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The Micali-Vazirani (MV) algorithm for finding a maximum cardinality matching in general graphs, which
was published in 1980, remains to this day the most efficient known algorithm for the problem. The current
paper gives the first complete and correct proof of this algorithm.

The MV algorithm resorts to finding minimum length augmenting paths. However, such paths fail to
satisfy an elementary property, called breadth first search honesty in this paper. In the absence of this
property, an exponential time algorithm appears to be called for — just for finding one such path. On the
other hand, the MV algorithm accomplishes this, and additional tasks, in linear time. The saving grace is
the various “footholds” offered by the underlying structure, which the algorithm uses in order to perform
its key tasks efficiently.

The theory expounded in this paper elucidates this rich structure and yields a proof of correctness of the
algorithm. It may also be of independent interest, as a set of well-knit graph-theoretic facts.
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1. Introduction The following quote, from Lovász and Plummer’s classic book [22], pg. 12,
provides a nice backdrop for the work reported in this paper:
The concept of an alternating path, although quite simple, is one of the most important in all
of matching theory.
For the significance of this notion in the design of efficient algorithms for matching, as well as

the parallel development of the notion of an augmenting path for flow algorithms, we refer the
reader to [22, 1]. The computational importance of minimum length augmenting paths was first
recognized by Dinitz [5], in the context of flow theory, and this basic idea gave rise to several efficient
maximum flow algorithms, see [1]. Independent and simultaneous works, by Hopcroft and Karp
[15] and Karzanov [19], studied minimum length augmenting paths in the context of matching, and
used this notion to give the most efficient algorithm of its time for maximum matching in bipartite
graphs; see Section 10 for improvements obtained in recent years.
Edmonds [7] defined the notion of blossoms and used it to give the first polynomial time algorithm

for finding a maximum matching in general graphs. His proof of correctness was built around
graph-theoretic facts, which formalize the manner in which augmenting paths traverse blossoms
and their complex nested structure.
The most efficient known algorithm for general graph matching is due to Micali and Vazirani

[24], obtained in 19801. It resorts to finding minimum length augmenting paths and uses the scheme
proposed in [15, 19], see Section 1.2. The blossoms it finds are special and are defined in Section 8;
in contrast, Edmonds’ blossoms do not take into consideration length information and are therefore
inadequate for the purpose of finding minimum length augmenting paths. The description of this
algorithm given in [24], via a pseudo-code, is complete and error-free; however, the paper did not
attempt a proof of correctness.
A proof of correctness was attempted in [34]. That paper correctly recognized the fact that an

elaborate, new theory of alternating paths and blossoms, from the perspective of minimum length
paths, was called for to give such a proof. As detailed in Section 1.1, although that paper made
some important contributions, it had serious shortcomings.
The current paper completes the task started in [34] by presenting the pertinent theory in full

detail and using it to give the first complete and correct proof of the MV algorithm. In Section 1.1 we
state the new ideas underlying this proof. Considering the special status of the maximum matching
problem within the theory of algorithms (see below), it was not appropriate to leave its most efficient
known algorithm in an essentially unproven state. Hence the investment of (substantial) effort to
produce the current paper, notwithstanding the lapse of considerable time since the publication of
the algorithm.
In the case of bipartite graphs, minimum length alternating paths from an unmatched vertex to

a matched vertex can be of one parity only, either even or odd. Consequently, such paths possess an
elementary property, called breadth first search (BFS) honesty in this paper: Let p be a minimum
alternating path from unmatched vertex f to v and let u lie on p. Then the part of p from f to u
is a minimum alternating path from f to u, and not any longer. In the presence of this property,
a straightforward alternating BFS suffices for executing a phase2 in linear time.
In general graphs, the existence of minimum length alternating paths of both parities from an

unmatched vertex to a matched vertex leads to a new difficulty, whose origin lies in the fact that
such paths are not BFS honest. In the situation described above, assume that p is a minimum even
length alternating path from f to v and u lies on p. The issue is that the part of p from f to u can
be arbitrarily longer than a minimum path from f to u, of either parity. This happens because all
minimum paths from f to u contain v at an odd length, see Example 2 in Section 3.2.

1 Section 10 puts this fact in context, by comparing with recent improvements in running times of other combinatorial
optimization problems.

2 See Section 1.2 for a definition.
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As a result, the following fundamental difficulty arises: For finding a minimum augmenting path
in the graph, we need to find arbitrarily long paths to intermediate vertices, even though the latter
do admit short paths, see Section 3. As such, this appears to call for an exponential time3 algorithm.
How then does the MV algorithm accomplish this task within the same time as bipartite graphs,
i.e., linear time for a phase.
The theory expounded in this paper shows how the underlying structure offers several different

“footholds” for the key tasks which the algorithm needs to perform in order to home in on a solution
quickly. The bottom line is that although minimum length alternating paths are not BFS honest,
they are not arbitrarily BFS dishonest. First, Theorem 2 uses the notion of tenacity to carve out
an important case in which vertex u must be BFS honest on path p from f to v. Second, even if
vertex u is not BFS honest on p, it is BFS honest on p w.r.t. a special vertex, called base(u). In
turn, even if base(u) is not BFS honest on p, it is BFS honest on p w.r.t. base(base(u)) = base2(u),
and so on, see Theorems 5 and 6.
Consistent with these simple-looking rules, a myriad situations can arise — illustrated via the

many examples given in this paper — and the algorithm needs to efficiently handle all of them.
Indeed, the structure expounded in this paper lays bare a stark contrast: on the one hand, the
extreme complexity of the problem being handled by the algorithm, and on the other, the simplicity
of the algorithm itself.
Matching has had a long and distinguished history within graph theory and combinatorics,

spanning more than a century and a half [22]. Its algorithmic history is equally long, dating back
to the mid-nineteenth century work of Carl Gustav Jacobi on the bipartite case, as mentioned in
[37]. Its exalted status in the theory of algorithms4 arises from the fact that its study has yielded
quintessential paradigms and powerful algorithmic techniques, which form the foundation of the
modern theory of algorithms, as we know it today. These include definitions of the classes P [8] and
#P [32], the primal-dual paradigm [20], the equivalence of random generation and approximate
counting for self-reducible problems [17], characterizing facets of the convex hull of solutions to a
combinatorial problem [7], the canonical paths argument in the Markov chain Monte Carlo method
[16], and the Isolation Lemma [27, 36].

1.1. Overview and Contributions In this section, we will state the contributions of [34]
and point out the nature of its shortcomings due to which the current paper was called for. We
will also state the contributions of the current paper and discuss the ideas that led to the current
proof.
A number of structural notions and definitions need to be given to state the algorithm and the

proof. Rather than stating them all up-front, we have spread them over sections in which they are
put to use for the first time. The elementary ones, pertaining to minimum length alternating paths,
are given in Section 3.1. Section 4 gives definitions required for stating the algorithm, primary
among them being tenacity of vertices and edges, and the classification of edges into props and
bridges.
The algorithm itself involves two main ideas: the new search procedure called double depth first

search (DDFS) and the precise synchronization of events. The former is described in Section 2 in
a completely self-contained manner, so it can be read without reading the rest of the paper. The
latter is described in Section 9.1.
Section 8 gives the central notions of base of a vertex and base of a blossom; these are essential

to the proof of correctness of the algorithm and for clarifying the “footholds” mentioned in the
Introduction. As described in Section 8.1, in order to define the base of a vertex v, we need to show

