Statistics 67 Introduction to Probability and Statistics for Computer Science

Lecture notes for Statistics

Hal Stern University of California, Irvine sternh@uci.edu

From Probability

- To this point
 - probability as a measure of uncertainty
 - probabilities for events
 - * axioms, probability rules, conditional probability, Bayes' rule
 - random variables as quantities of interest in an uncertain environment
 - probability distributions as descriptions of possible values for a random variable along with an assessment of how likely each value is to occur
 - * discrete/continuous distributions
 - * univariate/multivariate distributions
 - * joint, marginal, conditional distributions
 - * expected values (mean, variance, covariance)
 - sampling/simulation as ways of studying a population or distribution

.... to Statistical Inference

- Goal for remainder of quarter is to use what we know about probability to help us analyze data in scientific studies
 - use a sample from the population to learn about characteristics of the population
 - a common approach is to assume that observed sample are independent observations from a population model (e.g., Poisson or normal)
 - estimate the parameter(s) of the assumed model(e.g., normal mean or binomial proportion)
 - check fit of the assumed probability model
 - draw conclusions based on the estimated parameters (if appropriate)

- Importance of how data are obtained
 - we don't discuss in detail here how our data are collected
 - for statistical methods to be valid we need the sample to be representative of the population we are studying
 - typically this involves the use of randomness or chance in selecting the sample to avoid biased selections
 - a simple random sample is the most basic approach and that is what we assume
 - more sophisticated methods (multistage sampling, cluster sampling) can be accommodated

- Estimand the quantity being estimated
- We can think of two types of estimands
 - Finite population summaries
 - * mean of a finite population
 - * variance of a finite population
 - Parameters in a mathematical model of a population (can think of as an infinite population)
 - * μ or σ^2 in a Normal distribution
 - * λ (mean = variance) of Poisson distribution
 - * p in a binomial distribution
- For the most part we focus on parameters in a mathematical model of a population

• Basic Approach

– suppose θ is a parameter that we are interested in learning about from a random sample

$$X_1, X_2, \ldots, X_n$$

- e.g., θ might be the mean of the population that we are interested in (μ_X)
- $\hat{\theta}$, a point estimator, is some function of the data that we expect will approximate the true value of θ
- e.g., we might use $\hat{\mu} = \bar{X}$ to estimate the mean of a population (μ_X)
- once we collect data and plug in we have a point estimate \bar{x}
- point estimator is the random variable (or function)
 and point estimate is the specific instance

• Two key questions are

- 1. How do we find point estimators?
- 2. What makes a good estimator?

Point Estimation - basics

- Assume we have a sample of independent random variables $X_1, X_2, ..., X_n$, each assumed to have density f(x)
- We call this a random sample (or iid sample) from f(x)
- Assume the density is one of the families we have considered which depends on one or more parameters θ ; we usually write the density as $f(x|\theta)$
- Goal is to estimate θ . Why?
 - $-f(x|\theta)$ is a description of the population
 - $-\theta$ is often an important scientific quantity (e.g., the mean or variance of the population)

Method of moments

- Recall $E(X^j)$ is the jth moment of the population (or of the distribution); it is a function of θ
- The jth moment of the sample is $\frac{1}{n} \sum_{i} X_{i}^{j}$
- We can equate the sample moment and the population moment to identify an estimator
- Suppose that there are k parameters of interest (usually k is just one or two)
- Set first k sample moments equal to first k population moments to identify estimators
- This is known as the **method of moments** approach

Method of moments

- Example: Poisson case
 - suppose X_1, X_2, \ldots, X_n are a random sample from the Poisson distribution with parameter λ
 - recall that $E(X_i) = \lambda$
 - the method of moments estimator is obtained by taking the first sample moment $(\bar{X} = \frac{1}{n} \sum_i X_i)$ equal to the first population moment λ to yield $\hat{\lambda} = \bar{X}$
 - $Var(X_i)$ is also equal to λ so it would also be possible to take the sample variance as an estimate of λ (thus method of moments estimates are not unique)

Method of moments

- Example: Normal case
 - suppose X_1, X_2, \ldots, X_n are a random sample from the normal distribution with parameters μ and σ^2
 - recall that $E(X_i) = \mu$ and $E(X_i^2) = \sigma^2 + \mu^2$
 - to find method of moments estimators we need to solve

$$\frac{1}{n} \sum_{i=1}^{n} X_i = \mu$$

$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 = \sigma^2 + \mu^2$$

- results:

$$\hat{\mu}_{mom} = \frac{1}{n} \sum_{i=1}^{n} X_i = \bar{X}$$

$$\hat{\sigma}_{mom}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

- Method of moments summary
 - easy to use
 - generally not the best estimators
 - some ambiguity about which moments to use

