Applications 281

SOFTWARE ENGINEERING

debugging

host-target development
concurrency

real-time software

Ada

environments

GENIE LOGICIEL

déverminage
développement croisé
parallélisme

temps réel

Ada

environnements

Debugging Real-Time
Software in a Host-Target
Environment

Techniques de localisation d’erreurs pour logiciels d'applications
en Temps réel

Richard N. TAYLOR

Richard Taylor received his Ph. D in Computer Science from the University of Colorado in
1980. In 1981-82 he was an Assistant Professor of Computer Science at the University of Victoria,
Canada. Since 1982, he has been an Assistant Professor of Information and Computer Science
at the University of California, Irvine. His research interests are in programming environments
and techniques for analyzing, testing and debugging concurrent software.

CSNet address : taylor @ uci
Arpanet : taylor.uci @ csnet-relay

Department of Information and Computer Science, University of California, Irvine,
Irvine, California 92717 U.S.A.

RESUME

Une stratégie trés répandue pour le développement de logiciel de contréle de processus
consiste a effeciuer l'essentiel de la mise au point et des tests sur un gros ordinateur dit
« héte » puis @ transférer le code sur la machine de destination pour les contréles finals
et l'exécution en production. La machine « hote » est en général de taille importante et
offre un grand choix d’outils pour le développement de logiciel, alors que la machine pour
laquelle le code est produit est petite et simple. Un des problémes que présente une telle
stratégie se manifeste lorsque le logiciel doit se plier @ des contraintes en temps réel et
est composé de plusieurs processus communicants. Si un test échoue sur la machine de
destination, il peut étre extrémement difficile de déterminer la cause de ['échec. Les
« debuggers » de la machine héote ne sont pas utilisables parce que les mémes données
causent souvent des comportements différents sur leur machine. Ces divergences sont dues a
des différences de vitesse, aux algorithmes de gestion, etc. Cet article propose une solution
partielle a ce probléme : il s'agit de reproduire I'exécution menant a I'échec de facon d
rendre le « debugging » au niveau du langage source possible sur la machine hote. Cette
solution comprend [utilisation intégrée d'un analyseur statique de parallélisme, d'un inter-
préteur interactif et d'outils de visualisation graphique des programmes. Bien qu’elle soit
d’application générale, la solution est décrite ici dans le contexte de programmes en Ada.

TABLE DES MATIERES 3. Implementation

1. Introduction

1.1 Objective

2. Solution Scheme

3.1 Some implementation issues

4. Conclusion
Acknowledgments

References

2.1 Static analysis of concurrent programs

2.2 Path finding strategy

2.3 Speed-up through dynamic analysis
2.4 Execution visualization and intra-task debugging

(*) Adais a trademark of the U.S. Department of Defense (AJPO).

T.S.I.— Technique et Science Informatiques 0752-4072/84/04/281-8/% 2,80 © AFCET-Bordas

282 DEBUGGING REAL-TIME SOFTWARE

1. Introduction

Real-time software is often developed on a host
machine and then recompiled for execution on a target
machine. The host machine is typically much more power-
ful than the target, providing a variety of program deve-
lopment services. Target machines are frequently “ bare
machines ”, having no support software at all— not even
operating systems.

The difficulty with this development model is in testing
software on the target machine. Some testing must be
done on the target, as host machine testing is grounded
upon some assumptions about the target. For example,
host testing often involves use of a target machine emula-
tor. Target machine testing is necessary to ensure that the
emulator correctly reflected the target’s characteristics.
The difficulty is in determining the cause of an error
detected during target testing : most likely there are no
tools to aid in this determination. The analyst may have
only a memory dump from which to work.