3 Recall that the problem of finding long paths, such as a Hamiltonian path, is NP-hard.

4 See Section 10 for the role played by matching in game theory and economics.
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that the set B(v), defined in Definition 17, is a singleton. However, its proof requires the notion
of a blossom and its associated properties. On the other hand, blossoms can be defined only after
defining the base of a vertex. Therefore, we are faced with a severe “chicken-and-egg” problem.
Our proof resolves this problem by carrying out an induction on tenacity. This is done in the

central structural theorem, Theorem 3. The induction basis, for the lowest tenacity vertices in the
graph, is given in Section 8.2. It shows that for such vertices v, B(v) is a singleton; this unique
vertex is defined to be base(v). The proof of this fact is not straightforward and is accomplished
by using DDFS in an appropriate setting. Indeed, one of the main innovations of the current paper
is the use of this procedure, not only in the algorithm, but also for its proof.
Once the base of the lowest tenacity vertices is well-defined, the blossoms containing these

vertices can be defined and properties of these blossoms and properties of paths traversing through
them can be established. In the induction step, which is carried out in Section 8.3, these facts are
established for higher tenacity vertices.
As mentioned above, the heart of the proof involves using DDFS in an appropriate setting; the

latter is a graph obtained from the given graph. The graph in which the induction basis is carried
out is far simpler than the one in which the induction step is carried out, because the latter contains
blossoms defined in the previous steps of the induction. Because of this simplicity, the induction
basis plays the role of a crucible in which proof techniques can be developed with relative ease
for the various claims. Furthermore, as detailed below, we can determine the “correct” order in
which these proofs need to be carried out. In the proof of the induction step, we first apply a
transformation on previously defined blossoms, see Definition 26, after which the structure of the
proofs becomes similar to those in the induction basis and these proofs are omitted, unless they
contain a significant new insight.
The following steps were taken to render the algorithm easier to comprehend:

1. For ease of comprehension, DDFS has been described in the simpler setting of a directed,
layered graph H. In the algorithm, DDFS is run on the original graph G. However, describing
DDFS on G is too cumbersome; this was done in [34]. Instead, we provide a mapping from
G to H in Section 5.3 via which the reader can easily trace the steps DDFS executes in
G. Interestingly, this cosmetic-looking idea had a far-reaching conceptual consequence, as
discussed below.
2. To further help the reader, in the many illustrative examples given, the distance of

vertices from unmatched vertices is proportional to their minlevels, as would be the case in
the corresponding layered graph H. Thus the unmatched vertices belong to the lowest level.
3. Wherever possible, procedures are described in plain English. For example, DDFS is

described in English in Section 2; readers who prefer to understand it via a pseudocode can
find it in [34].
4. The structural definitions given in this paper are of two types: purely graph-theoretic

ones and algorithmic ones; the latter depend on the manner in which ties are resolved in a
run of the algorithm. Whereas the former include base and blossom, the latter include petal
and bud, see Section 5.2. We have demarcated these two types of definitions and in Section
9.2 we have pointed out relationships between them.

At a high level, [34] also accurately identified the interplay between the notions of tenacity, base,
blossom and bridge. However, the actual definitions given for some of these notions were incorrect.
For example, in [34], the central notion of base of a vertex was defined for any vertex of finite
tenacity. However, it turns out that there may be vertices of finite tenacity which have no base, e.g.,
see Example 14. In the current paper, base has been defined only for vertices of eligible tenacity,
see Definition 15 for this notion. Theorem 3 in [34] “proves” that every vertex of finite tenacity has
a well-defined base – it is obviously incorrect. Furthermore, Theorem 3 in [34] is incorrect even for
vertices of eligible tenacity.
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The errors in the proofs given in [34] can be traced back to three reasons; we provide them below
together with the ways we get around them in the current paper.
1. [34] failed to identify the “chicken-and-egg” problem stated above and tried to “prove” several

facts in a stand-alone manner. As mentioned above, the current paper rectifies this problem by
carrying out an induction on tenacity, in Theorem 3, proving all these fact for lower tenacity
vertices before moving to higher tenacity vertices.
2. The expository idea of describing DDFS in the simpler setting of a layered graph had an

unexpected consequence: it led to two breakthrough ideas for the proof. First, use of the power of
DDFS, and second, doing the proof in the simpler setting of graphs H ′

m and H ′
t. As a result of the

latter, we avoid dealing with the debilitating complexity of the original graph G= (V,E), unlike
[34].
The induction basis is carried out in graph H ′

m. Then, the non-trivial definitions of predt and
pred∗

t , given in Definition 26, help finesse the lower tenacity blossoms, which were defined in
previous induction steps, to yield the graph H ′

t in which the induction step is carried out. All the
facts established are then“ported” back to G using the mapping between these graphs and G, see
Sections 8.2.1 and 8.3.1.
These ideas qualitatively changed5 the nature of the proofs: instead of dealing with individual

alternating paths, which can get arbitrarily complicated, leading to incorrect proofs, we now deal
with the very precise and potent information provided by the DDFS Certificate, as proven in
Theorem 1.
3. The mindset in [34] was the following: The culminating fact which needed to be proven was

the existence of a bridge of the right tenacity on a maxlevel path6, and a variety of other structural
facts needed to be established prior to that. This order turns out to be incorrect. As mentioned
above, in the current paper, the order is dictated by the proof of the induction basis, carried out in
graph H ′

m; its simple structure makes transparent the “right” order of implications, see Section 8.2.
This is the right order for the induction step as well, see Section 8.3. In particular, the existence
of a bridge is the first, and not the last, fact we establish in the induction basis, as well as in the
induction step.

1.2. Running Time and Related Papers The simplest scheme for finding a maximum
matching is to start with the empty matching, and iteratively find augmenting paths and augment
the current matching. When there is no such path, the matching must be maximum; this is shown
in [2]. In order to improve the running time, [15, 19] proposed finding multiple augmenting paths
in each iteration as stated in Definition 1.
Definition 1. (Phase) In a graph G = (V,E) with matching M , a phase consists of finding

a maximal set of disjoint minimum length augmenting paths and augmenting M along all paths
found.
As shown in [15, 19], O(

√
n) phases suffice7 for finding a maximum matching. These papers also

show how to implement a phase in O(m) time in a bipartite graph, thereby getting a total running
time of O(m

√
n). The MV algorithm executes a phase in almost linear time. Its precise running

time is O(m
√
n ·α(m,n)) in the pointer model, and O(m

√
n) in the RAM model (see Theorem 8

for details).
We note that small theoretical improvements to the running time, for the case of very dense

graphs, have been given in recent years: O(m
√
nlog(n2/m)/logn) [14] and O(nw) [26] where w

5 In a sense, the current proof owes its existence to a chance event: our attempt at simplifying the exposition of
DDFS.

6 This viewpoint is not unreasonable, e.g., see Section 9.4.

7 As is standard, n denotes the number of vertices and m the number of edges in the given graph.
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is the best exponent of n for multiplication of two n× n matrices. The former improves on MV
for m = n2−o(1) and the latter for m = ω(n1.85). However, the latter algorithm involves a large
multiplicative constant in its running time which comes from the use of fast matrix multiplication
as a subroutine, thereby making the small improvement in the exponent not very meaningful.
Prior to [24], [9] had used the idea of finding augmenting paths in phases to obtain an O(n2.5)

maximum matching algorithm. However, their algorithm is extremely complicated and its correct-
ness is hard to ascertain, in particular because there is no journal version of this result.
Subsequent to [24], [11] gives an efficient scaling algorithm for finding a minimum weight match-

ing in a general graph with integral edge weights and at the end of the paper, it claims that the
unit weight version of their algorithm achieves the same running time as MV; see also [12]. The
rest of the history of matching algorithms is very well documented and will not be repeated here,
e.g., see [22, 34].

2. Double Depth First Search (DDFS) This section is fully self-contained and describes
the procedure of double depth first search (DDFS). For ease of comprehension, we have presented
DDFS in the simplified setting of a directed, layered graph H. In the MV algorithm, DDFS is
run on the original graph G, which is far more complex. In G, DDFS terminates with either a
new blossom — more precisely, a new petal — or the existence of a new augmenting path. These
correspond to Case 1 and Case 2, detailed below. We will provide an explicit mapping between the
two settings in Section 5.3.
The input to DDFS is a directed, layered graph H = (V,E). V is partitioned into h+1 layers, for

some h> 0. The layers are numbered from 0 to h and are named l0, . . . , lh, with l0 being the lowest
layer and lh the highest layer. The layer number of a vertex v is denoted by l(v). We will assume
that for each v ∈ V , l(v) is easily available; in fact, it can be obtained in unit time. If l(v)< l(u),
then we will say that v is deeper than u. Each directed edge (u, v) ∈ E runs from a higher to a
lower layer, not necessarily consecutive, i.e., l(u)> l(v). V contains two special vertices, r and g,
for red and green, not necessarily in the same layer, and neither of them in l0. See Figure 1 for a
layered graph with h= 7.
At a high level, the objective of DDFS is to grow two DFS trees, Tr and Tg, rooted at r and

g, respectively, in such a way that Tr and Tg share at most one vertex and the deepest vertex
(vertices) in the two trees is (are) “as deep as possible”. Furthermore, this needs to be done in time
that is linear in the sum of the sizes of the two trees. Because of the DDFS Requirement, stated
below, it is trivial to grow any one tree very deep, all the way to the lowest layer, l0. However, this
will not achieve the more interesting and useful objective stated above. For that, we grow each tree
in such a way that it does not “block off” the other tree, by growing them in a highly coordinated
manner; the latter is the main point of DDFS.
We require that H satisfies:

DDFS Requirement: Starting from every vertex v ∈ V , there is a path to a vertex in layer l0.