Maximum likelihood estimation

- The density of a single observation is $f(x|\theta)$
- The joint density of our random sample is $f(X_1, X_2, ..., X_n | \theta) = \prod_{i=1}^n f(X_i | \theta)$ (recall the X_i 's are independent)
- This joint density measures how likely a particular sample is (assuming we know θ)
- Idea: look at the joint distribution as a function of θ and choose the value of θ that makes the observed sample as likely as possible
- Likelihood function = $L(\theta|x_1,\ldots,x_n) = f(x_1,\ldots,x_n|\theta)$
- Maximum likelihood estimator $\hat{\theta}_{mle}$ is the value of θ that maximizes the likelihood function

Maximum likelihood estimation

- To find the MLE:
 - solve $dL/d\theta = 0$ to identify stationary point
 - check that we have a maximum (can use the 2nd derivative)
 - it is often easier to maximize the logarithm of the likelihood
 (which is equivalent to maximizing the likelihood)
 - in complex models it can be hard to find the maximum

Maximum likelihood estimation

- Example: Poisson case
 - suppose X_1, X_2, \ldots, X_n are a random sample from the Poisson distribution with parameter λ
 - the joint distribution is

$$f(X_1, \dots, X_n | \lambda) = \prod_{i=1}^n \frac{e^{-\lambda} \lambda^{X_i}}{X_i!}$$

- the likelihood function is

$$L = f(X_1, \dots, X_n | \lambda) = e^{-n\lambda} \lambda^{\sum_i X_i} / (\prod_i X_i!)$$

- then

$$LogL = \sum_{i} X_{i} \ln \lambda - n\lambda - \ln(\prod_{i} X_{i}!)$$

$$dLogL/d\lambda = \sum_{i} X_{i}/\lambda - n = 0$$

which implies that $\hat{\lambda} = \bar{X}$ is the maximum likelihood estimator

- second derivative of log likelihood confirms this estimate attains a maximum of the likelihood
- maximum likelihood and method of moments give the same estimator here

Maximum likelihood estimation

- Example: normal case
 - suppose X_1, X_2, \ldots, X_n are a random sample from the Normal distribution with mean μ , variance σ^2
 - $LogL = constant \frac{n}{2}\log\sigma^2 \frac{1}{2\sigma^2}\sum_{i=1}^n (X_i \mu)^2$
 - need to solve

$$\partial Log L/\partial \mu = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu) = 0$$

$$\partial Log L/\partial \sigma^2 = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (X_i - \mu)^2 = 0$$

- results (same estimators as method of moments)

$$\hat{\mu}_{mle} = \frac{1}{n} \sum_{i} X_{i} = \bar{X}$$

$$\hat{\sigma}_{mle}^{2} = \frac{1}{n} \sum_{i} (X_{i} - \bar{X})^{2}$$

- Maximum likelihood summary
 - more complex than method of moments
 - statistical theory (not covered) suggests that maximum likelihood estimates do well (especially with lots of data)

Properties of point estimators

- Now have two methods for finding point estimators
- What makes for a good estimator?
 - suppose $T(X_1, \ldots, X_n)$ is an estimator of θ
 - traditional approach to statistics asks how well T would do in repeated samples
 - key to studying estimators is to note that T is itself a random variable and we can study properties of its distribution
 - examples of good properties include
 - * lack of bias
 - * low variance

Properties of point estimators

- Unbiasedness
 - estimator T is unbiased for θ if $E(T) = \theta$
 - unbiased means estimator is "right on average"
 - no guarantee that the estimate in one sample is good but unbiasedness tells us the estimator does well on average
 - example: in the normal case

$$E(\bar{X}) = \frac{1}{n} \sum_{i} E(X_i) = \mu$$

so \bar{X} is an unbiased estimate for μ

- Variance (Var $T = E(T E(T))^2$)
 - suppose we have two unbiased estimators
 - we should prefer the one with low variance
 - but low variance by itself is of limited use for example $\hat{\theta} = T(X_1, \dots, X_n) = 6$ (estimator always estimates 6 regardless of the data) has low variance but will be a poor estimate if θ is far from 6

Properties of point estimators

- Mean squared error
 - natural to ask how well T does at estimating θ
 - a difficulty is that we need to know θ in order to evaluate this
 - MSE = $E(T \theta)^2$ is one way to judge how well an estimator performs
 - MSE depends on θ but we may find that one estimator is better than another for every possible value of θ
 - it turns out that $MSE = bias^2 + variance$ (where $bias = E(T) - \theta$)
 - this yields ... a bias-variance tradeoff
 - consider the example of estimating the normal mean
 - * X_1 is an unbiased estimator but has a lot of variance
 - * \bar{X} is an unbiased estimator but has less variance (dominates X_1)
 - * T=6 (a crazy estimator that always answers 6!!) has zero variance but lots of bias for some values of θ

