY,Y') will be identifiable. Nonetheless, a
basic scientist’s interest may lie in the unidentified effect of
treatment on blood pressure.

Kalbfleisch and Prentice (1980) argued that it was never
sensible to view Z;(u) as well-defined function of wu if
Y;(u) = 0, in which case E[Z;(u) — Z.(u)] is undefined
as well. In that case, Robins (1986) noted that a meaningful
measure of the effect of treatment on blood pressure would
be its effect A. = E[Zy(u) — Zo(u)|Y.(u) = Yi(u) = 1] on
subjects who would survive to 6 months under either treat-
ment. This definition has two drawbacks. First, as noted by
Robins (1986), it can result in nontransitivity of treatment
comparisons when the treatment has three or more levels.
For example, if T has support {t,c,r}, then it is possible
that Ass, A, and A, are all positive, so that ¢ is “pre-
ferred” to c,c is preferred to r, and r is preferred to t.
Transitivity can be restored by replacing the measure Ay,
by A, = E[Z(u) — Zc(u){Yi(u) = 1;i € support(T)}],
but then the probability of being in the conditioning set
may be small or even 0 if the support of T is big.

A Stochastic World Generalization. The world may be
stochastic. Under the stochastic counterfactual model of
Section 1.1, Y, (w) and Y;(u) do not have a joint distribution,
but unless they do, A;. is without meaning. One solution is
to add to our stochastic counterfactual model the assump-
tion that Y, and Y; have a joint distribution. For the model
to continue to satisfy properties analogous to (a)—(c), we
assume that, with (6., 0;) as in Section 1.1, the conditional
density f(Ye,Y:|6.,0:) factors as f(Yc|0.)f(Y:|6:), so that
Y, and Y; are independent given (., 6;). Further, we im-
pose the restriction that Z;11Y;|Y; = 1,6,, 0, for 4,5 € {t,c},
reflecting the fact that Y is purely random given (6., 6;).
This model is similar to that in Dawid’s Section 12. Un-
der this model, it is an elementary calculation to show that
Aie = E*[pic(u)], where ¢pe(u) = ¢re(bc(w), 0:(w)) is the
random variable

¢tc(u) = E[Zt (u)|ec(u)) 0+ (u)) Y}(’U,) = 1] '
— E[Zc(u)|0c(u), 0 (u), Ye(u) = 1]
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and E£*[-] denotes an expectation taken with respect to the
weighted density f*(6.,0:) x 0.0 f(0.,0:).

This approach has two deficiencies when the world is
truly stochastic. First, it is no longer logically necessary
to define the effect of treatment only for the (possibly
quite small) subset with Y.(u) = Yi(u) = 1. Second, in
assuming a joint distribution for Y,(u) and Y;(u), the ap-
proach fails to satisfy Dawid’s desire to keep metaphysical
(i.e., untestable) assumptions to a minimum. The follow-
ing alternative solution overcomes both deficiencies. We
take ¢:.(u) as the definition of the causal effect of treat-
ment on subject u’s blood pressure whenever ¢..(u) is
defined; that is, 6;(u)f.(u) # 0. For subjects for whom
0:(u)b.(u) = 0, we leave the causal effect undefined. Then
Dy = Elrc(u)I{0:(w)0.(u) # 0}]/pr[fs(w)b.(u) # 0] is the
average causal effect of treatment on blood pressure among
all subjects « for whom the causal effect is defined, where
I(-) is the indicator function. On the one hand, suppose
the world is deterministic. Then, as required, ®;. = Ay
On the other hand, suppose the world is “fully stochastic”
in the sense that 6;(u)f.(u) # O for all u, and it makes
sense to regard Z;(u) as defined even if Y;(u) = 0. Then
by, = E[Z(u) — Z.(u)], when we assume that Z; 11Y;|6,, 6;
for i € {t,c} so as to reflect the Y;’s being purely ran-
dom given (6.,6;). Thus the approach to the problem of
competing risks based on our alternative solution yields all
previously proposed measures for the effect of treatment on
blood pressure as special cases.

2. COUNTERFACTUALS, VAGUENESS, AND
OBSERVATIONAL STUDIES

Historically, the main criticism of counterfactuals has not
been the statistical objection to positing a joint distribution
for complementary variables, but rather the incontrovert-
ible fact that most counterfactuals are inherently vague or
ill-defined. We argue, however, that, to misquote the Bard,
“the vagueness is not in our counterfactuals but in our at-
tempt to make causal inferences from observational data.”
To forswear vagueness is to join with Fisher and foreswear
causal inference from nonexperimental data.

The following proposition of Quine’s (1950) effectively
ended counterfactual analysis among philosophers until the
1960s: If Bizet and Verdi had been of the same national-
ity, they both would have been French. Quine argued that
because Bizet was French and Verdi was Italian, by sym-
metry considerations, this counterfactual could not have a
truth value and thus was an ill-defined proposition. David
Lewis (1973) rejoined that even though some counterfactual
propositions may be ill-defined and nearly all are somewhat
vague, many are useful. We agree. In fact, we believe that
counterfactuals are “vague” precisely to the degree to which
one fails to make precise the hypothetical interventions and
the causal contrasts under consideration. For example, sup-
pose that one collects observational data to examine the hy-
pothesis that drinking alcohol protects against heart disease.
Alcohol may protect against heart disease via a variety of
pathways: It may have a direct effect on blood lipid compo-
sition; it may relax type A personalities, thereby decreasing
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stress-induced hypertension; it may stimulate liver enzymes
that detoxify cardiac toxins such as cigarette smoke; it may
displace in the diet other items, such as rich desserts, that
themselves cause heart disease. If the causal contrast of in-
terest is the direct biological effect of alcohol not mediated
through its effect on diet, then one might compare an inter-
vention wherein the daily consumption of alcohol is set to
200 kilocalories (about 2 ounces) and the diet is fixed at a
prespecified menu to one in which alcohol consumption is
prevented and diet is again held to the same menu.

If, however, alcohol delivered in spirits could have a dif-
ferent effect from alcohol delivered in wine, then these in-
terventions must also specify the source of alcohol. Like
attempts to specify all potential common causes (con-
founders), any attempt to eliminate all vagueness from our
interventions leads to an infinite regress wherein we need to
specify the type of wine, the vineyard, the year, and other
factors. On the way, we eliminate the relevance of any em-
pirical data to our causal query. For example, we might
have available disaggregated data on wine and spirit con-
sumption, but similar data on vineyard and year are out of
the question.

Only in a randomized experiment in which the interest
lies in the causal effect of the entire protocol (so that prob-
lems of noncompliance and lack of double-blindings are
irrelevant) can we succeed in eliminating all vagueness. In
observational studies, the source of the vagueness is the
fundamental unavoidable difficulty in formulating just what
it is we mean by the causal effect of alcohol on heart dis-
ease; the vagueness of counterfactuals is a symptom, not the
cause of this difficulty. Dawid appears to express closely re-
lated sentiments in his Section 14. Thus we were surprised
by Dawid’s comment in Section 10 that the two appendixes
of Greenland et al. (1999) were convincing illustrations of
the meaninglessness and pointlessness of counterfactuals,
for we can only interpret his comment as saying that causal
inference from nonexperimental data is meaningless and
pointless.

3. TESTABILITY AND POPPER

Contrary to Dawid’s comments, the fact that counterfac-
tual models have untestable elements does not make them
“unscientific” according to either the philosophy of Pop-
per or more modern philosophies of science. Popper made
clear that falsifiability means a theory must have some ob-
servable predictions that would lead to its rejection were
those predictions to fail, not that every feature of the the-
ory be testable (Popper 1974). Counterfactual causal theo-
ries meet this requirement by having testable (observable)
consequences for the marginal outcome distributions in ran-
domized trials with complete compliance. That observa-
tional data do not always provide such critical tests is an
inherent difficulty with the data source, not with the theory.
Popper also made clear that “metaphysical” (i.e., apparently
untestable) elements of theories could be scientifically im-
portant in providing guidance for the further development
of both theory and method (Popper 1982). From this per-
spective, as Dawid recognizes, the counterfactual approach
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has already shown itself to be an invaluable metaphysi-
cal research program for causal inference from observa-
tional studies. Similarly, counterfactuals play a key role in
several speculative interpretations of quantum phenomena
(e.g., Penrose 1994, pp. 237-306; Price 1996, pp. 132-194).