Vertex v will be called a bottleneck if every path from r to l0 and every path from g to l0 contains
v; v is allowed to be r or g or a vertex in layer l0. Let p be a path from r or g to layer l0. Since
layer numbers on p are monotonically decreasing, if there is a bottleneck, the one having highest
level must be unique. It will be called the highest bottleneck and we will denote it by b. If H has
a bottleneck, we will say that we are in Case 1. Otherwise, there must be distinct vertices r0 and
g0 in layer l0 such that there are vertex-disjoint paths from r to r0 and g to g0; this will be called
Case 2.
As stated above, in the MV algorithm, these two cases correspond to the creation of a new petal

and the discovery of a new augmenting path, respectively. In the graph of Figure 1, DDFS will
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r g

Figure 1. Layered graph H with r and g in layer l7.

terminate in Case 1, with bottleneck b, as shown in Figure 2. In the graph of Figure 3, which differs
from the graph of Figure 1 only in the two edges going from c to g0, DDFS terminates in Case 2,
with disjoint paths from r to r0 and g to g0.
In Case 1, let Vb (Eb) be the set of all vertices (edges) that lie on all paths from r or g to b. In

Case 2, let Ep be the set of all edges that lie on all paths starting from r or g and ending at r0 or
g0.

The objective of DDFS: The first objective of DDFS is to determine which of these two cases
holds. Additional objectives of DDFS in the two cases are:
Case 1: DDFS needs to find the highest bottleneck, b, and partition the vertices in Vb−{b} into

two sets SR and SG, called the red set and green set respectively, with r ∈ SR and g ∈ SG. These
sets should satisfy:
1. There is a path from r to b in SR ∪ {b} and a path from g to b in SG ∪ {b}.
2. There are two spanning trees, Tr and Tg, in SR ∪ {b} and SG ∪ {b}, and rooted at r and g,

respectively. Furthermore, DDFS needs to find such a pair of trees.
Case 2: DDFS needs to find distinct vertices r0 and g0 in layer l0, and vertex disjoint paths

from r to r0 and g to g0. In this case, as soon as DDFS finds these two paths, it halts, even if it has
not traversed all edges of Ep, since a new augmenting path has already been found. Let E′

p ⊆Ep

denote the edges which DDFS has actually traversed.

The two DFS trees: DDFS involves the coordinated growth of two DFS trees, the red tree Tr

and the green tree Tg, rooted at r and g, respectively. At each point in the algorithm, each tree has
a well-defined center of activity, i.e., the vertex it is currently exploring. These are denoted by Cr

and Cg and are initialized to the two roots, r and g, respectively. When a center of activity is at
a vertex u and is ready to move, it must be the case that the color of u is the same as that of the
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center of activity. If the center moves to a vertex v, the edge (u, v) is assigned to the corresponding
tree and given the color of the center.
Therefore, each edge (u, v) has the same color as that of u, i.e., all edges out of u will get the

color of u. Note however that the color of v may be different from that of u. Figure 2 shows Tr

and Tg after DDFS has been performed on the graph of Figure 1. Tr consists of broken edges and
Tg consists of solid edges; the edge from b to l0 is in neither tree. Note that b is in both trees and
gets neither color.
At termination, DDFS provides the following certificate.

DDFS Certificate: In Case 1, for every vertex v ∈ Vb − {b}, if v is red, there is a path from r to
v in Tr and a disjoint path from g to b in Tg. And if v is green, there exists a path from g to v in
Tg and a disjoint path from r to b in Tr. In Case 2, there are vertex disjoint paths from r to r0 and
g to g0 having colors red and green, respectively.

Running time: The running time of DDFS needs to be O(|Eb|) in Case 1 and O(|E′
p|) in Case 2.

r g
1 2

3 4

5

6

8
7

9
10

11 12
13 14

b

a

c

Figure 2. DDFS executed from r and g terminates in Case 1 with bottleneck b. Edge numbers indicate the order of
traversal of the edges.

Coordinated growth of the two trees: We will first describe aspects of DDFS in which the
two trees function as “normal” DFS trees in a directed graph, and then we will describe their
coordination; in particular, the coordination determines, at each step, which tree grows. Initially,
all vertices, other than r and g, are marked “unvisited” and all edges are marked “unexplored”.
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Every vertex in Tr ∪ Tg, other than r, g, and b, has a unique parent; r and g have no parent
and b has two parents, one of each color. Assume that Cr = u and it is Tr’s turn to grow. If so, Tr

picks an unexplored edge, say (u, v), out of u. If v is already marked “visited” and Cg ∕= v, then Tr

picks another unexplored edge out of u. If v is marked “unvisited”, then v is marked “visited”, u
is designated the parent of v, and Cr moves to v. The last case, i.e., v is already marked “visited”
and Cg = v is dealt with below. When all outgoing edges from u have been explored, Cr backtracks
from u to its parent if u ∕= r; the case u= r is dealt with below. The growth of Tg is analogous.
Since H is acyclic, the trees have no back edges.
We next describe the coordination between the two trees. We will adopt the (arbitrary) con-

vention that Cr will “try to keep ahead of” Cg, and Cg will “try to catch up”. Following this
convention, the moves of Cr are as follows: If l(Cr)> l(Cg), then Cr keeps moving until the first
time that l(Cr)≤ l(Cg). If l(Cr) = l(Cg) and Cr ∕= Cg, then Cr moves one step and stops; at this
point, l(Cr) < l(Cg). If Cr = Cg, the two centers of activity have met and this case is described
below. The moves of Cg are as follows: If l(Cr)< l(Cg), then Cg keeps moving until the first time
that l(Cg)≤ l(Cr) and then it stops.

When the two centers of activity meet: As stated above, when one of the centers of activity
traverses an edge, the edge is assigned to the corresponding tree and is assigned its color.
However, the assigning of color to a vertex is not so straightforward and is not done in a greedy

manner. Indeed, a vertex v may first be added to one tree and later this decision may be reverted;
this happens if Cr and Cg meet at v8. We will adopt the convention that when this happens, first
Cg backtracks and tries to find an alternative path that is as deep as v. If it fails, then Cg occupies
v and Cr tries to find an alternative path that is as deep as v. If Cr also, fails, then it must have
backtracked all the way to the root r and DDFS terminates.
We will explain these moves in detail via Figure 2. In this figure, the numbers on the edges

indicate the order in which they are added to the two trees. Observe that the two centers of activity
meet for the first time at a. At this point, DDFS needs to determine if a is the highest bottleneck,
and if not, then which of the trees can find an alternative path at least as deep as a, so search may
resume. By the convention established above, Cg tries first. After it backtracks all the way to g, it
traverses edges number 5 and 6 and arrives at a vertex that is as deep as a, and DDFS resumes.
The two centers of activity meet for the second time at vertex c. This time, Cg backtracks all

the way to g, without finding an alternative path. As per our convention, Cg now occupies c and
Cr tries to find an alternative path as deep as c.
However, at this stage, we need to introduce an important notion, namely the pointer Barrier.

Its purpose is to prevent Cg from backtracking from a vertex more than once. At the start of
DDFS, the Barrier is initialized to g. At this stage, since Cg has backtracked from c all the way to
g, i.e., the current position of the Barrier, it is now moved to c.
Next, the two centers of activity meet at b. By our convention, b is first given to Tr and Cg

attempts to find an alternative path. However, it backtracks all the way to the Barrier, which
is currently at c, without success. At this point, the Barrier is moved to b, b is given to Tg and
Cr attempts to find an alternative path. However, it backtracks all the way to r without finding
an alternative path. At this point, we conclude that b is the bottleneck. In general, when Cr

backtracks all the way to r, DDFS terminates in Case 1 and the current meeting point is declared
the bottleneck.