Properties of point estimators

- Large sample properties
 - natural to ask how well T does in large samples
 - consistency estimate tends to the correct value in large samples
 - efficiency estimate has smallest possible variance of any estimator in large samples
 - turns out that maximum likelihood estimators have these good large sample properties

Bayesian estimation

- There is one alternative approach to point estimation that we introduce
- It differs from everything else we've done in that it allows us to use information from other sources
- Related to Bayes Theorem so known as Bayesian estimation
- Motivation
 - suppose we want to predict tomorrows temperature
 - a natural estimate is average of recent days temperatures (this is like using \bar{X})
 - we have other knowledge (typical Southern
 California weather at this time of year)
 - natural to wonder if an estimator that combines information from history with current data will do better

Bayesian estimation

- Three components to Bayesian point estimation
 - 1. Prior distribution $g(\theta)$ describing uncertainty about θ before any data is examined
 - 2. Likelihood / data distribution $f(X_1, ..., X_n | \theta)$ summarizing the information in the data about θ (assuming we have the right distribution)
 - 3. Posterior distribution $p(\theta \mid X_1, \dots, X_n)$ is obtained by using Bayes Theorem to combine the prior distribution and the likelihood as $p(\theta \mid X_1, \dots, X_n) = \frac{f(X_1, \dots, X_n \mid \theta)g(\theta)}{f(X_1, \dots, X_n)}$. This posterior distribution describes the uncertainty about θ after combining the information in the prior distribution and in the data
 - * A final step is to define an estimator that summarizes the posterior distribution – most common to use the mean of the posterior distribution of θ as the estimator

Bayesian estimation

- Bernoulli trials example
 - assume X_1, \ldots, X_n are indep Bernoulli trials with probability of success π
 - prior distribution for π is a uniform distribution between 0 and 1 (completely unsure about π) so that $g(\pi) = 1$ for $0 < \pi < 1$
 - likelihood is $L = \pi^{\sum_i X_i} (1 \pi)^{n \sum_i X_i}$
 - turns out that the posterior distribution is a known continuous distribution (the Beta distribution with parameters $\sum_{i} X_{i} + 1$ and $n \sum_{i} X_{i} + 1$)
 - posterior mean (Bayesian point estimator) is $\hat{\pi} = \frac{\sum_{i} X_{i} + 1}{n+2}$
 - note that this is different than $\hat{\pi} = \bar{X}$ which would be the maximum likelihood estimator or the method of moments estimator
 - an interesting case: consider X=0 for which maximum likelihood estimate is $\hat{\pi}=0$ and for which Bayes estimate is $\hat{\pi}=1/(n+2)$

- Point estimation is an important first step in a statistical problem
- A key contribution of the field of statistics though is to supplement the point estimate with a measure of accuracy (e.g., the standard deviation of the estimator is such a measure)
- A common way to convey the estimate and the accuracy is through an interval estimate
- In other words we create an interval (based on the sample) which is likely to contain the true but unknown parameter value
- This interval is usually called a confidence interval (CI)
- There are a number of ways to create confidence intervals, we focus on a simple approach appropriate for large samples to illustrate the approach

Central Limit Theorem

- A key mathematical result that enables interval estimation (and other forms of statistical inference) is the **central limit theorem** (CLT)
- **Theorem:** Let X_1, \ldots, X_n be a random sample of size n from a distribution with mean μ and variance σ^2 . Then for large n, $\bar{X} = \frac{1}{n} \sum_i X_i$ is approximately normal with mean μ and variance σ^2/n .
- Note this means $(\bar{X} \mu)/(\sigma/\sqrt{n})$ is approximately standard normal
- How big does n have to be? It depends on the population distribution
 - if the population distribution is itself normal, then the CLT holds for small samples (even n = 1)
 - if the population distribution is not too unusual,
 then the CLT holds for samples of 30 or more
 - if the population distribution is unusual (e.g., very long tails), then the CLT may require 100 or more observations