This unfortunate situation is greatly aggravated when
the software being developed contains multiple concur-
rent tasks, or when its functionality is determined by
real-time considerations. Target machines are often
embedded processors, executing in a real-time feedback
loop. When this is the case, several additional factors,
such as the following, may cause target machine execu-
tions to deviate from host executions :

— the real-time input simulators on the host may not
operate at the same rate as the actual inputs to the target ;

— the real-time clock may be less (or more) precise ;

— the number of physical CPU’s may vary between
host and target, affecting the execution rates of separate
tasks ;

— the relative speed of the multiple processors may
vary ;

—- though the same scheduler algorithm may be used
on both machines, different behavior may be observed
because of differences in processor construction ;

— different scheduling algorithms may operate on the
host and the target.

Because of these matters, a very real possibility is that
a concurrent program may execute correctly on the host,
but deadlock on the target, even though it is processing
the “same ” data. Thus straightforward attempts to
debug on the host may be fruitless.

The intent of this paper is to present a technique for
host debugging of failed target machine executions
which addresses all the relevant concerns.

1.1. OBJECTIVE

The initial objective of the technique we present is to
reconstruct, with fidelity, the target execution on the host.
This means determining the exact sequence of (target)
machine state transitions. Once this reconstruction is
achieved, a secondary objective is to provide debugging
techniques that enable effective investigation of the
behavior of concurrent, real-time programs. These tech-
niques should be provided at the level of source language
concepts (e.g. Ada rendez-vous), not assembly language
or, worse yet, machine code instructions. Furthermore,
the techniques must enable a program to be viewed from
different perspectives, and the analyst must be able to

move smoothly from one to another. The perspectives
we have in mind are :

1) looking within a single task to investigate its parti-
cular behavior and

2) looking at the system of interacting processes to
study the task interactions that occur. The focus of this
paper will be on the second of these perspectives, as
techniques for debugging single process, non-real time
programs can be used for looking within a single task.
It must be remembered, however, than any implementa-
tion of the overall technique must provide both capa-
bilities.

Achieving these objectives is difficult, and the technique
presented below is not perfect. A key characteristic of
the technique, which is of interest in its own right, is
that it involves the integrated application of several
sophisticated tools. To be used effectively these tools
must be housed in a programming environment. This will
be considered more fully at the end of the paper.

To provide focus for the discussion, attention will be
restricted to concurrent, real-time Ada programs. Ada
provides several high-level facilities for describing multi-
tasked systems [Ada 83]. The technique has broad appli-
cability, however, and could be used in debugging, for
example, CSP [Hoare 78], HAL/S [Martin 77], or Indus-
trial Real-Time Basic [IRTB 81] programs.

Several other research groups are investigating the
problems of debugging concurrent and distributed sys-
tems. A variety of promising work is described in [HLDB
83]. Other, more closely related research is referred to in
the following presentation.

2. Solution scheme

We are proposing a two-step approach to the problem
of locating an error in a failed target machine execution.
The first step, and the most difficult one, is recreating
the target machine’s execution back on the host. The
second step is to analyze that execution, using a powerful
debugger, to isolate the fault.

The first step involves several operations. After listing
them here we will then consider them in more detail.

e From the final target machine state (possibly given
by a memory dump) derive the corresponding Ada-level
machine state.

e Extract from the Ada state the final concurrency state.
(i.e.. determine the final concurrency related action taken
by each task.)

e Determine the full range of possible concurrency and
real-time program actions that could lead to the final
concurrency state.

e Prune the range of concurrency actions potentially
leading to the final state on the basis of knowledge of
the target’s execution. (This may be a null step.)

e Find a viable sequence of concurrency and real-time
actions, using a process of “ depth-first execution ™.

e Initiate a detailed debugging execution driven by the
sequence of viable actions. The processes and data flows
involved in these activities are indicated in Figure 1.
The limitations of the technique will become painfully
obvious in the remainder of the presentation. Here we
simply note a few of them.

e [t must be possible to reconstruct (key portions of)
the final Ada-level machine state from the target machi-

T.S.I. — Technique et Science Informatiques

Applications

283

Ada Source Text

(Target Code
Compilation)

Static Analyzer

Execution Target
Characteristics Execution

Debugger

Interpreter

(Device Inputs)

Figure 1. — Overview of Host-Target Debugging.

ne’s final state. Therefore errors whose penultimate
action is to wipe out all of memory cannot immediately
be addressed.

e It must be possible to capture the sequence of data
values that were read by the target machine, though it
is not necessary for them to be time-stamped.

e The process of reconstructing-the execution may be
terribly slow, though it certainly will be more efficient
than having a person attempt the same. (After presenta-
tion of the basic technique we will describe a series of
optimizations that may make the process tractable —
at the expense of requiring more information about the
target’s execution than just the data and the final state.)