8 Observe that either of the trees could have arrived at v first. This happens despite our convention that Cr keeps
ahead of Cg — the reason is that Cg may have used a long edge to arrive at v before Cr. In Figure 2, this happens
when the two trees meet at vertex c.
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Figure 3. DDFS executed from r and g terminates in Case 2.

In Figure 3, after backtracking from b, Cg does manage to find an alternative path as deep as b,
when it explores edge number 15. At this point, DDFS resumes and Cr reaches r0 in layer l0 and
Cg reaches g0 in that layer, hence terminating in Case 2.

Theorem 1. DDFS accomplishes the objectives stated above in the required time.

Proof : In Case 1, tree Tr contains paths consisting of red colored vertices from r to b and from
r to each red vertex. A similar claim holds about tree Tg. In Case 2, there is a path consisting of
red colored vertices from r to r0 in tree Tr and there is a path consisting of green colored vertices
from g to g0 in tree Tg. Therefore, the DDFS Certificate holds.
Finally, it is easy to see that each edge of H is explored by at most one tree and if so, only once.

Clearly, Tr backtracks from each vertex at most once and because of the Barrier, the same holds
for Tg as well. The theorem follows. □

3. Elementary Definitions and a Fundamental Notion In Section 3.1, we will present
some elementary definitions pertaining to minimum length augmenting paths. Using these defi-
nitions, in Section 3.2 we present the property of breadth first search honesty, due to which an
alternating BFS works in bipartite graphs, yielding a linear time algorithm for a phase. The lack
of this property in non-bipartite graphs necessitates a much more complex algorithm.

3.1. Elementary Definitions A matching M in an undirected graph G= (V,E) is a set of
edges no two of which meet at a vertex. Our problem is to find a matching of maximum cardinality
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in the given graph. Henceforth all definitions will be w.r.t. a fixed matching M in G. Edges in M
will be said to be matched and those in E−M will be said to be unmatched. Vertex v will be said
to be matched if there is a matched edge incident at it and unmatched otherwise.
An alternating path is a simple path whose edges alternate between M and E−M , i.e., matched

and unmatched. An alternating path that starts and ends at unmatched vertices is called an
augmenting path. Clearly the number of unmatched edges on such a path exceeds the number of
matched edges on it by one9. Its significance lies in that flipping matched and unmatched edges
on such a path leads to a valid matching of one higher cardinality. Edmonds’ matching algorithm
operates by iteratively finding an augmenting path w.r.t. the current matching, which initially is
assumed to be empty, and augmenting the matching. When there are no more augmenting paths
w.r.t. the current matching, it can be shown to be maximum.
The MV algorithm finds augmenting paths in phases as proposed in [15, 19]. In each phase,

it finds a maximal set of disjoint minimum length augmenting paths w.r.t. the current matching
and it augments along all paths. [15, 19] show that only O(

√
n) such phases suffice for finding a

maximum matching in general graphs. The remaining task is designing an efficient algorithm for a
phase.
Definition 2. (Length of Minimum Length Augmenting Path) Throughout, lm will denote

the length of a minimum length augmenting path in G; if G has no augmenting paths, we will
assume that lm =∞.

Definition 3. (Evenlevel and oddlevel of vertices) The evenlevel (oddlevel) of a vertex v,
denoted by evenlevel(v) (oddlevel(v)), is defined to be the length of a minimum even (odd) length
alternating path from an unmatched vertex to v; moreover, each such path will be called an
evenlevel(v) (oddlevel(v)) path. If there is no such path, evenlevel(v) (oddlevel(v)) is defined to be
∞.
We will typically denote an unmatched vertex by f . Its evenlevel is zero and its oddlevel is

the length of the shortest augmenting path starting at f ; if no augmenting path starts at f ,
oddlevel(f) = ∞. The length of a minimum length augmenting path w.r.t. M is the smallest
oddlevel of an unmatched vertex.
Definition 4. (Maxlevel and minlevel of vertices) For a vertex v such that at least one of

evenlevel(v) and oddlevel(v) is finite, maxlevel(v) (minlevel(v)) is defined to be the bigger (smaller)
of the two.
Definition 5. (Outer and inner vertices) A vertex v with finite minlevel is said to be outer if

evenlevel(v)< oddlevel(v) and inner otherwise.
Definition 6. (Odd and even w.r.t. p) Let p be an alternating path from unmatched vertex

f to v and let u lie on p. The length of path p, denoted by |p|, is the number of edges on p. The
part of p from f to u will be denoted by p[f to u] and p[f to u) will denote the part of p from f
to the vertex just before u. Other combinations are self-explanatory. We will say that vertex u is
even w.r.t. p if |p[f to u]| is even and it is odd w.r.t. p if |p[f to u]| is odd.
Example 1. In the figures hereafter, matched and unmatched edges are drawn with broken

and solid lines, respectively. Additionally, unmatched vertices are drawn with a small circle, e.g.,
vertex f in Figure 4. The numbers in this figure indicate the evenlevels and oddlevels of vertices,
with missing numbers being infinity.

3.2. The Notion of BFS Honesty Let p be an alternating path from unmatched vertex f
to v. We will say that p is a minimum alternating path if |p|= evenlevel(v) (|p|= oddlevel(v)) if |p|
is even (odd).

9 Observe that if M = ∅, then any edge is an augmenting path, of length one.
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Figure 4. The evenlevels and oddlevels of vertices are indicated; missing levels are ∞.

Breadth first search (BFS) honesty is the following property: Let p be a minimum alternating
path from unmatched vertex f to v and let u lie on p. Then p[f to u] is a minimum alternating
path from f to u. Bipartite graphs satisfy this property, and as a consequence, a straightforward
alternating BFS suffices for finding minimum augmenting paths, see Section 4, or for a complete
description, see Section 2.1 in [34].
Surprisingly enough, this elementary property does not hold in non-bipartite graphs, as illus-

trated in Example 2. This basic difference arises because in bipartite graphs, minimum length
alternating paths from an unmatched vertex f to a vertex v can be of one parity only, either even
or odd, but in non-bipartite graphs, they can be of both parities. As a result, the following may
happen: Let p be an evenlevel(v) path from f to v and let u lie on it with |p[f to u]| being odd,
say. Then p[f to u] can be arbitrarily longer than an oddlevel(u) path. The reason is that every
oddlevel(u) path, say q, contains v at an odd length, and extending q to v to get an even length
path will result in a self-intersecting path, see Example 2. Consequently, for the graph in Figure
5, we would need to find longer and longer odd-length alternating paths from f to w in order to
find minimum length alternating paths from f to other vertices, e.g., u and v.
In summary, the following fundamental difficulty arises: For finding a minimum length augment-

ing path, we need to find arbitrarily long paths to intermediate vertices, even though the latter
do admit short paths. As such, this appears to call for an exponential time algorithm. Recall that
finding short paths is easy and long paths is hard, e.g., Hamiltonian path is NP-hard.
Example 2. In Figure 5, oddlevel(w) = 7. An evenlevel(v) path is shown in this figure. Observe

that w occurs at a length of 11 on this path. Also observe that v occurs at an odd length on the
oddlevel(w) path. It will be instructive for the reader to find an evenlevel(u) path; observe that w
occurs at a length of 9 on it.

4. Some Essential Definitions As mentioned in the Introduction, in order to implement a
phase in linear time in non-bipartite graphs, we need to exploit the elaborate structure offered by
minimum length alternating paths. In this section, we present some facts that are absolutely nec-
essary to describe the MV algorithm. The proof of correctness of the algorithm requires additional
structural properties, presented in Section 8.
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Figure 5. Vertices w,a, b and u are not BFS honest on the evenlevel(v) path shown via arrows.