Central Limit Theorem - example

- Example: The number of files stored in the home directory has mean $\mu = 7$ and standard deviation $\sigma = 5$. (Note that this variable can not have a normal distribution because: (1) it is a discrete random variable; and (2) with that mean and s.d. the normal distribution would have substantial probability below zero.) What is the probability that a class of 50 students will store more than 400 files?
- First, we should note that the question about the total number of files is equivalent to asking for the probability that \bar{X} will be greater than 8.
- Then by CLT \bar{X} is approximately normal with mean 7 and s.d. $5/\sqrt{50} = .707$
- Finally $P(\bar{X} > 8) = P(\frac{\bar{X} \mu}{\sigma / \sqrt{n}} > \frac{8 7}{.707}) = P(Z > 1.41) = .0793$ (where Z is standard normal random variable)

Central Limit Theorem - binomial proportion

- You may recall that we saw a result something like the CLT in talking about the normal approximation to the binomial distribution if np > 5 and n(1-p) > 5 then $X \sim \text{Bin}(n,p)$ can be approximated by a normal random variable Y having mean np and variance np(1-p)
- This is equivalent to the CLT if we look at the proportion of successes X/n rather than the count of successes X
- To be specific, let W_1, \ldots, W_n be a random sample of Bernoulli trials (0/1 random variables) with probability of success p (hence mean is p and variance is p(1-p)) and let $X = \sum_i W_i$ be the total number of successes in n trials. Then by the CLT $\bar{W} = X/n$ is approximately normal with mean p and variance p(1-p)/n

Central Limit Theorem - binomial proportion

- Example: Consider sampling light bulbs from a company which claims to produce only 2% defective light bulbs. What is the probability that a sample of 500 light bulbs would yield a defective proportion below 1%?
 - Let \overline{W} equal proportion of defectives in a sample of 500 light bulbs from a population with 2% defectives
 - By CLT \overline{W} is approximately normal (note that np = 10 and n(1-p) = 490) with mean .02 and variance (.02)(.98)/500 = .0000392
 - $-P(\bar{W} < .01) = P(\frac{\bar{W} p}{\sqrt{p(1-p)/n}} < \frac{.01 .02}{\sqrt{.0000392}})$ = P(Z < -1.60) = .0548

Population mean

- Central Limit Theorem enables us to easily build a confidence interval for the mean of a population
- Assume X_1, \ldots, X_n are independent random variables with mean μ and variance σ^2
- Then $\bar{X} = \frac{1}{n} \sum_{i} X_{i}$ (the sample mean) is the natural estimate of μ (MLE, method of moments)
- We also know that \bar{X} is a random variable which has approximately a normal distribution, $\bar{X} \sim N(\mu, \sigma^2/n)$
- It follows that $\Pr(-1.96 < \frac{\bar{X} \mu}{\sigma/\sqrt{n}} < 1.96) \approx .95$
- Thus $\bar{X} \pm 1.96\sigma/\sqrt{n}$ is an (approximate) 95% confidence interval for μ
- Note the above is an exact confidence interval if the population distribution of the X's is normal and an approximate confidence interval valid for large n if not

Population mean (cont'd)

- $\bar{X} \pm 1.96\sigma/\sqrt{n}$ is an (approximate) 95% confidence interval for μ (based on CLT)
- Some variations/improvements
 - Different confidence level
 - * We can get a different confidence level by using a suitable percentile of the standard normal distribution
 - * e.g., $\bar{X} \pm 1.645\sigma/\sqrt{n}$ is an (approximate) 90% confidence interval for μ
 - Unknown population standard deviation
 - * Results given so far require knowing the population standard deviation σ
 - * If σ is not known (it usually isn't) then we can use the sample standard deviation

$$s = \sqrt{\frac{1}{n-1} \sum_{i} (X_i - \bar{X})^2}$$
 as an estimate

- * Then $\bar{X} \pm 1.96s/\sqrt{n}$ is an approximate 95% confidence interval that should be good in large samples (now even larger than before .. say 100 observations or more)
- * It turns out that it is possible to create a more exact 95% confidence interval in this case by replacing 1.96 with the relevant percentile of Student's t-distribution (not covered in this class)

Binomial proportion

- Assume X_1, \ldots, X_n are independent Bernoulli trials with probability of success π (change from p now)
- Then $\hat{\pi} = \frac{1}{n} \sum_{i} X_{i}$ = the sample proportion of successes is the natural estimate (MLE, method of moments)
- From central limit theorem we know that $\hat{\pi}$ is approximately normal with mean π and s.d. $\sqrt{\pi(1-\pi)/n}$
- It follows that $Pr(-1.96 < \frac{\hat{\pi} \pi}{\sqrt{\pi(1-\pi)/n}} < 1.96) = .95$
- Thus any π for which the inequality above is satisfied is in a 95% confidence interval
- An alternative is replace the s.d. of $\hat{\pi}$ by an estimate, $\sqrt{\hat{\pi}(1-\hat{\pi})/n}$ and then note that $\hat{\pi}\pm 1.96\sqrt{\hat{\pi}(1-\hat{\pi})/n}$ is an approximate 95% confidence interval for π

• General approach

- the previous two examples suggest a general approach
- suppose that we have a point estimator $\hat{\theta}$ for a parameter θ
- $\hat{\theta}$ is a random variable with expected value typically approximately equal to θ and with a standard deviation $s.d.(\hat{\theta})$
- it follows that an approximate large-sample 95% confidence interval for θ is given by $\hat{\theta} \pm 1.96 \ s.d.(\hat{\theta})$ (sometimes we may need to estimate the s.d.)