A technology key to the entire process is static analysis
of concurrent Ada programs. This technology is des-
cribed in detail in [Taylor 83a]. The following subsection
summarizes the key points.

3

2.1. STATIC ANALYSIS OF CONCURRENT PROGRAMS

The objective of this analysis technique is to determine,
for a given program, all possible sequences of concurrency
related events. These sequences of concurrency related
events are expressed in terms of concurrency states. A
concurrency state indicates the next synchronization-
related activity to occur in each of a system’s tasks. A
sequence of states presents a history of synchronization
activities for a class of program executions. (The sub-
paths taken internally to a task are irrelevant, as long
as they do not affect the synchronization activities.) The
analysis algorithm can develop a representation of all
possible concurrency histories. From these sequences
information regarding several aspects of a program’s
synchronization structure may be derived. Included are
identification of all the rendezvous that are possible,
detection of any task blockages (deadlocks) that may
occur, and listing of all program activities that may occur
in parallel. For the purposes of this paper, though, it is
the existence of a representation of all possible histories
that is important.

The concepts will be illustrated with an example.
Figure 2 presents an Ada program designed to solve a
version of the familiar Dining Philosophers problem. Five
philosophers are seated at a circular table, alternately
eating and thinking. In order to eat, a philosopher must

vol. 3, n° 4, 1984

acquire the fork to the left of his plate and the fork to
the right. There are only five forks on the table, one bet-
ween each of the five plates. The program of Figure 2
simply models the system. Here each philosopher is a
separate task, as is each fork. The philosopher tasks
request the fork ressources by issuing entry calls. The
program presented is a poor one in the sense that it is
possible for deadlock to occur : if all five philosophers
are able to simultaneously acquire the fork to their left,
then they will all starve while waiting for the fork to the
right. This possibility can be detected using static analysis.

The situation where all the tasks are active, the philo-
sophers are all requesting the left fork, and all the forks
are ready to accept a call on “ Up” is shown in the
following concurrency state :

Main Philosophers Forks

Task { A | K| B| T | S|]O0|1[2]3]4

end Upo | Upy |Up, | Up; | Ups| Up’' | Up' |Up' | Up’ | Up’

Here we abbreviate each philosopher’s name with its first
initial, the entry calls on “ Up ” are subscripted to indi-
cate which fork is requested, and the accept statements
in the forks are marked with an apostrophe (to distin-
guish them from entry calls). The main thread of control
is shown at “ end ”, indicating it is ready to terminate
when all its dependent tasks terminate. Among many
possible actions, the system may progress from this state
to

Main Philosophers Forks

Task| A | K| B | T | S 0 1 {2 3|4

end |Up,| Up,|Up,| Ups| Up, |Down’| Up' |Up' |Up’ | Up’

implying that Aquinas acquired Fork, and is now
requesting Fork,, as is Kierkegaard. Fork, is shown at
“ Down’ ” signifying it is now awaiting a call on Down —
in the model this signifies that it is currently held. Since
Kierkegaard was on the Fork, queue first, it is possible
for the system to progress to

Main Philosophers Forks

Task | A | K| B|T|S}{ 0 [1 |2]3]4

end |Up,|Up,|Up,|Up;|Up,|Down’\Down’|Up'|Up’|Up’

Further consideration of this example reveals that,

after a series of rendezvous, the following state is possi-
ble :

Main Philosophers Forks

Task (A | K|B|T|(S| 0 | 1 |} 2 1 3 | 4

end |Up,|Up,|Ups|Up,|UpyDown’{Down’|Down’|Down’|Down’