Definition 7. (Tenacity of vertices and edges) Define the tenacity of vertex v, tenacity(v) =
evenlevel(v) + oddlevel(v). If (u, v) is an unmatched edge, then tenacity(u, v) = evenlevel(u) +
evenlevel(v)+ 1, and if it is matched, tenacity(u, v) = oddlevel(u)+ oddlevel(v)+ 1.
The notion of tenacity is central to the structural facts that follow. Clearly tenacity(f)≥ lm for

an unmatched vertex f , see Definition 2 for the notion of lm. Furthermore, tenacity(f) = lm if and
only if f participates in a minimum length augmenting path.
Definition 8. (Minimum tenacity of a vertex in G) Throughout, tm will denote the tenacity

of a minimum tenacity vertex in G.
Clearly tm ≤ lm. If tm = lm, the situation is particularly simple, since there are no blossoms and

essentially the bipartite graph algorithm works for executing a phase. Henceforth we will assume
that tm < lm.
Example 3. In Figure 6, the tenacities of vertices are marked. They are α= 13, β = 15, γ = 17

and δ=∞. In Figure 7, the tenacities of edges are marked. They are α= 13, β = 15 and γ = 17.
Definition 9. (Predecessor, prop and bridge) Consider a minlevel(v) path and let (u, v) be

the last edge on it; clearly, (u, v) is matched if v is outer and unmatched otherwise. In either case,
we will say that u is a predecessor of v and that edge (u, v) is a prop. An edge that is not a prop
will be defined to be a bridge.
Definition 10. (The relations pred and pred∗) Let v be a vertex such that minlevel(v) is finite.

If v is an outer vertex, it will have a unique predecessor, namely its matched neighbor; otherwise,
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Figure 6. The tenacity of vertices is indicated; here α=
13, β = 15, γ = 17 and δ=∞.
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Figure 7. The tenacity of each edge is indicated; here α=
13, β = 15 and γ = 17.

it will have one or more predecessors. The relation pred is defined as follows: we will say that u
is pred v if u is a predecessor of v; we will also write is as u= pred v. The relation pred∗ is the
reflexive, transitive closure of the relation pred. If u is pred∗ v, we will also write is as u=pred∗ v.
Example 4. In Figure 5, the two horizontal edges and the oblique unmatched edge at the top

are bridges and in Figure 9, (w,w′) and (u, v) are bridges; the rest of the edges in these two graphs
are props. In Figure 8, edge (u, v) is a bridge. This bridge is unusual because u is pred∗v, even
though u is not pred v.
Definition 11. (The support of a bridge) Let (u, v) be a bridge of tenacity t≤ lm. Then, its

support is defined to be

support(u, v) = {w | tenacity(w) = t and ∃ a maxlevel(w) path containing (u, v)}.

Example 5. In the graph of Figure 6, the supports of the bridges of tenacity α,β and γ are
the sets of vertices of tenacity α,β and γ, respectively. In the graph of Figure 8, the tenacity of
bridge10 (u, v) is 13 and its support consists of two vertices, v and its matched neighbor. In Figure
9, the supports of the bridges (w,w′) and (u, v) are all vertices of tenacity 11 and 13, respectively.
Observe that in Figure 9, f is not in the support of any bridge and tenacity(f) =∞.

5. A Description of the MV Algorithm The MV algorithm executes phases as defined in
Section 1.2. Each phase starts with the matching, say M , computed in the last phase. Its most basic
task is to find the minlevel and maxlevel of all vertices reachable from the unmatched vertices. For
this purpose, the algorithm calls the procedures MIN and MAX iteratively as described below.

10 This bridge is very unusual: on the one hand neither endpoint of a bridge is a predecessors of the other and on the
other hand, in the case of this bridge, one of its endpoints u=pred∗v, as per Definition 10.
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v

u

Figure 8. Edge (u, v) is a bridge.

Figure 9. Edges (w,w′) and (u, v) are bridges, with the latter being an anomaly bridge.

In this section, we have described the MV algorithm using only the definitions stated in Section
4. However, in some places, more clarity results from using notions that are defined later in the
paper; if so, we have referred to the appropriate definitions. The reader is advised to get a broad
idea of the algorithm on first reading and occasionally return to this section while reading the rest
of the paper.

5.1. Procedures MIN and MAX At the beginning of a phase, all unmatched vertices are
assigned a minlevel of 0, the rest are assigned a temporary minlevel of ∞. No vertices are assigned
maxlevels at this stage. The algorithm for a phase is organized in search levels, denoted by i,
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starting at 0. At each search level, MIN executes one step of alternating BFS and is followed by
MAX, which executes DDFS, if needed. See Algorithm 1 for a summary of the main steps.
If i is even (odd), MIN searches from all vertices, u, having an evenlevel (oddlevel) of i along

incident unmatched (matched) edges, say (u, v). If edge (u, v) has not been scanned before, MIN
will determine if it is a prop or a bridge as follows. If v has already been assigned a minlevel of
at most i, then (u, v) is a bridge. Otherwise, v is assigned a minlevel of i + 1, u is declared a
predecessor of v and edge (u, v) is declared a prop. Note that if i is odd, v will have only one
predecessor – its matched neighbor, and if i is even, v will have one or more predecessors.
Once an edge is identified as a bridge, if MIN is able to ascertain its tenacity, say t, then the

edge is inserted in the list of bridges of tenacity t, Br(t). MIN is able to ascertain the tenacity of
a bridge as long as it is not an anomalous bridge, as defined below; in the latter case, MAX finds
the tenacity of this bridge. Task 2 in Theorem 7 proves that by the end of execution of procedure
MIN at search level i, the algorithm would have identified every bridge of tenacity 2i+1.

Algorithm 1 At search level i:

1. MIN:

For each level i vertex, u, search along appropriate parity edges incident at u.
For each such edge (u, v), if (u, v) has not been scanned before then
If minlevel(v)≥ i+1 then
minlevel(v)← i+1
Insert u in the list of predecessors of v.
Declare edge (u, v) a prop.

Else declare (u, v) a bridge,
and if tenacity(u, v) is known, insert (u, v) in Br(tenacity(u, v)).

End
End

2. MAX:

For each edge in Br(2i+1):
Find its support using DDFS.
For each vertex v in the support:
maxlevel(v)← 2i+1−minlevel(v)
If v is an inner vertex, then

For each edge e incident at v which is not prop,
if its tenacity is known, insert e in Br(tenacity(e)).

End
End

End

After MIN is done, procedure MAX calls DDFS with each bridge of tenacity 2i+1 and finds the
support of this bridge. In the process, DDFS finds all vertices, v, having tenacity(v) = 2i+1. Since
their minlevels are at most i, they are already known, and hence maxlevel(v) = 2i+1−minlevel(v)
can be easily computed. Clearly, if minlevel(v) is evenlevel(v) then maxlevel(v) will be oddlevel(v)
and if minlevel(v) is oddlevel(v) then maxlevel(v) will be evenlevel(v).
Example 6. For each bridge in the first five figures, its tenacity gets ascertained by MIN

(including the bridge (u, v) in Figure 8). We next explain the notion of an anomalous bridge via
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the graph in Figure 9. At search level 4, MIN searches from vertex u along edge (u, v) and realizes

that v already has a minlevel of 3 assigned to it. Moreover, u got its minlevel from its matched

neighbor. Therefore, MIN correctly identifies edge (u, v) to be a bridge. However, it is not able

to ascertain tenacity(u, v) since evenlevel(v) is not known at this time. At search level 5, after

conducting DDFS on bridge (w,w′) (of tenacity 11), MAX will assign maxlevel(v) = 8, which is

also evenlevel(v). Therefore, at that time, tenacity(u, v) will be ascertained to be 13 by MAX and

edge (u, v) is inserted in Br(13). Thus (u, v) is an anomalous bridge.

Let us explain this notion in more general terms. Let (u, v) be an unmatched bridge such that the

evenlevel of one of the endpoints, say v, has not been determined at the point when MIN realizes

that (u, v) is a bridge; if so v must be an inner vertex. The evenlevel of v will be determined by

MAX at search level (tenacity(v)− 1)/2 and at this point, tenacity(u, v) is ascertained and the

edge is inserted in Br(tenacity(u, v)). An important point to note in Figure 9, is that tenacity(v)<

tenacity(u, v). This ensures that maxlevel(v) is known at search level (tenacity(v) − 1)/2, i.e.,

before the search level at which bridge (u, v) needs to be processed by MAX, namely search level

(tenacity(u, v)− 1)/2.

Assume that DDFS is processing a bridge of tenacity 2i+ 1 and vertex v is in its support. If

v is inner and has an incident unmatched edge (u, v) which is not a prop, then it must be an

anomalous bridge. MAX will ascertain its tenacity and insert it in Br(tenacity(u, v)). Note that

tenacity(u, v)> 2i+1 and bridge (u, v) will need to be processed in a higher search level.