• Interpretation

- it is important to remember the interpretation of these confidence intervals
- the "confidence" belongs to the procedure; we have a procedure that creates intervals having the property that 95% of the confidence intervals contain the true values
- for any given instance the CI either contains the true value or not; our guarantee is only for average behavior in repeated samples

Tests/Decisions

- Point estimates and interval estimates are important components of statistical inference
- Sometimes there is a desire however for a formal test or decision based on the value of a particular parameter
- For example:
 - We may want to assess whether $\pi = 0.5$ in a binomial situation (or in other words we may want to ask if we have a fair coin)?
 - We may want to test whether $\mu = 0$ (no change due to an intervention)?
 - We may want to compare average response in two groups to see if they are equal $(\mu_1 = \mu_2)$?

Statistical Tests - binomial case

- We illustrate the basic approach in the binomial setting
- Assume we sample n people at random from list of CS faculty in the U.S.
- Ask each whether their laptop runs Windows or Linux
- Observe 56% use Linux
- Can we conclude that a majority of CS faculty in the US prefer Linux for their laptop?
 - seems obvious that we can but ...
 - the difference between 56% and 50% may just be a fluke of the sample, the truth may be that the population is split 50/50

Statistical Tests - binomial case

- The logic of statistical tests
 - let X denote the number of faculty preferring Linux
 - assume $X \sim Bin(n, \pi)$ (note we use π instead of the usual p to avoid confusion later)
 - organize test in terms of null hypothesis (no effect, no difference) and alternative hypothesis (the difference we suspect may be present)
 - * null $H_o: \pi = 0.50$
 - * alternative $H_a: \pi > 0.50$
 - * why use this formulation? easier to disprove things statistically than to prove them
 - we suspect H_o is false (and H_a is true) if $X/n = \hat{\pi}$ is greater than 0.5. How much greater does it have to be?
 - approach: assume the null hypothesis is true and ask whether the observed data is as expected or is unusual

Statistical Tests - general comments

- There are two slightly different (but related) approaches
 - significance tests assess the evidence against H_o with a p-value that measures how unusual the observed data are
 - **hypothesis tests** formally establish a decision rule for deciding between H_o and H_a to achieve desired goals (e.g., decide H_a is true if $\hat{\pi} > c$ where cis chosen to control the probability of an error)
 - we focus on significance tests in this class

Statistical Tests - general comments

- The key concept in significance tests is the *p*-value
- p-value = probability of observing data as or more extreme than the data we obtained if H_o is true
- Low *p*-values are evidence that either
 - (1) H_o is true and we saw an unusual event or
 - (2) H_o is not true
- The lower the p-value the more likely we are to conclude that H_o is not true
- Often use p < .05 as serious evidence against H_o but a strict cutoff is a BAD IDEA
- A couple of important points
 - the p-value DOES NOT measure the probability that H_o is true
 - even if p-value is small the observed failure of H_o may not be practically important

Statistical Tests - binomial case

- Now return to binomial case and suppose that we have sampled 100 professors and find 56 use Linux, or in other words n = 100 and $\hat{\pi} = .56$
- There are actually two ways to find the p-value: use the binomial distribution directly or, if n is large (as it is here) then we can use the CLT
- By the binomial distn ... let X be number of Linux supporters. Then under H_o we know $X \sim \text{Bin}(100, .5)$ and $P(X \geq 56) = .136$ (not in our table but can be computed)
- By the CLT ...

$$p\text{-value} = \Pr(\hat{\pi} \ge 0.56 \mid \pi = 0.5)$$

$$= \Pr(\frac{\hat{\pi} - 0.50}{\sqrt{.5(.5)/100}} \ge \frac{.56 - .50}{\sqrt{.5(.5)/100}})$$

$$\approx \Pr(Z \ge 1.2) = .115$$

(using the continuity correction we'd say $p = P(\hat{\pi} \ge .555) = .136$)

• Conclude: observed proportion .56 is higher than expected but could have happened by chance so can't conclude that there is a significant preference for Linux