In summary, we regard counterfactuals as a powerful
tool for eliminating, to the extent possible, vaguessness as
to the causal contrasts and hypothetical interventions un-
der consideration. They do so by requiring interested par-
ties to explicate the scientifically important features of the
“closest possible worlds” in which all subjects receive or
do not receive treatment. Although presented in the con-
text of explicating the difficulty of estimating the causes
of effects rather than the effects of causes in observational
studies and broken experiments, we agree that many of the
points made by Dawid in Sections 11-14 are genuine and
difficult problems, and we have considered them in this
discussion as well as in our other writings. We believe
that these problems are fundamental problems of causal
inference that can either be revealed or concealed by a
causal theory but never eliminated. Because counterfactuals
force these problems into the open, we regard Dawid’s es-
say as a ‘“‘shoot the messenger” response to counterfactual
theory.
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Comment

Once again, Professor Dawid has provided a stimulat-
ing article on a subject of great interest to statistics, the
use of potential outcomes to define causal effects; I pre-
fer the more general expression “potential outcomes” to
“counterfactuals” to describe the perspective, because as
Dawid himself points out before his equation (5), it is
only after treatment assignments are known that some po-
tential outcomes become known, whereas others become
counterfactual.

Donald B. Rubin is Professor, Department of Statistics, Harvard Uni-
versity, Cambridge, MA 02138 (E-mail: rubin@stat.harvard.edu).

The first time that we crossed formal discussions on
this was two decades ago, and I suspect that as we
have aged, our respective positions have become more en-
trenched, albeit not necessarily more convincing to each
other.

I feel that a source of the problem with Professor Dawid’s
formulation of causal inference is his choice to let the out-
come variable, Y, have a joint distribution with treatment, X,
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rather than be ¢-variate where ¢ is the number of levels of X.
Letting Y be t-variate as in Rubin (1978) allows us to define
causal effects phenomenologically; that is, as comparisons
among ¢ observable quantities rather than as comparisons
among ¢ hypothetical conditional distributions of ¥ given X
for fixed values of a sufficient set of covariates. With phe-
nomenological definitions of causal effects, valid inferences
for causal effects are predictions of unobserved observables
conditional on recorded data, and thus generally change as
more covariates are recorded, just as valid predictions change
as more predictors are recorded. With distributional defini-
tions, inferences for causal effects are apparently viewed as
incorrect unless they arrive at the correct distribution, that is,
unless they are conditional on a sufficient set of covariates,
an unachievable goal in real world experiments (Rubin 1979,
p. 28).

Professor Rubin is one of the small brave band who are be-
ginning to chart the murky depths of causal inference. I differ
from him on some matters of personal taste, the most impor-
tant being his willingness to assign a joint distribution to all
the conceptual responses of an individual under all appli-
cable treatments, when in fact only one such response can
ever be observed. I dislike this because I consider it “non-
phenomenological” (there must be a shorter word!) and can
only register surprise that this does not bother him too. As
Quantum Theory discovered long ago, it is meaningless to
assign probabilities to the joint occurrence of events which
cannot occur jointly (Dawid 1979, p. 30).

Although it is interesting theoretically to classify prob-
lems of causal inference into ones where a joint distribu-
tion of potential outcomes is useful and ones where it is
superfluous, I find the benefits of formulating all problems
of causal inference using potential outcomes so substantial
for practice that I have no desire to avoid this perspec-
tive, despite Dawid’s repeated assertions that we should
do so.

I could make a great variety of remarks in reply to spe-
cific comments of Dawid, but here I will simply try to con-
vey why I find the potential outcomes perspective so ap-
pealing for causal inference. There are two main reasons:
for teaching and for addressing real problems.

Teaching

For nearly a decade, I have been teaching a relatively
small advanced undergraduate/graduate course on causal
inference, sometimes in the Economics Department jointly
with Guido Imbens (now at UCLA) and sometimes in the
Statistics Department. The students are from various parts
of the university, including the Faculty of Arts and Sciences,
the School of Public Health and the Medical School. The
course is generally very successful, I believe, to some extent
because of the focus on the potential outcomes perspective,
which is easily taught without resorting to Bayesian deci-
sion theory or ad hoc frequentist arguments, easily com-
prehended and internalized, and easily applied to real prob-
lems. The success stories include undergraduate and grad-
uate theses in economics or statistics applying the ideas,
which eventually appear in statistics and economics jour-
nals, and even win prizes, as well as anecdotes concerning
how the course clarified essentially all participants’ views
of causal inference and nonstatisticians’ views of the rele-
vance of statistics as a field. I have recently given a very
brief summary outline of this course (Rubin 1999).

Journal of the American Statistical Association, June 2000

A major benefit is the immediate separation of the as-
signment mechanism—a model for treatment assignments
given potential outcomes and covariates, which we can con-
trol at times, and a theory for nature—a model for the
potential outcomes given the covariates, which we cannot
control. This is a point vividly made by Dawid: “Nature is
surely utterly indifferent to our attempts to ensnare her in
our theories,” and is surely a valuable one for students to
learn.

Moreover, the perspective seems to have taken over may
fields, including economics (e.g., compare Heckman 1979
with Heckman 1989, after discussion in Holland 1989); epi-
demiology (e.g., Greenland and Poole 1988; Greenland and
Robins 1986), and social science (e.g., Gelman and King
1991; Sobel 1995), as well as statistics (e.g., Holland 1986;
Rosenbaum 1995).

Addressing Problems

With respect to addressing and clarifying real problems,
the potential outcomes framework is extremely helpful. For
a pedagogical example, it immediately resolves “Lord’s
paradox” (Holland and Rubin 1983).

The perspective also has been exceedingly helpful in
bridging the gap between traditional econometric instru-
mental variables (IV) ideas and traditional statistical ideas
on causal inference, from both the randomization-based per-
spective (Angrist, Imbens, and Rubin 1996; Rubin 1998)
and the Bayesian perspective (Imbens and Rubin 1997; Hi-
rano, Imbens, Rubin, and Zhou 2000). The key idea is to
deal with noncompliance to an assigned treatment as a po-
tential outcome itself, and classify units by their joint values
of these compliance potential outcomes. This formulation
also leads to progress on even more complex problems in-
volving noncompliance and either missing outcomes (called
“broken experiments” in Barnard, Du, Hill, and Rubin 1998;
also see Frangakis and Rubin 1999) or censored outcomes
(Frangakis and Rubin 2000).

Despite Dawid’s aversion to this type of application in
Section 7.1, further expansion of the potential outcomes
perspective is even more revealing of its utility, so I close
with a general example, with the implied challenge to
Dawid to formulate a practically more appealing solution
without the use of potential outcomes.

“Censored” Outcomes Due to Death

Consider a randomized experiment with two drug treat-
ment conditions and two outcomes at one year after ran-
domization: “alive/dead” (D = 0,1) and “quality-of-life
health indicator” (Y > O); also available are covariates
X = prerandomization health indicators. There is full com-
pliance and no unintended missing data. The patients in the
study are fairly ill, and some will die before completion of
the study, with the result that the outcome Y is undefined
in some sense or “censored” due to death. (More generally,
D is an indicator for a condition that makes Y undefined.)

Drawing inferences about the effect of the treatment on
D is standard. Drawing inferences about the effect of treat-
ment on Y is more problematic. Some have proposed treat-
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ing these Y values as missing or censored; I regard this
as inappropriate in most situations (and certainly always
truly counterfactual), although often done (e.g., Diggle and
Kenward 1994, secs. 5.1 and 5.2; Rotnitzky, Robins, and
Scharfstein 1998, sec. 2.2). The approach used here ap-
plies potential outcomes as did Rubin (1998, sec. 6), and
differs from the traditional competing risk perspective in
a way analogous to the way the IV perspective of An-
grist et al. (1996) differs from the traditional econometric
perspective.