Let lm be the length of a minimum length augmenting path in a phase. Then during search level

jm, where lm = 2jm +1, a maximal set of such paths is found. This is described in Section 5.4.

Figure 10. A new petal-node is created after DDFS is performed on bridge (r1, r2).
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5.2. The Notions of Petal and Bud Assume that DDFS is called with a bridge (u, v) of
tenacity t and it terminates in Case 1. Then the bottleneck b found is called a bud. Note that b will
always be an outer vertex. The set of vertices of tenacity t encountered by DDFS, which must lie
in the support of (u, v), form a new petal. Formally, the petal consists of all vertices in the support
of (u, v) minus the supports of all bridges processed thus far in this search level (which will all be
of tenacity t). Clearly a vertex is included in at most one petal.
Example 7. In the graph of Figure 10, MAX will call DDFS with the bridge (r1, r2), which is

of tenacity 9, at search level 4. The two DFSs will be rooted at r1 and r2, and DDFS will terminate
in Case 1 with b as the highest bottleneck. The four vertices which constitute the support of bridge
(r1, r2) form the new petal and b is the bud of this petal. Observe that b does not belong to this
petal.
When a new petal is found, the algorithm executes the following steps: It creates a new node,

called petal-node; this has the shape of a doughnut in Figure 10. All vertices of the new petal
point11 to the petal-node; b is not in the petal and does not point to the petal-node. The new
petal-node points to the two endpoints of its bridge, r1 and r2, and to its bud, b. These pointers
will enable the algorithm to:
1. Skip over this petal in future DDFSs.
2. Efficiently find an alternating path through the petal.

Figure 11. The bud formed when DDFS is performed on
bridge (l1, l2); its bud is b.

Figure 12. The bud and blossom formed when DDFS is
performed on bridge (r1, r2); their bud and base is f .

Definition 12. (The bud of a vertex) Define a function bud : V → V as follows. If vertex v is in
a petal then bud(v) = b, where the bud of this petal is b, and if v is not in a petal, then bud(v) = v.
At any point in the execution of the algorithm, the function bud∗(v) is defined recursively as
follows: If bud(v) = v then bud∗(v) = v, else bud∗(v) = bud∗(bud(v)). Clearly, bud∗(v) will keep
changing as the algorithm proceeds.

11 To avoid cluttering up Figure 10, only two vertices are pointing to the petal-node.
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The notions of petal and bud are intimately related to the notions of blossom and base. Whereas
the first pair is algorithmic — the exact petals and buds found depend on the manner in which
the algorithm resolves ties — the second pair is purely graph-theoretic. The relationship between
these notions is established in Section 9.2. Here we simply note that a blossom is a union of petals
and the base of a vertex v will be bud∗(v) at the end of MAX in search level (t − 1)/2 where
tenacity(v) = t.
Example 8. In the graph of Figure 11, the two bridges (l1, l2) and (r1, r2) are of the same

tenacity. The algorithm will break this tie arbitrarily and perform DDFS on these bridges in one of
the two orders. In Figures 11 and 12, the order is (l1, l2) first and (r1, r2) second; these figures show
the petals and buds found after DDFS is performed on the first and second bridge, respectively.
Observe that b does not belong to the first petal but it does belong to the second petal. The
blossom is the union of both petals and its base is f . The reader is encouraged to work out the
petals if DDFS is performed on these bridges in the reverse order.

5.3. The Mapping from Graph G to H We will give a succinct description of this mapping
here; for a more in-depth treatment, see Sections 8.2.1 and 8.3.1. Each time DDFS is called, a new
directed graph H is defined. It is a function of the bridge that triggers the current DDFS and the
petals which have been found so far. A well-chosen subset of the vertices of G will form the vertices
of H. For each vertex v of G that is chosen, its name in H will be vH and we will define its level,
l(vH) =minlevel(v).
Assume that DDFS is called with bridge (r, g). Then H must have the two vertices bud∗(r) and

bud∗(g)12. The rest of H is recursively defined as follows. If minlevel(v) > 0 then corresponding
to each predecessor u of v in G, H has the vertex bud∗(u) and the directed edge (v,bud∗(u)). If
minlevel(v) = 0 then l(vH) = 0 and vH has no outgoing edges. It is easy to confirm that H satisfies
the DDFS Requirement. For details see Sections 8.2.1 and 8.3.1.
Example 9. In the graph of Figure 13, DDFS called with bridge (u, v) ends in Case 2: the two

centers of activity terminate at distinct unmatched vertices, f1 and f2. This indicates the presence
of a minimum length augmenting path between f1 and f2. The next task is to find such a path.
Example 10. All bridges considered so far had non-empty support. However, this will not be

the case in a typical graph, e.g., consider bridge (a, b) of tenacity 17, in Figure 14. Clearly the
support of this bridge is ∅. DDFS will discover this right away since the two endpoints of this
bridge have the same bud∗, i.e. bud∗(a) = bud∗(b). Whether a bridge has empty support is not
known a priori — it will become clear only after DDFS is performed on this bridge. Therefore,
DDFS needs to be performed on every one of the bridges.

5.4. Finding Augmenting Paths The MV algorithm will find augmenting paths during
search level jm, where lm = 2jm + 1 and lm is the length of a minimum length augmenting path
in the current phase. DDFS on some bridges of tenacity lm will end in Case 2, i.e., no bottleneck
is found. We note that not every bridge of tenacity lm leads to an augmentation — DDFS on a
bridge of tenacity lm can end in Case 1 as well, i.e., a bottleneck is found.

5.4.1. Finding one augmenting path In Figure 15, minlevel(u)>minlevel(v) and therefore
edge (u, v) is an anomalous bridge. When DDFS is performed on this bridge, assume that the red
DFS trees has root u. Since v is already in a petal with bud∗(v) = b, the green DFS tree will have
root b. The two trees will simply follow predecessors and will terminate at f1 and f2, respectively.
A DFS from u in the red tree will yield a path from u to f1, say p1. Since v is in a petal with

bud∗(v) = b, the algorithm needs to find an alternating path from v to b, say p2, starting with a

12 It is possible that bud∗(r) = bud∗(g). This happens if the bridge (r, g) has empty support and therefore a new petal
is not formed, e.g., see Example 10.
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Figure 13. DDFS on the bridge (u, v) terminates with
two unmatched vertices, f1 and f2, leading to an augmen-
tation.

Figure 14. The tenacities of all four bridges is indicated.
Bridge (a, b) has empty support.

matched edge, i.e., of even length. The construction of this path is described below13. Additionally,
the algorithm needs to find a path, say p3, from b to f2 in the green tree of the DDFS performed
on bridge (u, v). Then, the complete augmenting path from f1 to f2 will be p−1

1 ◦ (u, v) ◦ p2 ◦ p3.
Clearly, p1 and p3 are easy to find.
We next describe how to find p2. The algorithm observes that evenlevel(v) = maxlevel(v) and

therefore p2 must use the bridge of the petal containing v. Using the petal node, the algorithm
finds the endpoints of this bridge, namely c and d. It notices that c and v have the same color,
say red. Therefore, it looks for a path from c to v in the red tree and a path from d to b in the
green tree. For finding the latter path, it jumps from w to bud∗(w) at the moment when DDFS
was called with the bridge (c, d), since that will be the next node in the green tree. The latter node
is a14. Next, the algorithm continues searching from a in the green tree and follows predecessors
till it reaches b.
To find the complete path from d to b, the algorithm must find a path from a to w in the

smaller petal15. This time, it observes that evenlevel(w) =minlevel(w) and therefore the required
path does not use the bridge of the smaller petal. Instead it is found by doing a DFS in the green
tree, assuming that the color of w was green in the DDFS conducted on bridge (w,w′). Then p2 is
obtained by concatenating the path from v to c with (c, d) with the path from d to b. The latter
consists of (d,w) concatenated with the path from w to a concatenated with the path from a to b.

13 In the language of Definition 21, p−1
2 is an evenlevel(b;v) path.

14 Observe that bud∗(w) right after DDFS is performed on bridge (c, d) is b.

15 Again, in the language of Definition 21, this is an evenlevel(a;w) path.
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Figure 15. Constructing a minimum length augmenting path between unmatched vertices f1 and f2.