This represents the deadlock described earlier. Simple,
automatic analysis of this state will cause the deadlock
to be reported. It is noteworthy that this state isa common

284 DEBUGGING REAL-TIME SOFTWARE

procedure Dining_Philosophers is
type Seat_Assignment Is Integer range 0..4;

task type Fork is
entry Up;
entry Down;
end Fork;

task body Fork is
begin
loop
accept Up;
accept Down;
end loop;
end Fork;

type Array_of F ork is array (0..4) of Fork;

Forks: Array_of_Fork; —this declaration results in the activation of the 5 fork tasks

generic
N: Seat_Assignment;
package Philosopher is
task T;
end;

package body Philosopher is
task body T is

begin
loop
Forks(N).Up; --acquire left fork
Forks((N+1) mod 5).Up; —acquire right fork
delay 1.0; —eating time
Forks(N).Down; —put down left fork
Forks((N+1) mod 5).Down; —put down right fork
delay 1.0; —thinking time
end loop;
end T;

end Philosopher;

package Aquinas is new Philosopher(0);
package Kierkegaard is new Philosopher(1);
package Bonhoeffer is new Philosopher(2);
package Tilich is new Philosopher(3);
package Schaeffer is new Philosopher{4);

begin
null;
end Dining_Philosophers;

—This instantiation of each specific package results
—in the activation of the task contained within
—the package. Each task is activated with the
—~generic actual parameter (0, 1, ..., 4) in place
—of the formal parameter N

Figure 2. — Dining Philosophers, Reserved Seating.

successor of many different earlier states. Moreover it
may not occur until after an extended period of “ eating
and thinking ”. All these possible sequences of states are
revealed by the static analyzer. It makes no assumptions
concerning relative processor speed, scheduler algorithm,
or the like — all possibilities are explored and reported.

Unfortunately static analysis also has several signifi-
cant limitations. First, it must assume that each intra-
task path is executable. This presents no problem in the
example shown, but surely would introduce some non-
realizable event sequences in most real programs. A
second, much more significant limitation, is that static

TSI — Techniaue et Science Informatiques

Applications 085

analysis is accurate only when individual program objets
(especially tasks or entries) can be precisely identified
statically. Program features that cause dynamic identi-
fication, such as access values and subscripts, may be
inadequately handled. In the current formulation of the
analysis algorithm a family of entries is treated as a single
entry. Acess types are not handled at all in the current
version. Again, in this example there was no problem
because of the use of the generic (compile-time) parameter
to determine the “ seating arrangement ”. If the program
had been constructed so that seating positions were
assigned dynamically, then analysis would not have been
as useful. The static analyzer would have computed all
possible concurrency states, using all combinations of
the value of “ N ”. Even though the program may gua-
rantee that no two philosophers simultaneously have the
same value of “ N ”, the static analyzer would neverthe-
less compute such outcomes. Literally thousands of spu-
rious states would result.

Regarding complexity, the algorithm is O (n"), where
T is the number of tasks in the system, and # is the number
of concurrency related statements [Taylor 83b]. One
suspects that normally a very large number of states will
be generated, but we currently do not have any experimen-
tal verification of this. Certainly some program organiza-
tions will lead to fewer concurrency states than others.

Finally, since the analysis conducted is independent
(ignorant) of the target execution environment, the impli-
cations of delay statements, non-zero execution times,
and scheduler algorithms are not taken into account. This
restriction, of course, is also a key advantage : the resuits
produced do not rely on any possibly erroneous assump-
tions about the target environment. Once again, all pos-
sibilities are considered. In fact it is this very characte-
ristic which guarantees that the set of histories produced
by the static analyzer includes the history which led to
the failed target execution that we are attempting to
debug. The problem then, is to determine which history
is the one.

