

An End-To-End Industrial Software Traceability Tool

Hazeline U. Asuncion – hasuncion@ics.uci.edu
Frédéric François - frederic@uxdesigner.com
Richard N. Taylor - taylor@ics.uci.edu
Sep 5, 2007

Setting

- Leading supplier of industrial automation and information software
 - 450,000 software licenses
 - 100,000 industrial plants worldwide (~ 30% total)
- Mid-sized globally distributed software development company
 - Based in Lake Forest, CA
 - Development centers: US, Australia, EMEA, India
 - 40+ Individuals projects currently under development
 - 250+ development employees

Definitions

- Traceability
 - A mapping between two points to signify a relationship
 - "The degree to which a relationship can be established between two or more products of the development process..." [IEEE]
- Requirements Traceability
 - Artifacts ←→ requirements, Relationship: satisfaction
 - "the ability to describe and follow the life of a requirement, in both forwards and backwards direction" [Gotel & Finkelstein 1994]
- Process Traceability
 - Actual processes ←→ company procedures, Relationship: conformance

ISR

3

Motivation

- Wonderware needs both types of traceability
 - To comply with government regulations
 - To satisfy customer audits
 - To aid in project management
- Need End-to-End Traceability
- But...
 - Traceability is a hard problem
 - Traceability is expensive
 - Many approaches, but rarely adopted in practice [Gotel & Finkelstein 1994][Spanoudakis & Zisman 2005]

Traceability Problem @ WW

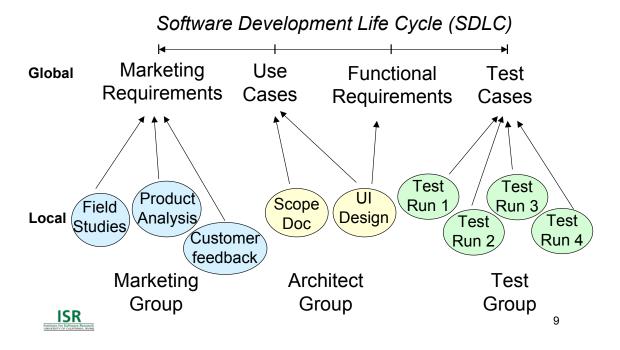
Roadmap

- Key Design Decisions (Guidelines)
- End-to-End Software Traceability Model
- Traceability Tool Design & Implementation
- Tool Evaluation & Preliminary Results
- What Not To Do
- Related Work

Key Design Decisions (Guidelines)

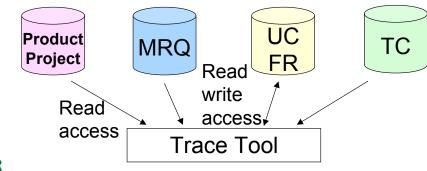
- Minimize cost
- Bound the problem space
- Enter information once
- Automate only when necessary
- Support existing work practices

ISR
met by softman Mayands


For of Calabidate Mayands

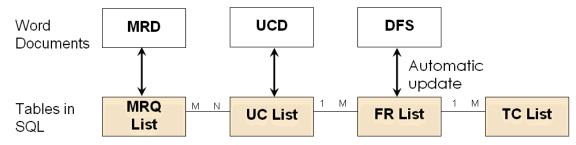
Guideline: Minimize Cost

- Minimize labor hours in training (Usability)
- Minimize labor hours in tracing
 - "Just enough traceability"
 - · Each trace link should provide a benefit
 - · Trace information should aids users in SDLC tasks
- Minimize tool development & maintenance (Use existing tools)

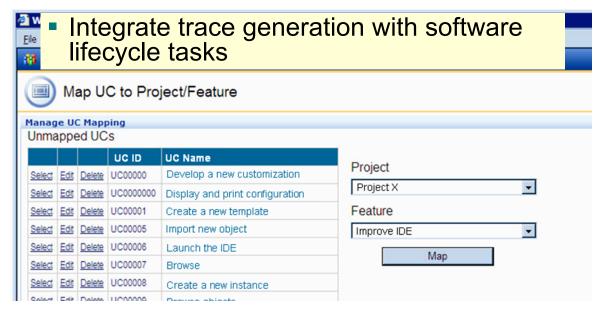

ISR tute for Software Re

Guideline: Bound the Problem Space

Guideline: Enter Information Once


- "Distributed Centralization"
 - Maintain group ownership of artifacts
- Shared repository + custom code