One last step in the process of finding an augmenting path, which could not be described since
it requires Definition 25, is stated in Remark 5 in Section 8.3.1.
Example 11. In Figure 16, we have added one edge to the graph of Figure 5, namely (v, f ′)

and the unmatched vertex f ′. The evenlevel(v) path, which starts at f , followed by edge (v, f ′)
yields the unique augmenting path in this figure. Therefore, finding evenlevel(v) in Figure 5 was
not just an academic matter. However, the MV algorithm will not find this path by following the
arrows in the figure; instead it will use the bridges and blossoms as detailed above. In particular,
the bridge of tenacity γ = 17, as shown in Figure 7, triggers a DDFS which will find this path by
skipping over the blossom of tenacity β = 15.

5.4.2. Finding a maximal set of disjoint paths After the first path, say p, is found,
its vertices are removed. As a result, there may be other vertices that cannot be on minimum
length augmenting paths that are disjoint from p. These vertices are recursively removed using
the procedure RECURSIVE REMOVE which works as follows: First, all vertices of p and all
edges incident at them are removed. If as a result there is a matched vertex v which has no more
predecessors, it is removed. This process is continued until there are no more such vertices. Finally,
all isolated unmatched vertices are removed.
At this point MAX will process the next bridge of tenacity lm. When it encounters another

bridge which makes DDFS terminate in Case 2, it finds another augmenting path. This continues
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Figure 16. The evenlevel(v) path, which starts at f , followed by edge (v, f ′) is an augmenting path.

until all bridges of tenacity lm are processed. Lemma 24 shows that this will result in a maximal
set of paths of length lm.

6. Relationship between the Tenacity of an Edge and Tenacities of its Endpoints
The relationship depends on whether the edge is matched or unmatched, and in the latter case,
whether it is a prop or a bridge. The answer in each case is significant and will influence the proof
of the main theorem, Theorem 3, given in Sections 8.2 and 8.3. It will also help establish facts
which give the correct way of synchronizing events in the algorithm, presented in Section 9.1.

Lemma 1. Let (u, v) be a matched edge of finite tenacity. Then evenlevel(v) = oddlevel(u) +
1 and tenacity(v) = tenacity(u, v). Furthermore, (u, v) is a bridge if and only if oddlevel(u) =
oddlevel(v) = i, where tenacity(u, v) = 2i+1.

Proof : Let p be an oddlevel(u) path. If v lies on p then (u, v) must also lie on p, since p is
an alternating path. If so, p is not a simple odd length alternating path to u, giving a contra-
diction. Therefore, v does not lie on p and hence p ◦ (u, v) is a minimum even length alternating
path to v. Therefore, evenlevel(v) = oddlevel(u) + 1 and similarly evenlevel(u) = oddlevel(v) + 1.
Therefore tenacity(v) = evenlevel(v)+oddlevel(v) = oddlevel(u)+1+oddlevel(v) = tenacity(u, v) =
evenlevel(u)+ oddlevel(u) = tenacity(u).
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Now, there are two cases, either one of u or v has an oddlevel of < i or oddlevel(u) = oddlevel(v) =
i. In the first case, assume oddlevel(u)< i. If so, u is a predecessor of v and (u, v) is a prop. In the
second case, neither endpoint is a predecessor of the other and (u, v) is a bridge. Finally, if (u, v)
is a bridge, the first case cannot apply. Therefore oddlevel(u) = oddlevel(v) = i. □
Remark 1. As a consequence of Lemma 1, in several proofs, restricting attention to only one

of the end points of a matched edge (u, v) will suffice, since evenlevel(v) and oddlevel(v) fully
determine the two levels of u.

Lemma 2. Let (u, v) be an unmatched edge of finite tenacity and assume that u is a predecessor
of v. Then tenacity(v) = tenacity(u, v).

Proof : We will show that oddlevel(v) = evenlevel(u) + 1. If so, tenacity(v) = evenlevel(v) +
oddlevel(v) = evenlevel(v) + evenlevel(u) + 1 = tenacity(u, v), thereby proving the lemma. Since v
is getting its minlevel from the unmatched edge (u, v), minlevel(v) = oddlevel(v) and therefore v is
an inner vertex.
Since u is a predecessor of v, there is an oddlevel(v) path, say q, that ends with the edge (u, v).

Now, oddlevel(v) = |q| and evenlevel(u)≤ |q|− 1. Therefore, oddlevel(v)> evenlevel(u).
Let p be an evenlevel(u) path. First assume that v lies on p. If v is odd w.r.t. p16, then

oddlevel(v)< evenlevel(u), a contradiction. Therefore, v is even w.r.t. p. But then evenlevel(v)<
evenlevel(u) implying that evenlevel(v)< oddlevel(v) and that v is an outer vertex, another con-
tradiction. Therefore v does not lie on p. Therefore p ◦ (u, v) is an oddlevel(v) path and therefore
oddlevel(v) = evenlevel(u)+ 1 holds, giving the lemma. □

Lemma 3. Let (u, v) be an unmatched bridge. Then:
1. tenacity(v)≤ tenacity(u, v).
2. If tenacity(v) = tenacity(u, v) then v is an outer vertex.

Proof : 1). We will show that oddlevel(v)≤ evenlevel(u)+1. If so, adding evenlevel(v) to both
sides of this inequality we will get tenacity(v)≤ tenacity(u, v).
Let p be an evenlevel(u) path starting at unmatched vertex f , say. If v lies on p, there are two

cases. If v is odd w.r.t. p, then p[f to v] is an odd length alternating path from f to v and therefore
oddlevel(v)≤ |p[f to v]|< |p|= evenlevel(u).
Next assume that v is even w.r.t. p. Then p[f to v]◦ (v,u) is an odd length alternating path from

f to u. Clearly the length of this path is less than that of p, implying that u is an inner vertex. If
this path were an oddlevel(u) path, then v would be a predecessor of u, implying that (u, v) is a
prop and contradicting the fact that (u, v) is a bridge. Therefore oddlevel(u)< |p[f to v]|+1. Let q
be an oddlevel(u) path which starts at unmatched vertex f ′, say, where f = f ′ is allowed. Let w be
the first vertex of q that lies on p[v to u]. If w is odd w.r.t. p then q[f ′ to w] ◦ p[w to u] is an even
length alternating path from f ′ to u of length less than |p|= evenlevel(u), giving a contradiction.
Therefore w is even w.r.t. p. If so, q[f ′ to w] ◦ p[w to v] is an odd length alternating path from f ′

to v of length less than |p|. Therefore oddlevel(v)< evenlevel(u).
Next, assume that v does not lie on p. Then, p ◦ (u, v) is an odd length alternating path from f

to v. Therefore oddlevel(v)≤ evenlevel(u)+ 1.
2). Assume that tenacity(v) = tenacity(u, v). Then oddlevel(v) = evenlevel(u) + 1. If v were an

inner vertex, then oddlevel(v) = minlevel(v) and the previous equality implies that u is a prede-
cessor of v and (u, v) is a prop, leading to a contradiction. Therefore v is an outer vertex. □

16 For this notion, see Definition 6.
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Remark 2. Let (u, v) be an unmatched edge and let u be a predecessor of v. Then tenacity(u)
can be smaller than, equal to, or bigger than tenacity(u, v). The first case is illustrated by prop
(r1, l2) and the third case by the props out of f in Figure 10. Let (u, v) be an unmatched bridge and
assume that tenacity(v)< tenacity(u, v). Then v can be an inner or an outer vertex. The bridge
(a, b) in Figure 14 illustrates both possibilities; although (a, b) has empty support, it is easy to
show this for bridges with non-empty support as well.