2.2. PATH FINDING STRATEGY

The problem of reconstructing the failed target execu-
tion back on the host is now considered in some detail.
The procedure described below makes few assumptions
about communication between the host and target.
Necessarily the resulting analysis is potentially costly.
After presentation of the basic procedure several optimi-
zations and refinements are described. At the expense
of increasing the communication between the machines
and constraining the structure of the target, substantial
speedup of the reconstruction process is obtained. Fur-
thermore the quality of the reconstruction is improved.

Working from perhaps a memory dump from the target
execution, the first task is to reconstruct the final state
of the program in Ada-level terminology. Ideally the
complete program state F would be “ unloaded ”, yielding
the last value of all variables as well as knowledge of
what tasks were in existence, their status (running,
blocked, etc.) and which instruction in each of these
tasks was to be executed next. However a useful debugging
exercise can be conducted even if only the final concur-
rency state C can be reconstructed. The specifics of this
unloading process will vary from target to target and,
as noted earlier, may not always be possible. When it is
possible, though, the reconstructed state is handed over

Y P

to the host-resident tools which reconstruct the execution
path.

The first step in path reconstruction is static generation
of all concurrency histories H leading from the start state
to C, the final concurrency state. Those are the only histo-
ries to be generated. The static analysis technique des-
cribed earlier can easily be used to do this. The next
step is determination of which of these histories describes
the failed execution. This can be determined as follows.
A host machine execution of the subject program is
initiated. This execution uses as input data the data
values used by the target execution. These values need
not be time-stamped, though they must be in order, and
could be capiured by hardware monitors on the target
machine. Whenever the host execution reaches a point
where a scheduler decision or a time-dependent activity
is required, a decision or activity consistent with a concur-
rency history A, € H is made. Execution then resumes.
This process continues until F (and thus C) is reached,
in which case a candidate valid history has been found
and the process terminates, or else the debugging execu-
tion cannot continue in accordance with /,.

This later situation can be thought of as follows. Let
hy =5,5,53...5,8,4+ ... C where s; is a concurrency
state in history h,, s, is the last concurrency state reached
in the host execution, and the transition from s, to s,
is impossible in the host execution. This means that the
data processed by the program demands that some other
concurrency state s’ be reached from s, (perhaps because
of a path within a particular task). If indeed s, has another
possible successor s’ that leads eventually to C, then that
history h, = s, s, ... s, ... C is pursued, again until
reaching C in the host execution or until the process can
continue no further. If the process stalls yet again. ano-
ther possible history is chosen and pursued. This may
involve backing up before s5,. We are in fact suggesting
that H be traversed in a depth-first manner to guide the
scheduler in exploration of all feasible concurrency his-
tories until the desired one is found.

Note : If the path reconstruction process uses only
the final concurrency state C and not the complete final
state F. then £, the concurrency history « found », may
not be the history &’ that occurred during the target’s
execution. It will be an “ interesting ” history though,
as it characterizes an execution with properties close to /".
Specifically, if /' resulted in a tasking error such as
deadlock, then 4 is a possible execution (with respect to
the same input data) that will also result in that error.
If F is used instead of C, then A is more likely to be h’'
since the value of program variables can be used to
determine the need for further depth-first executions. But
since complete intermediate program states are not
compared between the target execution and the host, one
cannot guarantee that the two are identical.

This entire process poses many difficulties and is poten-
tially expensive. Following are some comments briefly
addressing some of the serious issues.

e If two or more tasks in the program can reference
the same input channel, then all references to that channel
must be shown in the concurrency states of H. In so
doing, all possible patterns of reference to that shared
resource can be examined.

o Ifthe data values read by the target are time-stamped,
then these time-stamps can be used to prune H so that
it only includes histories consistent with the observed
patterns of reference. To take advantage of these time-

286 DEBUGGING REAL-TIME SOFTWARE

stamps all references to input devices must be shown in
the concurrency histories.

e Central to the above strategy is driving the host
execution in accordance with a concurrency history. This
implies the host’s scheduler must be completely control-
lable, and accept a history as controlling input.

e When the debugging execution cannot proceed any
further in connection with a given history, execution is
“ backed up ” to a previous concurrency state and resum-
ed along another history. This implies the (virtual) saving
of complete intermediate program states by the host. Such
states would not actually have to be saved at all concur-
rency state-concurrency state transitions, however, as
states could be recomputed.

e The static analyzer is currently limited in its ability
to generate high-quality histories for programs using
pointers to reference tasks. It can be directed to generate
histories based on all possible references, however, and
rapid pruning may occur when dynamically generated
information is supplied. We intend to further investigate
this issue, and develop more powerful and effective stra-
tegies.