Formally, for each patient there are potential outcomes
corresponding to control and new treatment assignment,
(D(0),Y(0)) and (D(1),Y(1)): As with noncompliance, I
use the potential outcomes on D to classify the patients
into four groups:

» those who would live under either treatment assign-
ment, LL = {i|D;(0) = D;(1) = 0}

+ those who would die under either treatment assign-
ment, DD = {i|D;(0) = D;(1) = 1}

+ those who would live under control but die under treat-
ment, LD = {i|D;(0) =0, D;(1) = 1}

+ those who would die under control but live under treat-
ment, DL = {¢|D;(0) = 1, D;(1) = 0}.

For the LL patients, who comprise 7z, proportion of the
group, there is a joint distribution of individual potential
outcomes of Y under treatment and control, Fr, which
implies two marginal distributions of Y. For the DD pa-
tients, there is no information on Y. For the LD patients,
who comprise 7., p proportion of the group, there is a dis-
tribution of Y under the control condition, Frp. For the
DL patients, who comprise 7 py, proportion of the popula-
tion, there is a distribution of Y under the new-treatment
condition, Fpy,.

Thus, in addition to the causal effects on D, which
are functions of (wpr,mp,7pL), there are two marginal
distributions of Y, F.p and Fpr, and one joint distribu-
tion of the Y potential outcomes, Frr. The causal es-
timands for Y follow from Fy; in fact, the LL group
is the only group for which causal estimands for Y in-
volve only well-defined values of Y. Thus there are two
population-level causal estimands that can be validly as-
sessed; the effect of treatment on D for all patients
and the effect of treatment on Y for those patients
who would live under both assignments. Of course, the
covariate X can be used to estimate causal estimands
in more refined subpopulations defined by components
of X.

It is true that posterior inference will be sensitive to the
prior specification of the parameters of the conditional asso-
ciation (given X) between (D, Y (®) and (DM, Y1), but
less so as more covariates are collected to predict (D,Y).
With real data, I regard the usual asymptotics letting the
sample size go to infinity as somewhat more relevant than
letting the number of covariates go to infinity, but I am
willing to think about both “asymptotic” settings.

This approach to “censored outcomes due to death”
was applied several years ago, using a Bayesian model,
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to collaborative Amgen, Inc. data in a randomized trial
on use of a neurotrophic factor to treat amyotropic lat-
eral sclerosis (ALS), where Y was “forced vital (lung)
capacity.” Not only were the Bayesian answers reason-
able, but moreover, simulations showed that the implied
tests (posterior predictive, Rubin 1984, sec. 5; Meng 1994)
of the two null hypotheses corresponding to the two
causal questions (difference in death rates for all; differ-
ence in Y means for those who would live under both
treatments), each had essentially the correct frequentist
level, both were reasonably powerful, and they were ef-
fectively orthogonal in operating characteristics, as they
should be because they addressed two distinct scientific
questions.

Such a perspective seems critically important in stud-
ies of very ill patients where “quality of life” must be
considered an outcome distinct from “death.” Defining Y
when the patient dies to be the worst possible value of
Y simply misses the scientific/medical/ethical point to
distinguish between these outcomes. There appear to be
other situations, as well, as in the examples of Diggle
and Kenward (1994) cited earlier involving cows and milk
production, where this perspective would be valuable.

It may be that situations with “censoring due to death”
can be addressed in a straightforward way without the
use of potential outcomes, but to me, the essence of the
causal inference situation is immediately conveyed, both
intuitively and technically, by the use of potential out-
comes with a joint distribution (as proposed in Rubin
1978).
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Comment

In recent years, a number of statisticians and computer
scientists have suggested that casual reasoning requires that
questions with hypotheses counter to fact have well-defined
answers. Phil Dawid’s elegant and insightful article is the
first critical examination of this suggestion. As such, it is an
essential contribution to the philosophy of probability and
causality. It moves the discussion of causality in statistics
to a new level of sophistication.

The article should prove an effective exercise in persua-
sion, because Dawid meets the proponents of counterfactu-
als on their own ground. He begins with the counterfactual
variables Y; and Y, that appear in the models formulated by
Neyman (1923), Rubin (1974, 1978), and Holland (1986),
and he makes every effort to understand how much sense
and how much use can be made of these variables.

Dawid’s central theme is that counterfactuals should be
held up to de Finetti’s observability criterion. This criterion
says that it is legitimate to assess a probability distribution
for a quantity Y only if Y is observable at least in principle.
On this criterion, it is legitimate to assess probabilities for
Yi(u), because we can apply the treatment ¢ to the unit
u and then observe Y:(u). It is also legitimate to assess
probabilities for Y.(u), because we can apply the control
c to v and then observe Y (u). But if we cannot do both,
then it is not legitimate to assess probabilities for the pair
(Yi(u),Ye(u)). Dawid vindicates de Finetti’s criterion by
showing that persuasive examples of causal inference that

Glenn Shafer is Professor, Department of Accounting and Informa-
tion Systems, Faculty of Management, Rutgers University, Newark, New
Jersey (E-mail: gshafer @andromeda.rutgers.edu). These comments bene-
fited from research supported by National Science Foundation grant SES-
98199116, and also from discussions of causality with Phil Dawid over
many years. These discussions were most recently pursued in the context
of a workshop generously supported by the Fields Institute for Research
in Mathematical Sciences, which brought together a number of students of
causality, including Vanessa Didelez, Mervé Eerola, Michael Eichler, Paul
Holland, Steffen Lauritzen, Wayne Oldford, James Robins, Don Rubin,
Richard Scheines, and Ross Shachter, in addition to Dawid and myself.
Dawid discussed his article at this workshop, and I am grateful to all of
the participants for their discussion of the issues it raises.

seem to require a joint distribution for Y;(u) and Y. (u) can
be reformulated so that they clearly do not involve any such
joint distribution.

Dawid’s discussion of the instrumentalist use of coun-
terfactual variables, one of the article’s highlights, demon-
strates the effectiveness of his conciliatory approach. As
Dawid makes clear, reservations about the empirical mean-
ingfulness of counterfactual variables need not prevent one
from using them for mathematical convenience.

My main reservation about the article is that it does not
take advantage of Dawid’s own path-breaking work on pre-
dictive probability (see, e.g., Dawid 1985, 1992; Dawid and
Vovk 1997). In his effort to find common ground with those
who tout counterfactual variables, Dawid emphasizes the
case of a finite homogeneous population, where optimal
predictions are merely population averages, and he hints
that other cases can be reduced to this case by restricting
attention to a subpopulation with a specific value of a co-
variate. This downplays the link between causality and pre-
diction and obscures the potential richness of that link. It
makes it difficult, for example, to recognize that the predic-
tions authorized by casual regularities may often fall short
of the full panoply of predictions that would be authorized
by a probability distribution (Shafer 1996, 1998).

In the end, Dawid concedes too much, especially on the
topic of causes of effects. These concessions can be avoided
if one remembers that counterfactual variables do not pro-
vide the only framework for discussing causality. Frame-
works that make a direct place for probabilistic prediction
also have their uses, and they are needed to help distin-
guish causal statements that have empirical content from
those that are irremediably arbitrary and subjective.

(© 2000 American Statistical Association
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1. CONDITIONAL EXPECTED VALUES SUFFICE
FOR DELIBERATION

John and his physician deliberate on whether John should
undergo an operation. They decide to go ahead, and John
dies on the operating table. How long would John have
lived had the operation not been undertaken? Before the
decision is made, it is surely legitimate for the physician
to talk about her expectations for how long John will live
with and without the operation. If the physician is a math-
ematician, she may write Y (John) for John’s longevity and
assess the two expected values E(Y (John)|operation) and
E(Y (John)|no operation), where

E(Y (John)|operation) := John’s expected longevity
if the operation is undertaken
and
E(Y (John)|no operation) := John’s expected longevity
if the operation is not undertaken. (1)

At this point, before the decision of whether to oper-
ate, there is nothing counterfactual about either of these
quantities. After John’s death on the operating table,
E(Y (John)|no operation) can be called counterfactual, be-
cause it involves a hypothesis that is now contrary to fact.
It is a counterfactual expected value. But this term is not
particularly enlightening; a better one might be past condi-
tional.