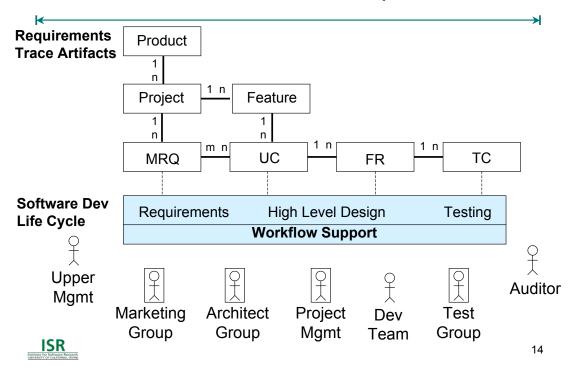
ISR


Guideline: Automate Only When Necessary

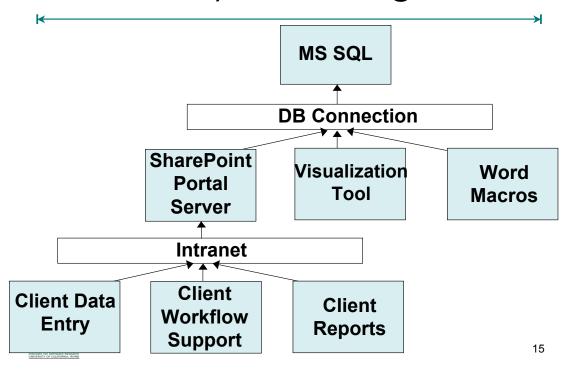
- Limitations of automation
- Automate the following
 - Migration of artifacts
 - Auto-generation of reports
 - Artifact search across projects
 - Bidirectional updates

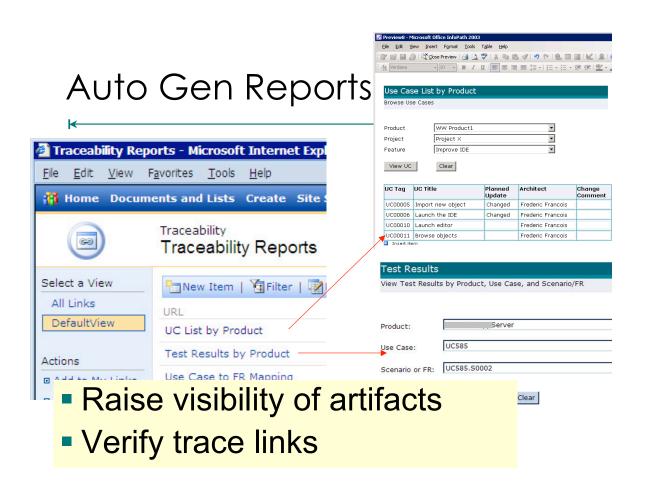
Guideline: Automate Only When Necessary

Trace link generation – not automated

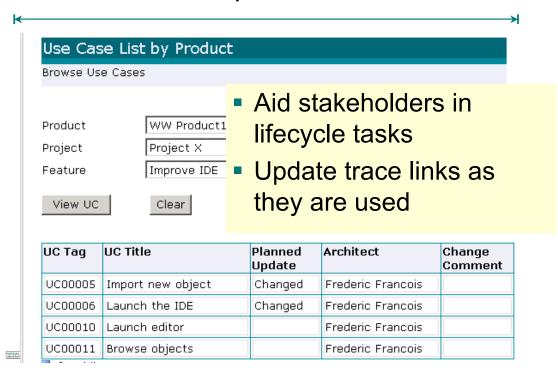


Guideline: Support Existing Work Practices

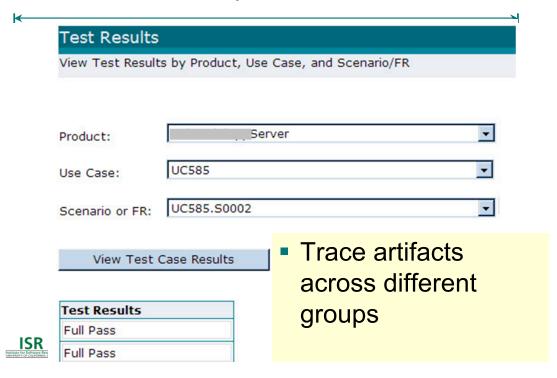

- Identify key users
 - Producers vs Consumers of trace information
- Provide custom user task list
- Streamline work process
- Respect group ownership structure

