Goal Diagrams, continued

Informatics 113
Symbology

- Goals: Parallelograms
- “And” nodes: circles
 - Black circles, if the and-refinement is complete
- Or: independent arrows
- Agents: hexagons
 - A stick figure inside, if part of the environment
- Domain assumptions: trapezoid (or “house symbol”)
Details of Goal provided in Annotations

Achieve [CopyDueSoonForCheckOut If Not Available]

Maintain [WorstCaseStoppingDistance]

MinimumInteractionWithParticipants

Name CopyDueSoonForCheckOut If Not Available

Def In case a requested book has no copy available for check out, a copy of that book should be made available within 2 weeks for check out by the requesting patron.

Type Achieve

Category Satisfaction

Source Library staff interview 12/12/06.

Priority Medium

Issue Shouldn’t this be differentiated (staff vs. student patron)?

Name WorstCaseStoppingDistance

Def A train shall never get so close to a train in front that if the latter stops suddenly the following train would hit it.

Type Maintain

Category Safety

Source BART preliminary study report p.27.

Priority Highest

FormalSpec ∀ tr1, tr2: Train

Following (tr2, tr1) ⇒ Dist(tr2, tr1) > WCS-Dist(tr2)

Name MinimumInteractionWithParticipants

Def The number of interactions between an invited participant and the system should be kept as small as possible during meeting scheduling.

Type Soft goal

Priority Medium

FitCriterion At most one participant interaction about constraints in at least 80% of cases.

Figure 8.1 – Goal features as model annotations: examples
Goal Annotations

- **Required:**
 - Name
 - Definition: “must precisely define, in natural language, what the goal prescribes”
 - In other words, the “shall statement”

- **Optional**
 - Category, Source, Priority, Stability (how likely is this goal to change?), FitCriterion, FormalSpec, Issues (duh?!)
Goal Refinement

- An **AND-refinement** of goal G into subgoals G_1, \ldots, G_n states that G can be satisfied by satisfying G_1, \ldots, G_n

 The set $\{G_1, \ldots, G_n\}$ is called refinement of G

 Subgoal G_i is said to contribute positively to G

- An **OR-refinement** of goal G into refinements R_1, \ldots, R_m states that G can be satisfied by satisfying all subgoals from any of the alternative refinements R_i

- Alternative goal refinements yield different system proposals (variants)
 - Different systems
 - Different responsibility assignments (agents)

- Pros/cons to be evaluated against soft goals for selection of best option
AND-refinements

- Should be complete
 - Sufficient to satisfy in view of known domain properties
 - (is sufficient under the following invariants or hypotheses)

- Should be minimal
 - If you leave one out, no longer a sufficient set

- Should be consistent (duh!)
Leaf nodes: How far do you go?

- Leaf nodes: no further refinement necessary
 1. Requirements (goals assignable to a single software agent)
 2. Expectations (goals assignable to a single environmental agent)
- “Assignable” == agent is responsible (and capable) of realizing the goal
Example Refinement to Leaf Nodes

Maintain [DoorsClosedWhileMoving]

Moving iff NonZeroSpeed

Maintain [DoorsClosedWhileNonZeroSpeed]

MeasuredSpeed = PhysicalSpeed

Maintain [DoorsStateClosed If NonZeroMeasuredSpeed]

DoorsClosed iff DoorsStateClosed

SpeedSensor

TrainController

DoorsActuator

requirement

responsibility assignment

environment agent

software agent
AND/OR Graphs

- EffectivePassengersTransportation
 - RapidTransportation
 - FastJourney
 - HighFrequency
 - SafeTransportation
 - NoTrainCollision
 - DoorsClosedWhileMoving
 - BlockSpeedLimited
 - WorstCaseStoppingDistanceMaintained
 - NoTrainsOnSameBlock

- FastRunWhenGoSignal
- SignalSetToGoPromptly

AND-refinement

OR-refinement

system-as-is
to-be
Conflicts Among goals

- When goals are unsatisfiable together under some condition
- Symbology: lightning bolt between them
Heuristics for finding goals: H1

- (H1) Analyze current objectives & problems in system-as-is ...
 - preserve strategic, organization-specific objectives & policies
 - e.g. Effective access to state-of-the-art knowledge
 - preserve application-specific objectives to be found in any system version
 - e.g. Accurate book classification
 - analyze problems & deficiencies in system-as-is
 - Avoid / Reduce / Improve them
 - e.g. Anywhere anytime biblio search
H2: Search for goal-related keywords in elicitation material

- **intentional**: in order to, so as to, so that, purpose, objective, aim, achieve, maintain, avoid, ensure, guarantee, want, motivate, expect,...
- **prescriptive**: shall, should, must, has to, to be, may not, may never,...
- **amelioration**: improve, increase, decrease, reduce, enhance, enable, support, provide, ...
H3: Use the goal categories

- Look for instances of these types

![Diagram of goal categories]

Figure 7.5 – Goal categories

Subcategory link
H4: Ask How and Why Questions

- How can G be satisfied? (refinement)
- Why should G be satisfied? (abstraction)
How and Why: System-to-Be and Current

HOW?

- EffectivePassengersTransportation
 - RapidTransportation
 - FastJourney
 - HighFrequency
 - SafeTransportation
 - NoTrainCollision
 - DoorsClosedWhileMoving
 - BlockSpeedLimited

WHY?