There is, I believe, no disagreement about the mean-
ingfulness or usefulness of past conditionals such as
E(Y (John)|no operation), nor is there disagreement about
the meaningfulness or usefulness of analogous predictions
in cases where we can predict the consequences of treat-
ments on a unit u for certain. In such cases, the conditional
expected values E(Y (u)|treatment) and E(Y (u)|control),
reduce to the conditional categorical predictions

Yi(u) := the value Y (u) will take if
w is given the treatment ¢ (2)
and
Y.(u) := the value Y (u) will take if
u is given the control c. (3)

Again, there is nothing counterfactual about Y;(u) and Y. (u)
before the decision is made whether to give u the treatment
or the control, although if ¢ is given, then it is acceptable
afterward to call Y,(u) a counterfactual prediction.

There is also no disagreement about the importance of
quantities like (1)—(4) in causal assertion and hence in causal
inference. The essence of causality lies in the fact that dif-
ferent actions will have different consequences or at least
different expected consequences, and these differences can
still be discussed after the passage of time changes “will
have” into “would have had.”

Controversy arises only when we ask whether causal
questions should always be answered in terms of categori-
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cal predictions such as (3) and (4) or whether probabilistic
predictions such as (1) and (2) can also be used. The coun-
terfactual approach that Dawid criticizes bases causality on
quantities of the form (3) and (4) in all cases, even when
no such predictions can be made, even in principle. In this
approach, even probabilistic predictions are interpreted not
as conditional expected values, as I have done in (1) and
(2), but rather as expected values of counterfactual vari-
ables. The conditional expected values E(Y (u)|treatment)
and E(Y (u)|control) are recast as unconditional expected
values E(Y;(u)) and E(Y.(u)).

Dawid concedes too much when he assents to this nota-
tional trick. The conditional expected values really are con-
ditional. Yes, F(Y (u)|treatment) becomes E(Y;(u)) when
the decision is made to apply ¢ to u, but E(Y (u)|control)
remains a conditional expected value, now with re-
spect to past rather than current probabilities. There is
no need for us to imagine an alternative universe in
which it has been promoted to an unconditional expected
value.

2. WHY SHOULD THE BLACK BOX CONTAIN
DETERMINATE PREDICTIONS?

As we have just seen, a thorough understanding of causal
structure is not needed for deliberation. As Dawid explains,
the assessment of the effects of possible actions “can pro-
ceed by an essentially ‘black box’ approach, simply mod-
eling dependence of the response on whatever covariate in-
formation happens to be observed for the test unit.” To un-
derstand the “causes of effects,” we need to probe inside
the black box.

An autopsy may reveal facts about John that the physi-
cian could not have suspected or learned beforehand but
that made the operation’s failure likely. Any such facts ob-
viously need to be taken into account in a discussion of the
causes of John’s death. For the conditional expected values
in (1) and (2) to have causal meaning, they must take all
such facts into account. When they do so, will they still be
merely probabilities and expected values, or will they nec-
essarily become determinate predictions, of the form (3)
and (4)?

There are three powerful arguments against expecting de-
terminate predictions:

1. Twentieth century physics has repeatedly refuted ef-
forts to eliminate probability from the predictions of quan-
tum mechanics.

2. Our mundane experience also provides no support for
the proposition that the effects of our actions are always
determinate.

3. The very formulation of the question rests on an as-
sumption that John and his physician can choose freely be-
tween having the operation and not having it. So how can
we coherently deny that there may be later free choices,
such as those suggested by Figure 1, that may also effect
John’s longevity?

The proponents of counterfactuals often respond to the
mention of quantum mechanics by suggesting that it is too
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accident
Figure 1. No One Can Predict Exactly the Results of Treatment and
Control.

esoteric to be relevant to everyday concerns. In medicine,
business, and law, they argue, we can make do with New-
tonian mechanics, where actions have predictable conse-
quences. Unfortunately, as the second argument reminds
us, Newtonian laws do not get us very far in understand-
ing the choices that we face in medicine, business, and law.
Even Laplace’s vision of determinism, in which a superior
but human-like intelligence can predict the future states of
the world from knowledge of the present state and a small
number of laws, demands only the possibility of prediction
for states in which the world is actually found. If causal
laws predict everything, they predict that the physician will
undertake the operation. Thus the Laplacean vision does
not require that the superior intelligence should be able to
make a prediction about what would happen if the operation
is not undertaken.

The force of the third argument was already acknowl-
edged in the work by Don Rubin that launched the revival
of counterfactuals in statistics in the 1980s and 1990s. Ru-
bin (1978, pp. 39-40) provided three conditions that should
be met before one assumes that treatments have determinate
results whether or not they are applied:

1. Each treatment should be defined by a series of actions
that can be applied to the individual. For example, if one
insists on studying the causal effect of being female, then
one must specify the particular actions to be taken to make
the individual female.

2. Any pretreatment manipulations should be included
in this series of actions. For example, if different medical
treatments are preceded by different physical examinations,
then the examination should be considered part of the treat-
ment.

3. “We cannot attribute cause to one particular action in
the series of actions that define a treatment. Thus treatments
that appear similar because of a common salient action are
not the same treatment and may not have similar causal
effects.”

The third condition can be elaborated by saying that the se-
ries of actions defining a treatment must include all human
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actions that can affect the outcome. Thus we need to include
in the definition of John’s treatment not only the doctor’s
actions, but also John’s and Bill’s actions in Figure 1.

3. CAUSAL STRUCTURE WITH
OBJECTIVE PROBABILITIES

We have been led to the conclusion that probabilities with
causal meaning—objective probabilities, if you will—are
those based on all the information humanly possible to have
and use in a given situation. As Dawid might put it, these
are the probabilities based on a sufficient covariate.

This conception of objective probability hardly new.
In the mid-nineteenth century, Antoine Augustin Cournot,
adapting Laplace’s formulation of determinism, proposed
that objective probabilities are those that a superior but
human-like intelligence would obtain using the current facts
about the world and knowledge of causal regularities. The
idea echoed well into the twentieth century, in the work
of authors such as Henri Poincaré (1908) and Emile Borel
(1924).

What can one say about causality when one has only
probabilistic predictions such as (1) and (2) instead of cate-
gorical predictions such as (3) and (4)? As I have argued in
The Art of Causal Conjecture (1996), one can say a great
deal. One may assert that a particular action (by a person, an
animal, or some inanimate actor, such as a storm or a comet)
changes the expected value of some variable or the prob-
ability of some particular outcome. The action is, in this
sense, a cause. In some cases, one may conjecture broader
causal regularities—for example, that a given type of action
always raises the expected value of a given variable, or that
all the causes of one variable are causes of another variable.
For example, one may conjecture that most actions that in-
crease the expected value of a person’s smoking decrease
the expected length of that person’s life.

One of the attractions of counterfactual variables for
statisticians over the past several decades has been precisely
the fact that they obviate the need for objective probability.
At least they allow reducing objective probability to the
simpler concept of frequency in a finite population. This
is attractive to some because of their Bayesian persuasions
and to others because of their weariness with long-running
debates about the meaning of probability. It now seems
clear, however, that nothing has been gained by replac-
ing objective probabilities with categorical counterfactuals.
Objective probabilities have an empirical meaning at least
in principle—they represent what one might obtain in the
limit as predictions are improved through additional experi-
ence and knowledge. Categorical counterfactuals, everyone
agrees, are often unknowable even in principle.

4. ASKING THE WRONG QUESTION

In my view, Dawid concedes too much when he al-
lows that categorical counterfactuals may be needed for
inferences about the causes of effects. He concedes
too much by agreeing to pose a question that has no
meaning.
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Something has happened, and we are being asked whether
one particular step in the course of events has caused it:

* My headache is gone. Is it because I took aspirin?

» John died on the operating table. Is it because the
physician operated?

* Our corn crop failed. Is it because of the variety of
seed we planted?

Dawid poses the general question in these words: “We are
interested in whether, for the specific unit wg, the applica-
tion of ¢ ‘caused’ the observed response.” He lets us know,
with the quotation marks around caused, that he is asking
a silly question. Unfortunately, the quotation marks do not
save him from becoming entangled in silly answers.

Imagine that there was a categorical rule about the effect
of aspirin on headaches:

» At least two aspirin with at least a cup of water: the
headache goes away.
+ Less aspirin or less water: the headache persists.

I take the requisite aspirin with the requisite water. My
headache goes away. Is it because I took aspirin? I under-
stand the causal structure perfectly, but cannot answer the
question with a simple yes or no.

