NOTES FOR CAUSAL INFERENCE ON JAN 13TH
BY: JIN XU
18/01/2010

MAR/MNAR

There was some confusion about MAR/MNAR. The only relevance for this class is that there is an analogy with unfounding.

(defined as \(\text{Pr}(W | X, Y(0), Y(1)) = \text{unfounding Pr}(W | X) \))

Independence vs Exchangeability

\[X_1, X_2, \ldots, X_n | \pi \sim_{iid} \text{Bern}(\pi) \text{ trials} \]

\[p(X_1, X_2, \ldots, X_n | \pi) = \prod_{i=1}^{n} \pi^{x_i}(1-\pi)^{1-x_i} = \pi^{\sum_{i=1}^{n} x_i}(1-\pi)^{n-\sum_{i=1}^{n} x_i} \]

Add a prior distribution on \(\pi, g(\pi) = 1, 0 < \pi < 1 \)

\[p(X_1, X_2, \ldots, X_n) = \int p(X_1, X_2, \ldots, X_n | \pi)g(\pi)d\pi = \frac{\Gamma(\sum x_i + 1)\Gamma(n-\sum x_i + 1)}{\Gamma(n + 1)} \]

\[p(X_1, X_2, \ldots, X_n) = p(X_{i_1}, X_{i_2}, \ldots, X_{i_n}) \]

Where \(i_1, i_2, \ldots, i_n \) is a permutation of 1, 2, \ldots, n.

So, given \(\pi, X_1, X_2, \ldots, X_n \) are independent of each other, while the marginal distributions of \(X_1, X_2, \ldots, X_n \) (after averaging over \(g(\pi) \)) are not independent of each other anymore. However, \(X_1, X_2, \ldots, X_n \) are still exchangeable to each other, since \(p(X_1, X_2, \ldots, X_n) = p(X_{i_1}, X_{i_2}, \ldots, X_{i_n}) \).

Fisher’s Approach

\(H_0: Y_i(0) = Y_i(1) \) for all \(i \), this is a “sharp null hypothesis”, completely specifies outcomes.
Test Statistic
Definition of a test statistic, \(T = T(W, Y_{\text{obs}}, X) \)

\[
T = \frac{1}{N_T} \sum_{i=1, w_i=1}^{N} y_i(1) - \frac{1}{N_C} \sum_{i=1, w_i=0}^{N} y_i(0) = \frac{1}{N_T} \sum_{i=1, w_i=1}^{N} y_{i,\text{obs}} - \frac{1}{N_C} \sum_{i=1, w_i=0}^{N} y_{i,\text{obs}}
\]

Test statistic should be shown to detect "expected" alternative. Evaluating observed test statistic \(T_{\text{obs}} \): \(p \)-value = \(pr_w(T \text{ is as or more extreme than } T_{\text{obs}}) \). Compute \(T \) for every possible realization of \(W \), and use the distribution of those \(T \)'s to find \(p \)-value.

Examples
\(N=6 \) units, \(Y \) is score for cough from 1 to 6, 1 is worst and 6 is best.

<table>
<thead>
<tr>
<th>(i)</th>
<th>(y_i(0))</th>
<th>(y_i(1))</th>
<th>(y_{i,\text{obs}}(0))</th>
<th>(y_{i,\text{obs}}(1))</th>
<th>(w_i)</th>
<th>(y_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>?</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>?</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>?</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>?</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

There is \(\binom{6}{3} = 20 \) possible \(w \) vectors

<table>
<thead>
<tr>
<th>(w)</th>
<th>(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,1,1,0,0,0)</td>
<td>8/3-5/3=1</td>
</tr>
<tr>
<td>(1,1,0,1,0,0)</td>
<td>12/3-1/3=3.67</td>
</tr>
<tr>
<td>(1,1,0,0,1,0)</td>
<td>8/3-5/3=1</td>
</tr>
<tr>
<td>(\cdots)</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>(0,0,0,1,1,1)</td>
<td>5/3-8/3=-1</td>
</tr>
</tbody>
</table>

\(\Rightarrow \) Prob Distn on \(T=Pr_w(T) \)
\(\Rightarrow \) 2-side p-values=16/20=0.8
\(\Rightarrow \) observed \(T \) is not unusual under \(H_o \), no reason to reject \(H_o \)

Confidence Intervals
can use relationship of tests + CIs to drive for \(C \), if hypothesis constant addictive trt effect \(C \)

\(H_o : Y_i(1) = Y_i(0) + C \)

Test for a grid of \(C \) values. If don’t reject \(H_o \) at 0.1, so \(C \) is in the 90% CI.