Statistical Tests - binomial case

- Interpreting results
 - The p-value of .136 does not mean that H_o is true, it only means the current evidence is not strong enough to make us give it up
 - -p-value depends alot on sample size
 - ... with n = 200 and $\hat{\pi} = .56$ we would have p = .045
 - ... with n=400 and $\hat{\pi}=.56$ we would have p=.008

Hypothesis Tests

- Significance tests focus on H_o and try to judge its appropriateness
- Hypothesis tests treat the two hypotheses more evenly and are thus used in more formal decision settings
 - hypothesis testing procedures trade off two types of errors
 - type I error = reject H_o if it is true
 - type II error = accept H_o if it is false
 - we can vary cutoff of test; if we increase cutoff to make it harder to reject H_o then we reduce type I errors but make more type II errors (and vice versa if we lower the cutoff)
- In practice hypothesis tests are very closely related to significance tests

Relationship of tests to other procedures

- Tests and confidence intervals
 - confidence intervals provide a range of plausible values for a parameter
 - tests ask whether a specific parameter value seems plausible
 - these ideas are related ... suppose we have a 95% confidence interval for π
 - * if $\pi=0.50$ is not in the confidence interval then our test will tend to reject the hypothesis that $\pi=0.50$
- Tests and Bayesian inference
 - we have not emphasized the Bayesian approach to testing but there is one
 - to see how it might work, recall that the Bayesian approach yields a posterior distribution telling us, for example, the plausible values of π and how likely each is
 - the Bayesian posterior distribution can compute things like $P(\pi > 0.5|\text{observed data})$ which seems to directly address what we want to know

Decisions/Tests - general approach

- General setting: we have a hypothesis about a parameter θ , say $H_o: \theta = \theta_o$ (could be π in binomial or μ in normal) and want to evaluate this null hypothesis against a suspected alternative $H_a: \theta > \theta_o$
- A general approach:
 - obtain a suitable point estimate $\hat{\theta}$ and use it to test the hypothesis (reject H_o if $\hat{\theta}$ is far from θ_o)
 - calculate *p*-value which is $P(\hat{\theta} > \text{observed value})$ assuming H_o is true
 - this calculation requires distribution of $\hat{\theta}$
 - distribution of $\hat{\theta}$ will depend on specific example (e.g., binomial case above)
- Of course if alternative is $\theta < \theta_o$ then p-value also uses "<"

Decisions/Test - population mean

Example: Tests for μ (the population mean)

- Natural estimate is \bar{X} (the sample mean)
- What do we know about the distribution of \bar{X} under H_o ?
 - If the population data are normal and σ is known, then \bar{X} is normal with mean μ_o and s.d. σ/\sqrt{n}
 - If the population data are normal and σ is not known, then \bar{X} is approximately normal with mean μ_o and s.d. s/\sqrt{n} for large sample size
 - If sample size is large (no matter what the population data are), then \bar{X} is approximately normal with mean μ_o and s.d. s/\sqrt{n}
 - Only difference between the last two items is that might expect to need a "larger" sample size in the last case
- The above discussion leads to normal test of $H_o: \mu = \mu_o$ with p-value $= P(\bar{X} > \bar{x}) = P(Z > (\bar{x} \mu_o) / \frac{s}{\sqrt{n}})$ (with Z the usual standard normal distn)

Decisions/Test - population mean

Example: Tests for μ (the population mean) Some technical stuff (optional)

- When we don't know σ and plug in the estimate s, we should really adjust for this in our procedure
- It turns out that the proper adjustment (original discovered by a brewery worker!) is to use Student's *t*-distribution in place of the standard normal distribution
- Student's t-distribution is a distribution that looks something like the normal but has heavier tails (bigger values are possible). The t distribution is described by the number of degrees of freedom (how big a sample it is based on) with a large degrees of freedom corresponding more closely to a normal distribution
- Student's t-test of $H_o: \mu = \mu_o$ would lead to p-value = $P(\bar{X} > \bar{x}) = P(Z > (\bar{x} \mu_o) / \frac{s}{\sqrt{n}})$ where t_{n-1} is a random variable having Student's t-distribution with n-1 degrees of freedom
- For Stat 67 purposes ... just need to know that in large samples can use normal table and not worry about the Student's t-distribution

Decisions/Test – population mean

• Numerical example:

Suppose that the average database query response time is supposed to be 1 second or faster. We try 100 queries and observe an average response time of 1.05 seconds (with a standard deviation of .25 seconds). Can we conclude that the database does not meet its standard?