It is equally silly to isolate a single action and ask whether
it is the cause when the action’s effect depends on some-
thing that is settled later—what Dawid calls a “determining
concomitant.” Figure 2 shows a very simple example. I am
required to bet $1 on the outcome of a toss of a coin. I
decide to bet on heads, the.coin lands tails, and so I loose
my $1. Did my choice of heads “cause” my handing over
$1 instead of receiving $1?

Here again, the causal structure is perfectly understood.
The coin is fair; the chance of its landing heads is 50%
regardless of how I bet. The outcome Y (which will be ei-
ther +1 or —1) is completely determined by the treatment
T (which will be either “bet on heads” or “bet on tails”)
together with the determining concomitant D (which will
be either “coin lands heads” or “coin lands tails”). I under-
stand exactly what happened. But this does not enable to
me to give a yes or no answer to the question whether T
“caused” Y.

Bet $1 on heads Bet $1 on tails T

Coin

lands D

Coin
lands
heads

Figure 2. A Determining Concomitant.
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Had I instead bet on tails, would the toss have come out
the same way? What is gained by asking this question or
by making up an answer to it? One can make up what-
ever answer one wants. If one assumes that this particu-
lar determining concomitant D comes out the same in the
counterfactual world where I bet on tails, then I win in
that world. If I choose a different determining concomitant
D', whose possible values are “coin lands the way I bet”
and “coin lands opposite the way I bet,” and assume that
it comes out the same in the counterfactual world, then I
lose in that world. What is the point or content of either
assumption?

Dawid sees the arbitrariness clearly and so arrives at this
formulation: “The essence of a specific causal inquiry is
captured in the largely conventional specification of what
we may term the context of the inference, namely, the col-
lection of variables that is is considered appropriate to re-

gard as concomitants...” Specification of the context, he
concludes, “is vital to render causal questions and answers
meaningful.”

In practice, I am willing to trust Phil Dawid to take the
air out of silly questions by showing how they depend on
the arbitrariness of the choice of a context. But I distrust
his formulation, for it seems to say that all singular causal
questions partake in this silliness—that all causal answers
depend on the arbitrary specification of concomitants.

5. ASKING THE RIGHT QUESTION

My father quit smoking in the early 1960s, after using
cigarettes heavily for more than 20 years. He died in 1997,
at age 75. How long would he have lived had he continued
smoking? How much did his quitting smoking change his
life expectancy?

These are both questions about the causes of an effect.
They are both questions about singular causation, and they
are both questions about my father’s quitting smoking as a
cause of his observed longevity. The first is a wrong ques-
tion; it will remain a silly question no matter how many dif-
ferent concomitants Phil Dawid tries out on us. The second
is a right question. It is a scientific question, which comes
with its own context and requires no arbitrary specification
of concomitants by Dawid or anyone else.

In the United States, litigation continues between the to-
bacco industry and the federal government, which seeks
compensation for the costs of caring for people whose
health was damaged by smoking. The tobacco companies
are held liable on the grounds that they took actions to in-
crease cigarette consumption despite their own knowledge
of smoking’s ill effects. To measure the effect of these ac-
tions, we can ask a scientific question:

How much was the expected government expense on caring
for the ill increased by the actions of the tobacco companies?
Alternatively, we can ask a counterfactual question:
How much less would the government have spent on caring
for the ill had the companies had not taken these actions?

The scientific question is very difficult. Its answer is sub-
ject to great uncertainty. The counterfactual question adds
arbitrariness to the uncertainty. An insistence on the coun-
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terfactual question will lead in the end to denial of re-
sponsibility. How much blame to place on the tobacco in-
dustry becomes not a scientific question but a purely po-
litical one: What counterfactual world does one want to
imagine?

We all indulge, in anger and regret, in counterfactual talk:
“If they had not operated, John would be alive today”; “If
I had not said that, she would not have left me”; “If I had
chosen a different publisher, my book on causality without
counterfactuals would have sold 10,000 copies.” The more
fortunate among us have someone to remind us that we are
talking nonsense. Calmer heads will remind John’s son and
widow that his length of life had the physician not operated
does not have a determinate value.

The physician’s responsibility is to compare (1) and (2)
based on the best evidence she can reasonably gather, and
to perform the operation, if she does perform it, with
expertise and care. One can ask for no more. As Jacob
Bernoulli, the inventor of mathematical probability, wrote,
De Actionum humanarum pretio non statuendum ex eventu
(Bernoulli 1713): Do not judge human action by what
happens.

Larry WASSERMAN
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Comment

In his essay, Phil Dawid takes a stand against the use
of counterfactuals in causal inference, arguing that they
are unhelpful and potentially misleading. Instead, he favors
a decision-theoretic approach. These are important issues,
and yet they are rarely discussed in the statistics literature.
I appreciate Dawid’s thoughtful article and the opportunity
to comment on it.

My view on counterfactuals is very different. I believe
that counterfactuals give the simplest and clearest explana-
tion of causality. I agree that there are potential dangers
in performing inference with models based on counterfac-
tuals. A careless user could end up trying to estimate non-
identifiable parameters. But nonidentifiability lurks in many
statistical models. Overall, I think that the advantages of
counterfactuals far outweigh their disadvantages.

1. WHY COUNTERFACTUALS ARE USEFUL

Phil Dawid concedes that counterfactuals are useful for
“... causal model building.” I wish to go further and claim
that counterfactuals are useful for developing a clear un-
derstanding of causal inference. I usually find that it is easy
to clear up most confusion about causal issues using expla-
nations based on counterfactuals. I believe this is simpler
than the proposed decision-theoretic approach.

Larry Wasserman is Professor, Department of Statistics, Carnegie Mel-
lon University, Pittsburgh, PA 15213. This research supported by National
Institutes of Health grant RO1-CA54852-01 and National Science Foun-
dation grant DMS-9803433. The author thanks Isabella Verdinelli, Sander
Greenland, and Jamie Robins for helpful comments.

Let us review the basics of counterfactuals in causal in-
ference. Suppose that the treatment variable 7 is binary
and let Y be the outcome. The counterfactuals in this case
are (Yp, Y1), where Yy is the outcome if not treated and Y;
is the outcome if treated. (Note that my notation departs
slightly from that in the article.) The set of random vari-
ables is V = (Y, Y1,7,Y"), where the observed outcome Y
is related to the other random variables by the consistency
relation Y = TY, + (1 — T)Y,. Evidently, if T'= 1, we see
Y; but not Yp. Similarly, if 7' = 0, we see Y, but not Y;. To
me, both Y5 and Y; are nonetheless well defined, a point I
return to in Section 3.

The average causal effect is defined by 0 = E(Y7) —
E(Y}), which does not equal the association oo = E(Y|T =
1) — E(Y|T = 0). The adage “association is not causa-
tion” is thus easily rendered mathematically precise. More-
over, one can show that in an observational study, 6 is
not identifiable. If we randomize the assignment of treat-
ment, then 7' is independent of (Yp, Y1) and we have that
0 = E(V) — E(Y;) = EWI|T = 1) - E(Y|T = 0) =
E(Y|T =1) - E(Y|T =0) = o. Hence with counterfactu-
als, it is easy to show that randomization makes the causal
effect equal to an identifiable parameter «.

As a further example, consider how easily Simpson’s
paradox can be explained using counterfactuals. In addi-

(© 2000 American Statistical Association
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tion to the random variables (Yp, Y1, 7,Y), consider also a
covariate Z, such as sex. It is possible to construct a joint
distribution P such that

PY=1T=1)>PY =1T=0) (1)
and yet
PY=1T=1,Z=2)
<PY=1T=0,Z=x%) Yz (2)

So far, there is no paradox. But if we interpret (1) to mean
“the treatment is better than the control” and interpret (2) to
mean “the control is better than the treatment for each sex,”
then we do have a paradox. The problem is the translation of
the equations into English statements. In fact, using coun-
terfactuals, “the control is better than the treatment for each
sex” corresponds to P(Y; = 1|Z = 2) < P(Yp = 1|Z = 2)
for all z. It then follows that P(Y; = 1) = > P(Y; =
11Z =2)P(Z =2) <>, PYo =12 = 2)P(Z = z) =
P(Yy = 1) and hence that “the control is better than the
treatment.”