2.3. SPEED-UP THROUGH DYNAMIC ANALYSIS

The above process is somewhat brute force and inele-
gant. But the problem is difficult and the solution scheme
only assumes that the target’s final state can be unloaded
and that input values can be captured. Substantial speed-
up can be obtained by weakening restrictions on the
degree of host-target communication. Namely, if some
information describing the progress of the target can be
gathered during its execution, that information can be
used to prune substantially the set of histories H that
have to be explored on the host.

Most desirable, of course, would be a detailed descrip-
tion of the activities of the target’s scheduler. If it emitted
a message describing its every activity then that would
completely describe the concurrency history. A scheduler
that does this has been constructed at Stanford [German
82]. If messages were only issued intermittently then they
could be used in the history-pruning process. Less desi-
rable but still very helpful would be snapshots of the
target’s memory, or portions thereof. It may be impossible
to obtain any of this additional information, however,
because of constraints the target machine may impose.
The point is that as additional information about the
target execution becomes available both the quality and
speed of the reconstruction process is improved.

2.4. EXECUTION INTRA-TASK

DEBUGGING

VISUALISATION AND

The result of the path reconstruction process is speci-
fication of the concurrency history which occurred on
the failed target execution. Once this is obtained the
analyst has available complete knowledge about what
events took place on the target. The concurrency history
details the scheduler and time-related phenomena, while
the test data determines the actions within individual
tasks. Based on this information a detailed debugging
execution can be initiated, with the purpose of determin-
ing the cause of the error.

Debuggers provide the ability to investigate program
activities in detail : initially one is concerned with seeing
what happens during execution. Further understanding

is often obtained by modifying the execution, such as by
changing a variable’s value, then observing the effect of
the change. We believe that aids which help visualize the
execution of concurrent programs are particularly help-
ful, and briefly present here a few ideas which we think
hold promise. Some issues associated with the construc-
tion of such an animator are briefly presented in a later
section. It is not sufficient, however, to just provide
information about task interaction. The analyst must also
have the ability to look in detail within a given task, and
move readily between these perspectives. We will not
consider techniques for debugging within a task, however,
as that technolosv has been described many places
[HLDB 83].

With respect to animation of concurrent executions,
we envision the following features. The analyst will use
a bit-map terminal, preferably with color display capa-
bilities. One window, always accessible, is a control
menu. The bulk of the screen is devoted to displaying
task interactions. When a task comes into existence a
new rectangle appears on the screen. This task window
is linked to its parent task by an arc, indicating the task
dependency relationship. The priority at which a task
runs is indicated by its color : high priority tasks glow
red while low priority is shown as violet. A full color
spectrum would be used.

Each individual task may have further attributes dis-
played. A candidate set of default attributes may be as
follows. Within a task’s window five lines of program
text are displayed : the first two lines are the two previous-
ly executed statements, the third is the current statement,
and the fourth and fifth are the two statements textually
following the current statement. The size of this window
could of course be varied to display more or less. Each
task may own entries. Each entry owned by a task would
be shown as a labeled rectangle attached to the outside
of the task. When an accept statement for a given entry
is eligible for execution, such as when it appears in a
select statement and its guard is true, the entry rectangle
would be highlighted. Entry calls issued by a task would
appear as dashed arrows from the task issuing the call
to the entry rectangle on the task owning the entry. The
order of entry calls in the queue would be shown by
ordering the arrows on the entry rectangle. When a call is
accepted the appropriate arrow would change from
dashed to solid. The arrow would disappear on rendez-
vous completion. Delay statements (and timed entry calls)
would cause the appearance of a count-down clock in the
task rectangle. Finally, when a task became eligible for
termination its terminate block would glow. Termination
would result in removal of the block from the screen.