- frame question as a statistical test:

$$H_o: \mu = 1 \text{ vs } H_a: \mu > 1$$

- p-value

$$= P(Z \ge (1.05 - 1.00) / \frac{.25}{\sqrt{100}}) = P(Z \ge 2) = .023$$
 (if we use Student's t-test, then *p*-value = .024)

- reject H_o and conclude that the database is not performing as advertised
- note that the additional .05 seconds may not be practically important

Decisions/Test - difference between two means

Note to self: If there is time, then do this slide and the next to show how testing handles harder problems

- A common situation is that we have two populations and we want to compare the means of the two populations
- Example (medical): suppose we have two treatments (drug A and drug B) and wish to compare average survival time of cancer patients given drug A (μ_1) to average survival time of cancer patients given drug B (μ_2)
- Assuming we have data on the two populations
 - $-\bar{Y}_1 \bar{Y}_2$ is an estimator for $\mu_1 \mu_2$
 - $-\bar{y}_1 \bar{y}_2$ is an estimate for $\mu_1 \mu_2$
 - $\operatorname{Var}(\bar{Y}_1 \bar{Y}_2) = \sigma^2 \left(\frac{1}{n_1} + \frac{1}{n_2} \right)$
 - $S_p^2 = \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1+n_2-2}$ is a pooled estimator for common variance σ^2
- Key result: under assumptions

$$t = \frac{\bar{Y}_1 - \bar{Y}_2 - (\mu_1 - \mu_2)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2}$$

• Again for Stat 67 don't worry about Student's t (for large samples can use normal distribution)

Decisions/Test - difference between two means

- Confidence interval
 - 95% confidence interval for $\mu_1 \mu_2$ assuming large samples is

$$\bar{Y}_1 - \bar{Y}_2 \pm 1.96 S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

- Tests of hypotheses
 - null hypothesis $H_o: \mu_1 = \mu_2$ (no difference)
 - alternative hypothesis $H_a: \mu_1 \neq \mu_2$ (two-sided) or $\mu_1 > \mu_2$ or $\mu_1 < \mu_2$ (one-sided)
 - test statistic $t = (\bar{Y}_1 \bar{Y}_2) / \left(S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \right)$
 - p-value = probability of obtaining a value of the test statistic as big or bigger than the observed value if H_o is true (need to use t-distribution or normal table if samples are large to find p-value)

Probability and Statistical Modeling

• So far:

- Estimation
 - * sample from population with assumed distribution
 - * inference for mean or variance or other parameter
 - * point or interval estimates
- Decisions / Tests
 - * judge whether data are consistent with assumed population
 - * judge whether two populations have equal means
- To apply statistical thinking in more complex settings (e.g., machine learning)
 - * build a probability model relating observable data to underlying model parameters
 - * use statistical methods to estimate parameters and judge fit of model

Introduction

- We use linear regression as a (relatively simple) example of statistical modeling
- Linear regression refers to a particular approach for studying the relationship of two or more quantitative variables variables
- Examples:
 - predict salary from education, years of experience, age
 - find effect of lead exposure on school performance
- Useful to distinguish between a functional or mathematical model

$$Y = g(X)$$
 (deterministic)
and a structural or statistical model

$$Y = g(X) + \text{error}$$
 (stochastic)

Linear regression model

• The basic linear regression model

$$Y_i = \beta_o + \beta_1 x_i + \epsilon_i, \quad i = 1, \dots, n$$

- $-Y_i$ is the response or dependent variable
- $-x_i$ is the predictor, explanatory variable, independent variable
- x_i is treated as a fixed quantity (i.e., is not a random variable)
- $-\epsilon_i$ is the error term or individual variation
- $-\epsilon_i$ are independent $N(0,\sigma^2)$ random variables
- Key assumptions
 - linear relationship between Y and x
 - independent (uncorrelated) errors
 - constant variance errors
 - normally distributed errors

Interpreting the model

• Model can also be written as

$$Y_i \mid X_i = x_i \sim N(\beta_o + \beta_1 x_i, \sigma^2)$$

- mean of Y given X = x is $\beta_o + \beta_1 x$ (known as the conditional mean)
- $-\beta_o$ is conditional mean when x=0
- $-\beta_1$ is the slope, measuring the change in the mean of Y for a 1 unit change in x
- $-\sigma^2$ measures variation of responses about the mean

Where does this model come from?