As further evidence of the pedagogical value of coun-
terfactuals, consider the two problems, labeled I and II
in the article, which are called the effects of causes and
causes of effects. The difference between the two is again
transparent using counterfactuals. The first question refers
to Pr(Ys = 1) — Pr(Yp = 1) and the second refers to
Pr(Yp = 0/T = 1,Y = 1). In a randomized study, the first
is identifiable, and the second is not.

2. IMPLICIT USE OF COUNTERFACTUALS

As T discuss in Section 4, some parameters of interest
are not identifiable and so cannot be estimated from data
alone. But in some cases, we can bound the parameter of
interest. An excellent example is the bounds found by Man-
ski (1990), Robins (1989), and Balke and Pearl (1997) for
causal effects in clinical trials with imperfect compliance.
Balke and Pearl prefer directed acyclic graphs to coun-
terfactuals, but a close examination of their proof shows
that their calculations are essentially based on a counterfac-
tual representation. Generally, it is easier to bound causal
parameters using counterfactuals. In Section 10.2, Dawid
notes that he is able to derive these inequalities without
counterfactuals. Maybe so—but he already knew the an-
swer! The more important question is whether most people
could have derived the bounds without counterfactual rea-
soning.

3. THE PHYSICAL MEANING OF
COUNTERFACTUALS

Dawid claims that counterfactuals have no real physical
meaning, and he makes an analogy with incompatible vari-
ables in quantum mechanics. I am no expert in quantum
mechanics, but I think that such an analogy is potentially
misleading. Our inability to measure two incompatible vari-
ables simultaneously is built into the mathematics of quan-
tum mechanics. There is no idealized experiment in which
we could observe both variables. This is a deep, mathe-
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matical fact about quantum mechanics. The limitations on
observing both counterfactuals in, say, a medical study, are
much different. These limitations are mainly practical lim-
itations (carryover effects of the aspirin, etc.) and, at least
in principle, I can imagine an idealized experiment where
I can almost observe both Yy and Y;. I do not see this as
being mathematically precluded in the same way as it is in
quantum mechanics.

4. IDENTIFIABILITY

Recall that the set of random variables is V =
(Yo, Y1,T,Y), where Y = V1T + Yy(1 — T), the causal ef-
fect is § = E(Y;) — E(Yp), and the association is o =
EY|T =1) - E(Y|T = 0). Let P denote the joint law
of V. It can be shown that « is identifiable assuming that
P(T = 1)P(T = 0) > 0. In a randomized study, 6 = «,
and hence 6 is also identifiable. In an observational study,
one can show that @ is not identifiable (without further
assumptions), but identifiable bounds can be placed on 6.
On the other hand, even in a randomized study, there are
other functionals of P that are not identifiable, such as
Pr(Yy, = 1|Y; = 1). I think it is the lack of identifiabil-
ity that leads Dawid to claim that counterfactuals are po-
tentially misleading. But lack of identifiability is possible
in any statistical problem. It is always important to ensure
that the quantities being estimated are identifiable and, if
not, to state identifiable bounds on the quantity of inter-
est. In this sense, counterfactuals are no different than any
statistical model. In fact, counterfactuals actually help, be-
cause they allow one to rigorously prove what is and is not
identifiable.

5. CONCLUSION

Dawid has raised a host of interesting issues. Statisticians
often shy away from causation. I hope that this article will
encourage statisticians to delve further into causation.

As I have stated, my opinion about counterfactuals is
that they are useful, even crucial, for obtaining a clear un-
derstanding of causation. As long as we remain vigilant
about nonidentifiability, counterfactuals are not dangerous.
In his conclusion, Phil states that “the counterfactual ap-
proach to causal inference is essentially metaphysical, and
full of temptations to make ‘inferences’ that cannot be justi-
fied on the basis of empirical data and are thus unscientific.”
I suggest that we continue to use counterfactuals but edu-
cate users to resist the temptation to indiscriminantly make
inferences for nonidentified parameters in all models, not
just causal models.
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A. P. DAWID

Rejoinder

I am happy that my article has received serious attention
from such an impressive range of deep-thinking individu-
als. Rather than deal with each discussant individually, I
have organized this rejoinder around central and recurring
themes.

1. MORE GENERAL CAUSAL MODELING

I largely restricted my analysis to the simple case of ho-
mogeneous populations. Shafer would like me to have ex-
plored more complex predictive structures; he would also
like “acts of nature,” as well as of external agents, to
count as causes. Robins and Greenland consider that I have
avoided the main point by excluding observational studies
and related complications. Cox complains that the search
for “some understanding of a phenomenon” hardly figures
in my account. Casella and Schwartz emphasise the impor-
tance of the reference set in providing an appropriate frame
of inference.

I am grateful to these discussants for prompting me to
think more deeply about these valid and important con-
cerns. To address them, I have to accept that a vital aspect
of causal modeling and inference is the identification of
modular subprocesses, persisting across and linking a vari-
ety of changing circumstances. This may require complex
scientific investigations and understandings.

Consider an observational study. One is not interested in
making predictions about the behavior of a future unit ex-
changeable with those in the study, but rather for a new
unit subjected to one or a number of possible interven-
tions. However, unless one can somehow link the behav-
iors of units under the observational and the interventional
regimes, no useful inference is possible. Most of the dis-
cussants make this link using “potential responses,” defined
in terms of a hypothetical intervention experiment and im-
plicitly assumed to continue to have meaning under ob-
servational conditions. Pearl extends this idea using func-
tional models. I would rather make the link by means of
a stable probabilistic mechanism, assumed to be the same
in both the observational and the interventional settings,
describing the distribution of a response Y given some
suitable covariate K and treatment ¢ (see my Sec. 8.1).
Notwithstanding the preferences of Wasserman, Robins and
Greenland, and Rubin, I consider that the benefits of ran-
domization (for example) can be explained more meaning-
fully and convincingly in terms of the independence of T'
and K, rather than the independence of T and the meta-
physical collection of all potential responses. Similarly,
fully adequate treatment can be given for all other prob-
lems of observational studies, including Simpson’s para-
dox (Dawid 1979) and the assumption of ‘“no unobserved
confounders.” I am currently developing these ideas and
analyses, and hope to present my case for them in due
course.

To clarify the aforementioned notion of “stable proba-
bilistic mechanism,” I need to say more about my concep-
tion of probability. All of the discussants except Shafer and
Robins and Greenland seem to be out-and-out Laplacian
determinists, for whom nothing short of a functional model
relating outputs to inputs will do as a description of na-
ture. And all discussants seem to believe that the relevant
relationships between variables, be they deterministic or
stochastic, are genuine features of the external world, rather
than of the models we choose to describe the world, and that
only models incorporating those features make sense.

My own attitude is very different. Although at heart I too
am a Laplacian determinist, I do not conclude that one must
model nature as behaving deterministically; the level of de-
tail required to make sense of such a model is, typically,
simply not appropriate to the kind of question that we aim
to address. I see “probability” as an inescapably theoreti-
cal term, with only an indirect connection to the empirical
world. I would judge the empirical success of a probabilistic
model by means of the calibration criterion (Dawid 1982),
which requires that certain averages of probabilities calcu-
lated from the model coincide, in the long run, with cor-
responding relative frequencies observed in the world. An
essential ingredient qualifying this criterion, however, is the
level of detail that the model is intended to express, and that
in turn determines just which collections of probabilities it
is appropriate to average. I made this idea (there termed
the information base) precise in an earlier article (Dawid
1985), where I essentially showed that for any given infor-
mation base, there will be just one “correct” assignment of
probability values to the observed events—but this will typ-
ically vary with the information base used. In particular, it
is possible that at some sufficiently refined level of detail,
those “correct” probabilities are all 0 or 1, corresponding to
a fully deterministic description, whereas at a more inter-
esting or realistic level of detail, the “correct” probabilities
are noncategorical. So, unlike Robins and Greenland, and
Shafer, I cannot consider such concepts as “pure random-
ness,” “objective probability,” or “all nontreatment causes
of the outcome” as absolutes, but rather as meaningful only
relative to a specified information base.