- FastRunWhenGoSignal
- SignalSetToGoPromptly
- WorstCaseStoppingDistanceMaintained
- NoTrainsOnSameBlock
- S2B
- current
H5: Split Responsibilities

- By examining the contributions of the multiple agents supporting a goal G, you may identify subgoals, each associated with a single agent.

{Scheduler, Participant, Communication Infrastructure}
H9: Check the converse of Achieve goals

- Check the converse of Achieve goal for missing Maintain goal
 - Achieve [Target If Condition]:
 - if Condition then sooner-or-later Target
 - ?? Maintain [Target OnlyIf Condition]:
 - always (if Target then Condition)

- Example:
 - Achieve [reverseThrustEnabled If PlaneOnGround]
 - ?? Maintain [reverseThrust OnlyIf PlaneOnGround]
H13: Do not confuse goals with operations

- A goal captures an objective the system should satisfy
- An operation captures a functional service that the system provides to satisfy an objective
- (Watch the verb tense)
 - Goals: past participles (CopyBorrowed)
 - Operation: infinitive (BorrowCopy)
- Goals: entire sequences of states
- Operations: single state transition
Refinement patterns

- Just as with programming patterns, use experience in a particular, careful way to solve frequently recurring problems
- Domain-independent solutions (logic based)
- Domain-specific solutions
RP1: Baby Steps (“Milestone”)

Achieve [TargetCondition FromCurrentCondition]

Achieve [MilestoneCondition From CurrentCondition] Achieve [TargetCondition From MilestoneCondition]

Achieve [ConvenientMeeting ScheduledFromRequest]

Achieve [Constraints KnownFromRequest] Achieve [ConvenientMeeting ScheduledFromConstraints]
RP1: with many baby steps
RP2: Case-based (many allowed)

Achieve [Target]

Case1 or Case2
not (Case1 and Case2)

if Target1 or Target2 then Target

Achieve [Target1]
If Case1

Achieve [Target2]
If Case2

BookRequestSatisfied

case-driven refinement

CopyBorrowed
If Available

CopyDueSoon
If Not Available

Available or NotAvailable
not (Available and NotAvailable)

if CopyBorrowed or CopyDueSoon then
BookRequestSatisfied
RP3: Guards are your helpers

Get to the intermediate point, where the Guard is true

Stay there long enough that you can reach the Target
RP4: Simple divide-and-conquer

Maintain \([\text{GoodCondition1 And GoodCondition2}]\) unless EndCondition

Maintain[GoodCondition1] unless EndCondition
Maintain[GoodCondition2] unless EndCondition

Maintain \([\text{ReminderSent And FineIncreased}]\) unless CopyReturned

Maintain [ReminderSent] unless CopyReturned
Maintain [FineIncreased] unless CopyReturned
RP5&6: Monitor/Control

- Applicable when the goal refers to quantities not monitorable or not controllable by candidate agent

GoalOnUnMonitorableCondition

GoalOnMonitorableCondition \iff MonitorableCondition \iff UnMonitorableCondition

GoalOnUnControllableCondition

GoalOnControllableCondition \iff ControllableCondition \iff UnControllableCondition

solve lack of monitorability

Child node may be goal (incl. requirement, expectation) or domain property (invariant/hypothesis)

solve lack of controllability
RP6: Controlling Example

Nurse Intervention \textbf{If} CriticalPulseRate

Nurse Intervention \textbf{If} Alarm

Alarm \textbf{Iff} CriticalPulseRate

Setting the Alarm is something the software \textbf{can} control

resolve lack of controllability
RP5: Monitoring Example

The issue is “how can the software know if the engine revs are increasing?"

Answer: introduce a variable that the software can monitor, and make an agent responsible for setting that value under the appropriate circumstances.
And apply it again...

\[
\text{GoalOnUnControllableCondition} \quad \text{GoalOnControllableCondition} \quad \text{ControllableCondition} \leftrightarrow \text{UncontrollableCondition}
\]

\[
\text{motor.Regime} = \text{`up`} \rightarrow \text{HandBrakeReleased}
\]

\[
\text{motor.Regime} = \text{`up`} \rightarrow \text{handBrakeCtrl} = \text{`off`}
\]

\[
\text{handBrakeCtrl} = \text{`off`} \leftrightarrow \text{HandBrakeReleased}
\]
Def: For every urgent call reporting an incident, a first ambulance shall arrive at the incident scene within 11 minutes

Achieve: Incident Reported

Achieve: Reported incident encoded

For every encoded incident, the nearest available ambulance shall be mobilized within three minutes

Achieve: Allocated Ambulance Mobilized

Achieve: Allocated Ambulance Mobilized if AtStation
Def: For every urgent call reporting an incident, a first ambulance shall arrive at the incident scene within 11 minutes.

- Achieve: Incident Reported
- Achieve: Reported incident encoded
- For every encoded incident, the nearest available ambulance shall be mobilized within three minutes
- Ambulance arrives within 8 minutes of mobilization

- Achieve: Ambulance Allocated (30 seconds)
- Achieve: Allocated Ambulance Mobilized (2:30 seconds)

- Achieve: Nearest available ambulance identified
- Achieve: Designate ambulance and Maintain: available & near
- Achieve: Allocated Ambulance Mobilized if AtStation
- Achieve: Allocated Ambulance Mobilized if NOT AtStation