With the amount of information listed here it is clear
that the ability to shrink and grow rectangles is important.
Furthermore when the analyst wishes to look in detail
within a single task, then that task’s rectangle should
enlarge, its internal data values should become accessible,
and so forth.

Three key capabilities would be controlled by the
menu items. The first is control of the speed of the anima-
tion. The ability to slow and halt execution is necessary.
The second is to initiate and control intra-task debugging.
The third is to initiate and control inter-task breakpoints.
Breakpoints could be set at specific rendezvous, or parti-
cular task elaborations, for instance. Ability could also
be given for the user to direct execution down another
concurrency history (different from the one which

.~ —_— 2 s B S

Applications

287

occurred on the target machine). Such directions could
correspond to the effects of applying a different scheduler
algorithm.

We are guilty of the charge that the preceding list of
animation capabilities is a “ wish-list 7. We have not
implemented these yet, though we are convinced that it
is a very feasible task. The important point is that provi-
sion of these types of features could make a tremendous
impact in the understanding and debugging of concurrent
programs. Program visualization is an important concept
and we are attempting to delineate worthy goals. Some
noteworthy related work concerning application-specific
animation is being carried out at SRI by Mark Moriconi
[Moriconi 83]. Our work is with application-independent
(structural) animation.

3. Implementation

A host-target debugging system built along the lines
suggested will never achieve its full potential unless it
appears within a comprehensive programming environ-
ment. The full range of debugging activities includes text
editing, file manipulation, and all the subtasks associated
with interpretive or incrementally compiled execution.
Furthermore the scheme we are proposing involves the
integration of an unloader, a static concurrency analyzer,
a “ pruner ”, an interpreter or compiler, a display driver,
and (potentially) dynamic analysis tools. Efficient appli-
cation of the technique will require a well-designed tool
framework.

We are currently engaged in constructing such a system
for Ada programs called Arcturus [Standish 83]. Two
prototype implementations have been created. The current
system provides interactive Ada programming, an intra-
task break package, template-assisted Ada program
editing, command-completion using Ada as a command
language, an integrated program design language/rapid
prototyping system, and performance profiling. We are
now studying ways of implementing the host-target
debugging paradigm and its associated tools.

3.1. SOME IMPLEMENTATION ISSUES

Listed below are a few of the more interesting imple-
mentation details that arise and which must be investigat-
ed further.

e The process of unloading target machine states is,
as mentioned earlier, target-dependent. A particular pro-
blem here is determining the names of tasks inthe machine
state, so that they correspond to the names used on the
host, such as by the static concurrency analyzer. The
unique task is technique of [German 82] potentially offers
a solution.

e The execution animator can be driven by calls from
the scheduler. Whenever the scheduler performs an action,
such as initiating a new task, a message is sent to the
animator describing the state change. The animator then
determines, on the basis of current display options, what
changes to the screen are necessary, and then effects the
changes. Techniques for scrolling program text in the
task rectangles can be taken from existing single process
debugging systems [HLDB 83].

e If the program animator is requested to highlight
all accesses to global variables, including alias references,

4 m A 4O A

then the debugger can adopt a software-implemented
tagged memory architecture. This strategy for dealing
with alias references has been proposed by Johnson
[Johnson 79] in a system for debugging single process
programs.

e The host system must provide software simulators
corresponding to each external input/interrupt to the
target machine. External interrupts to an Ada program
appear as entry calls. Thus one simulator task is required
for each potential source of hardware interrupt to the
target. Sources of external inputs to the target could be
modeled the same way. (Recall that the rate of interrupt
requests/inputs is completely specified in a concurrency
history. Finding the proper * speed ” is thus a part of
finding the desired concurrency history. Note that this
requires all points of external interaction to appear in the
individual concurrency states.)