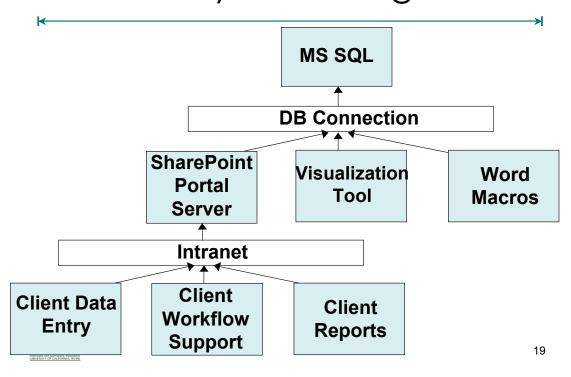

ISR Other for Schwarz Reason

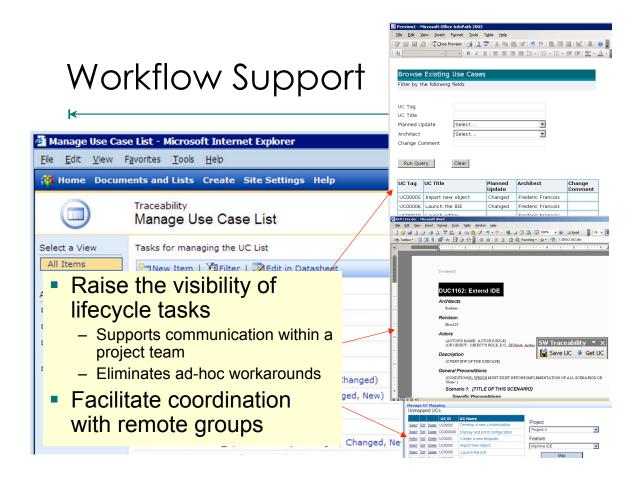
End-To-End Traceability Model



Traceability Tool Design




Auto Gen Reports



Auto Gen Reports

Traceability Tool Design

Tool Evaluation

- Test subjects: Architect Group
- Repository populated with live data
- Tested the following functionality:
 - Mapping between trace artifacts (Projects, Features, Use Cases, Functional Requirements)
 - Maintaining document integrity
- Supporting the SDLC

 Project

 Managers

 Marketing

 Group

 Architect Group

 Development

 Team

 21

Preliminary Results

- Results
 - Time spent in traceability tasks cut in half
 - Decrease in required support staff to maintain traceability tool
 - Low cost of deployment
 - Running successfully for over a year
- Feedback from Architect Group
 - Easy to use
 - Minimal training required
 - Aids architects in high level design tasks
- All active projects migrated to trace tool

What Not to Do

- X Focus solely on automating trace generation
- Use an expensive commercial trace tool to solve an organization's traceability problem
- Delegate all traceability tasks to a third party entity to minimize cost
- ★ Generate traces long after artifacts have been created
- Invest much time in training users on how to use a trace tool
- Require users to abandon their existing toolset and current work practices to use a trace tool

ISR and the Service Repairs

Related Work

- Closest match: Case Study on a US DoD project [Ramesh 1995]
 - Comprehensive view of traceability
 - Documents difficulties that reflect the three key traceability perspectives
 - Does not report on the success of trace approach
- Smaller scale:
 - Limited success in tracing between requirements and use cases [Alexander 2002]
 - Success in implementing traceability within one group [Arkley 2006][Neumuller 2006]

ISR

Conclusion

- Traceability is a hard problem
- Our solution: End-to-end traceability via a lightweight approach
- Traceability Perspectives
 - Economic, Technical, Social
- Key Design Decisions (Guidelines)
 - Minimize Cost
 - Bound the problem space
 - Enter information once
 - Automate only when necessary
 - Support existing work practices

ISR

25

Citations

Alexander, I. Towards Automatic Traceability in Industrial Practice. In *Proc.* of the 1st Int'l Workshop on Traceability, Edinburgh, Scotland. p. 26-31, 2002.

Arkley, P. and Riddle, S. Tailoring Traceability Information to Business Needs. In *Proc. of the 14th IEEE Int'l Conf on Reqts Engr.* Minneapolis, St. Paul, MN, Sep 11-15, 2006.

Gotel O. and Finkelstein A., An Analysis of the Requirements Traceability Problem. In *Proc. of the 1st Conf on Reqts Engr.* Los Alamitos, CA, 1994.

IEEE Standard Computer Dictionary, IEEE, New York, NY, Jan 1991.

Neumuller, C. and Grunbacher, P. Automating Software Traceability in Very Small Companies - a Case Study and Lessons Learned. In *Proc. of the 21st IEEE Int'l Conf on Automated Soft Engr.* Tokyo, Japan, Sep 18-22, 2006.

Ramesh, B., Powers, T., et al. Implementing Requirements Traceability: A Case Study. In *Proc. of the 1995 Intl. Symp on Reqts Engr.* York, UK, Mar 27-29 1995.

Spanoudakis, G. and Zisman, A. Software Traceability: A Roadmap Advances in Software Engineering and Knowdledge Engineering. ISRChang, S.K. ed. 3, World Scientific Publishing, 2005.

Thank you

27

ISR Sastout to To offware Reaching