- This model may be plausible based on a physical or other argument
- The model may just be a convenient approximation
- One special case is worth mentioning:

 It turns out that if we believe that two random variables X and Y have a bivariate normal distribution (remember we saw this briefly), then the conditional distribution of Y given X is in fact a normal model with mean equal to a linear function of X and constant variance

Estimation

- Maximum likelihood estimation
 - we can write down joint distn of all of the Y's, known as the likelihood function

$$L(\beta_o, \beta_1, \sigma^2 \mid Y_1, \dots, Y_n) = \prod_{i=1}^n N(Y_i \mid \beta_o + \beta_1 x_i, \sigma^2)$$

- we maximize this to get estimates $\hat{\beta}_o, \hat{\beta}_1$
- turns out to be equivalent to
- Least squares estimation
 - choose $\hat{\beta}_o$, $\hat{\beta}_1$ to minimize $g(\beta_o, \beta_1) = \sum_{i=1}^n (Y_i (\beta_o + \beta_1 x_i))^2$
 - least squares has a long history (even without assuming a normal distribution)
 - * why squared errors? (convenient math)
 - * why vertical distances? (Y is response)
 - result:

$$\hat{\beta}_{o} = \bar{Y} - \hat{\beta}_{1}\bar{x}$$

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(Y_{i} - \bar{Y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

- predicted (or fitted) value for a case with $X = x_i$ is $\hat{Y}_i = \hat{\beta}_o + \hat{\beta}_1 x_i$
- residual (or error) is $e_i = Y_i \hat{Y}_i$

Estimation - some details

• Least squares estimation: choose $\hat{\beta}_o, \hat{\beta}_1$ to minimize

$$g(\beta_o, \beta_1) = \sum_{i=1}^{n} (Y_i - (\beta_o + \beta_1 x_i))^2$$

• Taking derivatives and setting them equal to zero yields normal equations

$$\beta_o n + \beta_1 \sum x_i = \sum Y_i$$

$$\beta_o \sum x_i + \beta_1 \sum x_i^2 = \sum x_i Y_i$$

• Solving these equations leads to answers on previous slide

Estimation of error variance

- Maximum likelihood estimate of σ^2 is $\frac{1}{n} \sum_i (Y_i \hat{Y}_i)^2 = \frac{1}{n} \sum_i e_i^2$
- It turns out that this estimate is generally too small
- A common estimate of σ^2 is

$$s_e^2 = \frac{1}{n-2} \sum_{i=1}^n (Y_i - (\hat{\beta}_o + \hat{\beta}_1 x_i))^2 = \frac{1}{n-2} \sum_{i=1}^n e_i^2$$

which is used because the $\frac{1}{n-2}$ makes this an unbiased estimate

Inference for β_1

- There are many quantities of interest in a regression analysis
- We may be interested in learning about
 - the slope β_1
 - the intercept β_o
 - a particular fitted value $\beta_o + \beta_1 x$
 - a prediction for an individual
- Time is limited so we discuss only drawing statistical conclusions about the slope

Inference for the slope, β_1

• Begin by noting that our estimator of the slope is

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(Y_i - \bar{Y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{\sum_{i=1}^n (x_i - \bar{x})Y_i}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

• $\hat{\beta}_1$ is a linear combination of normal random variables (the Y_i 's) so $\hat{\beta}_1$ is normally distributed

$$E(\hat{\beta}_1) = \beta_1$$
 $Var(\hat{\beta}_1) = \frac{\sigma^2}{\sum_i (x_i - \bar{x})^2}$

- σ^2 is unknown; plug in estimate s_e^2
- The estimated standard deviation of $\hat{\beta}_1$ is then $s_{\beta_1} = \sqrt{s_e^2/\sum_i (x_i \bar{x})^2}$
- Then for a large sample size we get an approximate 95% confidence interval for β_1 is $\hat{\beta}_1 \pm 1.96s_{\beta_1}$
- More exact confidence interval and test procedures (based on Student's t-distribution) are available but not discussed in this class

Model diagnostics - residuals

- We can check whether the linear regression model is a sensible model using the residuals
- Recall $e_i = Y_i \hat{Y}_i = Y_i \hat{\beta}_o \hat{\beta}_1 x_i$
- e_i is an approximation of the stochastic error (ϵ_i) in our model
- Important properties
 - sum of residuals is zero hence a typical value is zero
 - variance of the residuals is approximately equal to one
 - if our model is correct the residuals should look something like a N(0,1) sample
 - we can look to see if there are patterns in the residuals that argue against our model

Diagnosing violations with residual plots

- Plot residuals versus predicted values and look for patterns
 - might detect nonconstant variance
 - might detect nonlinearity
 - might detect outliers
- Histogram or other display of residuals
 - might detect nonnormality
- Show sample pictures in class

Remedies for violated assumptions

- What if we find a problem?
- Sometimes the linear regression model will work with a "fix"
 - transform Y (use $\log Y$ or \sqrt{Y} as the response)
 - add or modify predictors (perhaps add X^2 to approximate a quadratic relationship)
- If no easy "fix", then we can consider more sophisticated models