Use of covariates
create more powerful test statistic
Example redefine \(\hat{y}_i = y_i - x_i \) (x=pre-test), notice that causal effect:

\[
\hat{y}_i(1) - \hat{y}_i(0) = (y_i(1) - x_i) - (y_i(0) - x_i) = y_i(1) - y_i(0)
\]

\(H_0 \) is the same in terms of \(\hat{y}'s \)

\[
\hat{T} = \frac{1}{N_t} \sum_{i=1}^{N_t} \hat{y}_{i}^{obs} - \frac{1}{N_c} \sum_{i=0}^{N_c} \hat{y}_{i}^{obs} = \frac{1}{N_t} \sum_{i=1}^{N_t} (y_{i}^{obs} - x_i) - \frac{1}{N_c} \sum_{i=0}^{N_c} (y_{i}^{obs} - x_i) = T - (\bar{x}_t - \bar{x}_c)
\]

Neyman Approach

Statistical Science 1990, translated version of Neyman 1923, paper by Rubin

\[
T = \frac{1}{N} \sum_{i=1}^{N} (y_i(1) - y_i(0)) = \bar{y}(1) - \bar{y}(0)
\]

Population average treatment effect (ATE)
Inference for \(\tau \): test \(H_0 : \tau = 0 \) (this is not a “sharp” null hypothesis); CIs for \(\tau \)

Estimator \(\hat{\tau} \) Examine properties of \(\hat{\tau} \) (estimate of variance of \(\hat{\tau} \))

\[
\hat{\tau} = \bar{y}_{i}^{obs} - \bar{y}_{c}^{obs} = \frac{1}{N} \sum_{i=1}^{N} \left(w_i y_i(1) \frac{N_t}{N} - (1 - w_i) y_i(0) \frac{N_c}{N} \right)
\]

\[
E_w(\hat{\tau}) = \frac{1}{N} \sum_{i=1}^{N} \left(E(w_i) y_i(1) \frac{N_t}{N} - (1 - E(w_i)) y_i(0) \frac{N_c}{N} \right)
\]

If completely randomized experiment with fixed \(N_t, N_c \)

\[
E(w_i) = N_t/N \Rightarrow E_w(\hat{\tau}) = \frac{1}{N} \sum_{i=1}^{N} (y_i(1) - y_i(0)) = \tau
\]

\[
Var_w(\hat{\tau}) = \frac{S_{\tau}^2}{N_t} + \frac{S_{c}^2}{N_c} - \frac{S_{tc}^2}{N}
\]

\[
S_{\tau}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (y_i(1) - \bar{y}(1))^2
\]

\[
S_{c}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (y_i(0) - \bar{y}(0))^2
\]

\[
S_{tc}^2 = \frac{1}{N-1} \sum_{i=1}^{N} ((y_i(1) - y_i(0)) - (\bar{y}(1) - \bar{y}(0)))^2
\]

We don’t and can’t know \(S_{tc}^2 \).
Example 2 units

\[\tau = \frac{1}{2} ((y_1(1) - y_1(0)) + (y_2(1) - y_2(0))) \]

\[\hat{\tau} = \begin{cases} y_1(1) - y_2(0), & \text{with prob 1/2,} \\ y_2(1) - y_1(1), & \text{with prob 1/2.} \end{cases} \]

(1a)

(1b)

\[\text{Var}_w(\hat{\tau}) = \frac{1}{2} (y_1(1) - y_2(0) - \tau)^2 + \frac{1}{2} (y_2(1) - y_1(0) - \tau)^2 \]

\[= \frac{1}{4} (y_1(1) - y_2(1))^2 + \frac{1}{4} (y_1(0) - y_2(0))^2 + \frac{2}{4} (y_1(1)y_1(0) + y_2(0)y_2(1) - y_1(0)y_2(1) - y_1(1)y_2(0))) \]

3 Approaches to deal with \(\text{Var}_w(\hat{\tau}) \)

1. If assume constant trt effect, then \(S^2_{tc} = 0 \) \(\Rightarrow \text{Var}_w(\hat{\tau}) \approx \frac{S^2_c}{N_c} + \frac{S^2_t}{N_t} \), conservative

2. \(S^2_{tc} = S^2_c + S^2_t - 2\rho_{tc}S_cS_t \), \(\rho_{tc} = \text{correl of potential outcomes}. \)

Smallest value of \(S^2_{tc} \) corresp to \(\rho = 1 \) \(\Rightarrow \) largest possible value of \(\text{Var}(\hat{\tau}) \)

\(\Rightarrow \) assume \(\rho = 1 \)

\(\Rightarrow \text{Var}_w(\hat{\tau}) = \frac{S^2_c}{N_c} + \frac{S^2_t}{N_t} - \frac{(S_c - S_t)^2}{N} \), conservative!

3. A pooled approach (see next time).