4. Conclusion

By some estimates [DoD 80] debugging of target
machine executions accounts for 25 %; of total embedded-
system development costs. This high cost can be attri-
buted, at least in part, to a lack of effective tools. This
paper has presented an entirely new approach to host-
target debugging in which debugging of target executions
can be carried out on a host supplying many automated
tools. The basic solution proposed is potentially very
inefficient, but it makes only nominal demands on
knowledge of the target’s activities. As additional infor-
mation about the target’s execution is supplied, the
efficiency of the process increases dramatically because
the search space is drastically pruned. Some program
animation techniques have also been sketched. We
believe the use of animation promotes rapid under-
standing of the actions of a program. Furthermore a
graphic display is an effective device for controlling a
debugging execution.

Design and implementation of the approach described
is under way. Clearly we need to carry out many experi-
mental studies to determine the practical utility of the
various techniques. In particular we need to investigate
additional ways of capturing information about a target’s
execution, using both hardware and software technology,
to guarantee rapid reconstruction of it on the host.
Finally, this study has emphasized the importance of
building extensible, composable programming environ-
ments such that a variety of tools can be applied in an
integrated fashion.

Acknowledgements

Ralph London, Tim Standish, Anne Brindle, Dave
Martin, Jeff Greenburg, and Carol LeDoux all contri-
buted to the formulation of these ideas. This work was
supported in part by the Defense Advanced Research
Projects Agency of the United States Department of
Defense under contract (ONR) N00039-83-C-0567 to the
Irvine Programming Environment Project. The views and
conclusions contained herein are those of the author and
should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency of the U.S.
Government. The support of The Aerospace Corporation
is also gratefully acknowledged.

288 DEBUGGING REAL-TIME SOFTWARE

REFERENCES

[Ada 83] Military Standard Ada Programming Language ;
(ANSI/MIL-STD-1815A-1983), American National
Standards Institute, 22 January 1983.

[DoD 80] DEPARTMENT OF DEFENSE : Requirements for Ada
Programming Support Environments. “ Stoneman ”,
February 1980.

[German 82] Steven M. GerMaN, David P. HELMBOLD and
David C. LUCKHAM : Monitoring for Deadlocks in Ada
Tasking ; Proceedings of the AdaTEC Conf. on Ada,
Arlington, VA (October 1982), 10-25.

[HLDB 83} Proceedings of the ACM SIGSOFT-SIGPLAN
Software Engineering Symposium on High-Level
Debugging, Asilomar, CA, March 1983; Appeared
as Software Engineering Notes, 8 (4), August 1983,

[Hoare 78] C. A. R. HOARE : Communicating Sequential Pro-
cesses ; Communications of the ACM 17 (10) 1978,
666-6717.

[IRTB 81] Industrial Real-Time Basic; Draft Standard. Euro-

pean Workshop on Industrial Computer Systems
(EWICS TC2), 1981.

[Johnson 79] JounsoN, MARK ScoOTT : Translator Design to
Support Run-time Debugging ; Software — Practice
and Experience, 9 (1979) 1035-1041.

[Martin 77] F. MARTIN : HAL/S, The Avionics Programming
System for Shuttle; Proc. AIAA Conference on
Computers in Aerospace, Los Angeles, CA. 1977,
308-318.

[Moriconi 83] Mark Moricont : PegaSys : An Environment
for Displaying, Animating, and Reasoning about gra-
phical Descriptions of Systems; Proceedings of the
Symposium on Software Validation, Darmstadt,
North-Holland, September 1983.

[Standish 83] Thomas A. STANDISH : [Interactive Ada in the
Arcturus Environment ; Ada Letters 3 (1) July, August
1983, 23-35.

[Taylor 83a] Richard N. TAYLOR : A general-purpose Algorithm
Jfor Analyzing Concurrent Programs. Communications
of the ACM, 26 (5) May 1983, 362-376.

[Taytor 83b] Richard N. TayLor : Complexity of Analyzing
the Synchronization Structure of Concurrent Programs.
Acta Informatica, 19, 1983, 57-84.