The concept of information base is closely related to, but
not identical with, that of “context” in Section 14 of my
article. For example, for inference about effects of causes
in the restricted context of the completely homogeneous
population, as introduced in my Section 5, the basic model
provides for a stable probabilistic dependence of outcome
on treatment alone. As long as future treatment decisions
will be restricted to new units drawn from the same ho-
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mogeneous population, with no observation of any further
properties of those units, there is no necessity to introduce
any more detail into the modeling. As soon as these condi-
tions fail, a more detailed model, perhaps involving covari-
ates, will be required to relate past and future situations.
However, it will make no significant difference if one does
build and use models incorporating an unnecessarily refined
level of detail, because one will just end up averaging over
the unused deeper levels (as in Case 2 in my Sec. 8).

2. POSITIVISM

Casella and Schwartz claim that Popperian positivism is
out of fashion among philosophers, whereas counterfactual
analysis is “in.” I trust, however, that my arguments will
be considered on their own merits, rather than on whether
they are fashionable.

Casella and Schwartz are also wrong to confuse Jeffreys’s
law with the likelihood principle. Example 3 of Dawid
(1984) illustrates Jeffreys’s law in a purely predictivist, non-
causal setting. I hope that this helps clarify the issue.

Pearl says: “If our conclusions have no practical conse-
quences, then the sensitivity to invalid assumptions is totally
harmless, and Dawid’s warning is empty. If, on the other
hand, our conclusions do have practical consequences, then
the sensitivity to assumptions automatically makes those
assumptions testable, and Dawid’s warning turns contradic-
tory.” I am in total agreement with this, as with his state-
ment that “many counterfactual modeling assumptions do
have testable implications.” As long as attention is confined
to such testable aspects, no problem arises. My point is
that the models I criticize also have untestable implications,
and that (unless one takes great care) it is all too easy to
use them to make “inferences” that are sensitive to purely
arbitrary and untestable choices that may be made for in-
gredients in these models. (The issue is not exactly that of
identifiability in the usual technical sense).

Casella and Schwartz have misunderstood my use of the
term “fatalism.” In a counterfactual context, this goes way
beyond the “simple realist” view that the world is just out
there, to embrace the idea that there are many parallel
worlds just out there, each waiting to be conjured into ex-
istence by some independent agent’s choice of action. This
conception is neither simple nor realist.

3. INSTRUMENTALISM

As long as counterfactual models are used only instru-
mentally, in accordance with Jeffreys’s law, for empirically
meaningful purposes, my objections to them are reasonably
muted. Although I do say in the article that “I remain to be
persuaded” of their usefulness for inferential purposes, I
cannot definitively rule this out.

Wasserman, and Robins and Greenland, essentially con-
fine counterfactual models to instrumental use, arguing that
it is merely necessary to ensure that one does not attempt
inference about nonidentifiable (or, more correctly, empir-
ically nondeterminable) aspects of the model. They regard
it as a selling point for counterfactual modeling that it al-
lows one to make this distinction between its terms. Well,

445

maybe so. But it is a distinction that has eluded some ex-
tremely able statisticians, such as Neyman, and Wilk and
Kempthorne, and has many extremely subtle aspects (as dis-
cussed, for example, at the end of my Sec. 9.1). I would pre-
fer to build on firmer ground than this, using models that
do not allow empirically meaningless statements and infer-
ences, whenever this is possible (which I currently believe
is always).

Cox points out that a counterfactual model incorporating
TUA implies the observable property that the distributions
in different treatment groups differ only by translation, and
regards this as a good reason to care about that property. But
if the translation property holds for one scale of measure-
ment, it will not do so for another (e.g., after taking loga-
rithms), and it beggars belief that I have been lucky enough
to find the unique scale on which this property holds. Or
if one works with counterfactuals, why should I imagine
that I have found the unique scale on which TUA holds?
In either case, models such as these need to be regarded as
crude jobbing assumptions, rather than believable assertions
about reality.

Together with Cox (and perhaps Hume), Casella and
Schwartz regard the deterministic formulation of TUA as
“just a convenient simplification,” the real action being at
the population-average level. It is certainly true that if one
is careful, one can do sensible analyses at this level using
a model at the individual level that one does not even pre-
tend to believe. If this approach could never lead one into
trouble, then I would have no real objection. However, in
the light of the arguments in my Sections 9.1 and 9.2, I feel
that it passes over treacherous quicksands.

Cox and Pearl argue that a rigorous positivist approach
would have excluded many of the most important and
successful scientific theories and advances. Casella and
Schwartz observe that features such as elegance and sim-
plicity are important in a theory (although they miss the
irony in their extract from my 1976 Barndorff-Nielsen dis-
cussion). Certainly it has been fruitful to incorporate terms
for unobserved entities, such as quarks, into scientific theo-
ries. Sometimes these terms are purely instrumental, allow-
ing for a simpler and more elegant reformulation of a the-
ory, without any observable consequences. Sometimes they
widen the scope of application of the theory. And some-
times they allow one to make new predictions, which can in
principle be checked. However, I do not feel that the coun-
terfactual approach to causal inference has, as yet, provided
any of these advantages.

These discussants implicitly suppose that counterfactual
language is strictly richer than decision-analytic language.
Pearl says “Giving up this richness is the price we would
pay for Dawid’s insurance.” I would instead regard this ad-
ditional “richness” as a dangerous embarrassment of riches,
as the only new possibilities for “inference” that it opens
up have no empirical content and should be avoided. How-
ever, in some respects decision-analytical language is richer
than counterfactual language. For example, as soon as one
posits the existence of “the value that Y would take were the
unit to receive treatment ¢,” one has constructed a rigid and
unbreakable link between observational and interventional
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situations. When this is not appropriate, a counterfactual de-
scription becomes impossible. A decision-analytic approach
can model much more flexible relationships between these
situations without difficulty.

4. PARTIAL COMPLIANCE

Pearl and Wasserman dispute my claims in Section 10.2
that counterfactuals are unnecessary and unhelpful for an-
alyzing the problem of imperfect treatment compliance.
Wasserman’s question “whether most people could have de-
rived the bounds without counterfactual reasoning” is (if not
itself counterfactual) of no logical importance. The point is
that there are mathematical techniques, at least as simple
and straightforward as those used by Balke and Pearl, that
produce the required inequalities as outputs without requir-
ing counterfactuals as inputs. Pearl’s assertion that “when
we examine the conditional probabilities that achieve those
bounds, we find that they represent subjects with determin-
istic behaviour” would be of doubtful significance if true,
but is in any case false, as I have shown by a simple coun-
terexample that Pearl has not disputed. Further details of
both these points will be submitted for publication in due
course.

5. COMPETING RISKS

Rubin and Robins and Greenland both raise the same
problem of causal inference in a competing risks frame-
work. Both contributions argue that some kind of counter-
factual modeling (perhaps not deterministic) is required to
yield “meaningful causal contrasts,” even in a fully random-
ized setting when we care only about effects of causes. I am
not sure that I have fully absorbed the Robins—Greenland
analysis, which proceeds through several stages of refine-
ment, starting with, but rapidly leaving behind, that sug-
gested by Rubin. My own attempt at understanding their
final suggestion, for the “fully stochastic” case, leads to
b, = E{E(Z|Y = 1,K,t) — E(Z|Y = 1,K,c)}, where
K denotes the covariate (“level of detail”) conditional on
which the assumption of “pure randomness” for the Y’s
is being invoked. This can be estimated from experiments
in which K is measured, but its value will depend on the
specification of K, which I find troubling. (As I have at-
tempted to explain in Sec. 1 here, I cannot accept the idea of
an ultimate, or uniquely appropriate, level of detail, which
might impart unambiguous “objectivity” to the parameters
(0:,0.) figuring in their account; and even if I could, I would
have no idea how to make meaningful statements, or ex-
press meaningful opinions, about them.) In particular, in
the fully randomized setting I am not sure what considera-
tions should prevent me from simply taking K to be trivial,
thus obtaining ®;. = F(Z|Y = 1,t) — E(Z]Y = 1,c¢)—at
any rate, this is easily estimated.

Both the Rubin and Robins—Greenland approaches lead
to inferences sensitive to arbitrary and untestable features
of their counterfactual models, as well as to arbitrary mag-
ical ingredients (such as “objective probabilities”) in fairy
stories cleverly disguised as mathematics. They thus fall
squarely into my “goat” category. (For the record, and us-
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ing the Robins—Greenland notation, my own attitude is that,
as there is no difficulty in determining an empirically mean-
ingful probability structure for the observable (Y, 7) given
treatment—even though this is defined over an unusual
space, where Z automatically takes the value ‘undefined’
whenever Y = 0—why should one create a problem where
none exists? The real problem is how to define a sensible
utility measure on this outcome space.)

6. VAGUENESS AND CLARITY

Robins and Greenland admit that counterfactuals are sub-
ject to inherent vagueness. Now there are at least three dis-
tinct ways in which vagueness might enter into causal anal-
yses. The first is because the way in which the theoretical
terms in the model are to be formally combined and ma-
nipulated has not been clearly defined or understood. Coun-
terfactual models do not usually suffer from this problem.
However, I feel that this purely mathematical clarity all too
often has been misinterpreted as all that is required, when
instead it is the clarity of the relationship between the the-
ory and the world that is of far more importance.

A common cause of vagueness at this interpretive level
is simple sloppiness: not making clear the intended rela-
tionship between terms in the model and features of the
external world, or questions being put to the world. Vague-
ness of this sort is easily overcome. Shafer’s example, of the
difficulty of identifying the causal effect of taking aspirin
when the outcome also depends on the taking of water, is
relevant. Questions of the type “was it because . ..7” are just
too vague to be meaningful, and need to be pinned down
further by rephrasing the causal query in whatever way ap-
pears most relevant to situation at hand (e.g., one might
decide to compare the actual outcome with that pursuant to
taking the water without the aspirin).

The third, and most insidious, form of vagueness is when
it is simply not logically possible to give a clear external in-
terpretation for some of the terms in the models. I find this
vagueness pervading most talk of “potential responses,” and
particularly apparent in the analyses of the competing risks
problem in Section 5 here. One does not have to be a card-
carrying logical positivist to ask: “What exactly is it that
you think you are talking about?” I am left quite breathless
by Robins and Greenland’s conclusion (in the face of co-
gent contrary evidence that they themselves have presented,
both here and elsewhere) that counterfactuals constitute “a
powerful tool for eliminating vagueness.”

7. CAUSES OF EFFECTS

I am surprised at how little of the discussion relates to my
suggestions for inference about “causes of effects,” which
I had expected to be the most controversial. Perhaps this is
because, as Shafer points out with some disgust, my analy-
sis here already concedes a good deal to the counterfactual
school.

I am puzzled by Pearl’s account of what he understands
by counterfactuals. Like me, he seems to care that our the-
oretical inferences be closely linked to the empirical world.
This leads him to interpret his @y in terms of a prediction
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of the response to aspirin in the next headache episode,
given information about what happened in the current one.
I have no objection to thinking about this, and do not con-
sider  that there is anything counterfactual about it. I won-
der if the other discussants do? My own understanding of a
counterfactual outcome is that it refers to the same unit (in
this case, headache episode) that has already been observed,
under (purely hypothetical) different treatment conditions.
Pearl attempts to link these two distinct ideas by means of
an assumption that “a person’s characteristics do not change
over time” (this is related to what I have termed “unifor-
mity”). Are we to infer that all my headaches will respond
in exactly the same way to the same treatment? This as-
sumption is indeed “testable,” and not just “in principle.” I
would normally expect it to be falsified. How would Pearl
proceed then?

Cox does not see the need for a sharp distinction between
the treatments of effects of causes and of causes of effects.
He draws attention to a number of practical differences, but
I do not see that these are relevant at the more philosophical
level of my own treatment. Put simply, at this level the fun-
damental difference is that inference about causes of effects
is necessarily sensitive to arbitrary assumptions about the
joint distribution of the metaphysical collection of poten-
tial responses, whereas these can be avoided for inference
about effects of causes.

Shafer is the only discussant to seriously address my ten-
tative suggestions regarding inference for causes of effects,
and he is merciless in searching out their weak points and
driving a dagger into them. The more I think about these
issues, the more I am tempted to accept Shafer’s strictures
and disown my own suggestions! But perhaps something
can be rescued.

Because the specification of “context” is essential to the
implementation of my approach, if that approach is to have
any applicability and usefulness it must be supplemented
with rules and reasons for selecting one context rather than
another. Those reasons will normally combine both scien-
tific understanding of the world and more “political” con-
cerns.

With regard to the scientific aspects, I would usually be
happy to answer “yes” to the question: “Had I brought my
umbrella with me today, would it still have rained?,” be-
cause, even though meteorology is a very inexact science,
I believe that (notwithstanding chaos theory and the but-
terfly effect) enough is known about its uniformities to
justify this assertion. When Shafer asks: “Had I instead
bet on tails, would the toss come out the same way?,’
the “obvious” answer is again “yes.” But my call might
have been delayed a little longer, the coin tosser’s grasp
on the coin might have changed, or other influential factors
might have altered. So the obvious answer is not scien-
tifically determined, but rather involves one’s own, essen-
tially arbitrary, conception of what parallel universes are
relevant.

The “political” dimension to the choice of context is
particularly clear in the case of the United States Gov-
ernment versus the tobacco industry. Shafer introduces the
counterfactual question: “How much less would the gov-
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ernment have spent on caring for the ill had the compa-
nies not taken these actions?” I agree with him that this
question compounds scientific uncertainty with nonscien-
tific arbitrariness. But (as Shafer seems to grant) there may
be nonscientific but nevertheless compelling reasons to nar-
row down that arbitrariness in particular ways. For exam-
ple, the argument has been put that had the tobacco com-
panies discouraged smoking when they first had evidence
of its dangers, more people would have given it up, leading
them to live longer and thereby end up as a greater over-
all expense on the government. There have been attempts
to have this line of argument ruled out by the courts. In
such a case one would be obliged, for legal rather than sci-
entific reasons, to attempt a comparison of the health-care
expenditure in the real world with that in a parallel world in
which (say) people all lived for the same length of time, but
did not suffer from smoking-related illness. If one can de-
scribe this intended alternative world clearly enough, spec-
ifying exactly which variables in the two worlds should be
regarded as identical and which as conditionally indepen-
dent, one can proceed to make inference about causes of
effects. But it must be very clear just how far such inference
is from being based on scientific understanding or interest
alone.

Past Conditionals. Shafer contrasts the aforementioned
counterfactual question with what he terms a “past condi-
tional,” which is a historical exercise in looking forward.
The distinction is important, but I believe that both kinds
of question have their place. In thinking about the tobacco
companies’ culpability, one should try to put oneself into
their shoes at the time, and ask whether, in light of what
they then knew or could reasonably ascertain, the decisions
they made were legal, ethical, and prudent. However, condi-
tional on their culpability, their liability for damages should
depend on the (then unknown) way in which things turn out
between that time and now, in both the real and the rel-
evant counterfactual universe. One cannot always expect
to be insulated from the consequences of one’s actions,
even when one could not reasonably predict what those
would be.

8. FINAL COMMENTS

After this lengthy article, discussion, and rejoinder, it
may be helpful for the reader to attempt to plot each con-
tributor in a multivariate space of attitudes to counterfactu-
als, having the following dimensions:

Fact-Fiction. Are counterfactuals to be regarded as gen-
uine features of the external world, or are they purely
theoretical terms?

Real-Instrumental. Can any inferences based on counter-
factuals be allowed, or should they be restricted to
those that could in principle be formulated without
mention of counterfactuals?

Clear—Vague. Do counterfactual terms in a model have
a clear relationship with meaningful aspects of the
problem addressed? Can counterfactual constructions
and arguments help to clarify understanding?
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Helpful-Dangerous. Can use of counterfactuals stream-
line thinking and assist analyses, or do they promote
misleading lines of argument and false conclusions?

Clearly, I am an outlier from most of the discussants on
most of these dimensions—and I must confess that my po-
sition in the space has hardly budged at all (at any rate, in
the directions it was meant to) in response to the discussion.
I fear that my rejoinder may have an equally contrary ef-
fect on the discussants. But the interchange will have been
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worthwhile if it encourages even a few readers, coming to
these issues fresh and without preconceptions, to pay se-
rious attention to the arguments underpinning the various
views exchanged, before settling comfortably and immov-
ably into their own preferred positions on the use of coun-
terfactuals for causal inference.
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