7. Limited BFS-Honesty Consider a minimum length alternating path, p, from unmatched
vertex f to a vertex v; p is allowed to be of either parity. The notion of tenacity enables us to
characterize a subset of vertices of p that are BFS honest on p, namely all vertices on p whose
tenacity is at least as large as that of v. This BFS-honesty will be critically exploited later.
Definition 13. (even/odd w.r.t. p) Let p be an evenlevel(v) or oddlevel(v) path starting at

unmatched vertex f and let u lie on p. Then |p[f to u]| will denote the length of this path from f
to u, and if it is even (odd) we will say that u is even (odd) w.r.t. p.
Definition 14. (BFS honesty on p) Let p be an evenlevel(v) or oddlevel(v) path starting at

unmatched vertex f and let u lie on p. We will say that u is BFS honest on p if |p[f to u]| =
evenlevel(u) (oddlevel(u)) if u is even (odd) w.r.t. p.
Example 12. Observe that the graphs of Figures 5 and 6 are identical, with vertex names

given in the former and vertex tenacities in the latter. The vertices u and v are BFS honest on all
evenlevel and oddlevel paths to the vertices of tenacity α. However, the two vertices of tenacity α
that lie on the evenlevel(u) and evenlevel(v) paths are not BFS honest on these paths.

Theorem 2. Let p be an evenlevel(v) or oddlevel(v) path starting at unmatched vertex f
and let vertex u ∈ p with tenacity(u) ≥ tenacity(v). Then u is BFS honest on p. Furthermore, if
tenacity(u)> tenacity(v) then |p[f to u]|=minlevel(u).

Proof : Assume w.l.o.g. that p is an evenlevel(v) path and that u is even w.r.t. p (by Lemma
1). Suppose u is not BFS honest on p, and let q be an evenlevel(u) path, i.e., |q| < |p[f to u]|.
First consider the case that evenlevel(v) = maxlevel(v), and let r be a minlevel(v) path. Let u′

be the matched neighbor of u. Consider the first vertex of r that lies on p[u′ to v]. If this vertex
is even w.r.t. p then oddlevel(u)≤ |r|+ |p[u to v]|. Additionally, evenlevel(u)< |p[f to u]|, hence
tenacity(u)< tenacity(v), leading to a contradiction. On the other hand, if this vertex is odd w.r.t.
p then minlevel(v) = |r|> evenlevel(u), because otherwise there is a shorter even path from f to
v than evenlevel(v). We combine the remaining argument along with the case that evenlevel(v) =
minlevel(v) below.
Consider the first vertex, say w, of q that lies on p(u to v] – there must be such a vertex because

otherwise there is a shorter even path from f to v than evenlevel(v). If w is odd w.r.t. p then
we get an even path to v that is shorter than evenlevel(v). Hence w must be even w.r.t. p. Then,
q[f to w] ◦ p[w to u] is an odd path to u with length less than evenlevel(v), where ◦ denotes the
concatenation operator. Again we get tenacity(u)< tenacity(v), leading to a contradiction.
We next prove the second claim of the theorem. First consider the case that evenlevel(v) =

minlevel(v), and assume for contradiction that |p[f to u]| = maxlevel(u). Then tenacity(u) < 2 ·
maxlevel(u)< 2 · |p[f to v]|= 2 ·minlevel(v)< tenacity(v), a contradiction.
Therefore, evenlevel(v) = maxlevel(v). As before, let r be a minlevel(v) path, and consider the

first vertex of r that lies on p[u to v]. If this vertex is even w.r.t. p then oddlevel(u)≤ |r|+ |p[u to v]|.
Hence tenacity(u)≤ tenacity(v), which leads to a contradiction. On the other hand, if this vertex
is odd w.r.t. p then minlevel(v) = |r|> evenlevel(u), because otherwise there is a shorter even path
from f to v than evenlevel(v). Now the claim follows because otherwise tenacity(u)< tenacity(v).
□

Corollary 1. Let p be an evenlevel(v) or oddlevel(v) path and let u lie on p. If u is not BFS
honest on p then tenacity(u)< tenacity(v).
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8. Base, Blossom and Bridge Recall Definitions 2 and 8 which defined lm and tm as the
length of a minimum length augmenting path and the tenacity of a minimum tenacity vertex,
respectively. As noted earlier, tm ≤ lm and the case tm = lm is trivial. For the rest of the paper,
we will deal with the main case, namely tm < lm; Example 14 explains the importance of this
assumption. In Definition 15, we introduce the notion of eligible tenacity. Theorem 3 helps establish
the central notions of base and blossom for vertices of eligible tenacity.
Definition 15. (Eligible tenacity) An odd number t, with tm ≤ t < lm, will be said to be an

eligible tenacity.
Definition 16. (Higher and lower on a path) Let v be a vertex and p be an evenlevel(v) or

oddlevel(v) path; assume it starts at unmatched vertex f . If u and w are two vertices on p and if u
is further away from f on p than w, then we will say that u is higher than w and w is lower than
u on p.
Definition 17. (The set B(v)) Let v be a vertex of eligible tenacity and p be an evenlevel(v)

or oddlevel(v) path starting at unmatched vertex f . Let t= tenacity(v) and consider all vertices
of tenacity > t on p; clearly, this set contains f . Among these vertices, define the highest one to be
the base of v w.r.t. p, denoted by F (p, v). Clearly, F (p, v) is even w.r.t. p, and by Theorem 2, it is
an outer vertex. Finally define:

B(v) = {F (p, v) | p is an evenlevel(v) or oddlevel(v) path}.

8.1. Central Structural Facts As mentioned in Section 1.1, the central structural fact
needed to prove correctness of the algorithm is the following:

∗ For every vertex v such that tenacity(v) = t and tm ≤ t≤ lm, every maxlevel(v) path contains
a bridge of tenacity t.
The proof of this fact requires several other structural facts. Among them, the most important

one is the following:
∗ For a vertex v of eligible tenacity, the set B(v) is a singleton.
Once this fact is proven, we can define the base of v to be the vertex in B(v) and move on to

defining the notion of a blossom and proving its properties. However, the proof of this fact is not
straightforward because of the following “chicken and egg problem”: On the one hand, the proof of
this fact requires the notion of blossom and its associated properties, and on the other, blossoms
can be defined only after defining the base of a vertex.
We will break this deadlock by proving this fact via an induction on eligible tenacities. Once

this fact is proven for vertices of tenacity ≤ t, the base of vertices of tenacity ≤ t can be defined.
Following this, blossoms of tenacity t can be defined and properties of these blossoms, and properties
of paths traversing through these blossoms, can be established. These properties are then used to
prove this fact for tenacity t+2.

8.2. The Induction Basis This section is devoted to proving the induction basis for Theorem
3. This involves proving all statements mentioned in Theorem 3 for the case t= tm; each statement
is proven in a separate lemma. For this purpose we will define a subgraph of G, namely H ′

m. Its
structure is fairly simple, thereby making the proofs easy. In contrast, the analogous graph to be
handled for the induction step is considerably more complex. The saving grace is that the proofs
for the base case provide much insight on how to proceed with the induction step.

Lemma 4. Let (u, v) be an edge of tenacity tm. Then (u, v) is a bridge if and only if
minlevel(u) =minlevel(v) = i, where tm = 2i+1.

Proof : If (u, v) is matched, the claim follows by Lemma 1. Next assume that (u, v) is unmatched.
If so, tenacity(u, v) = evenlevel(u)+evenlevel(v)+1. First assume (u, v) is a bridge. Since the tenac-
ity of a vertex cannot be less than tm, by Lemma 3, tenacity(u) = tenacity(v) = tenacity(u, v), and u
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and v are both outer vertices. Therefore, minlevel(u) = evenlevel(u) and minlevel(v) = evenlevel(v).
Therefore, oddlevel(v) = evenlevel(u)+ 1 and oddlevel(u) = evenlevel(v)+ 1.
Since tm = 2i + 1, minlevel(u) = evenlevel(u) ≤ i and minlevel(v) = evenlevel(v) ≤ i. Assume

one of them has minlevel < i, say u. Then, oddlevel(v) = evenlevel(u) + 1 ≤ i. This implies that
evenlevel(v)< i, since v is outer, giving tenacity(v)< 2i, a contradiction. Therefore, minlevel(u) =
minlevel(v) = i.
Next, assume minlevel(u) = minlevel(v) = i. Since (u, v) is an unmatched edge of tenacity tm,

evenlevel(u) + evenlevel(v) + 1 = tm. Therefore evenlevel(u) = evenlevel(v) = i. Now, since (u, v)
unmatched, u is not a predecessor of v and v is not a predecessor of u. Therefore (u, v) is a bridge.
□

Lemma 5. Let v be a vertex of tenacity tm and p be a maxlevel(v) path. Then p contains a
unique bridge of tenacity tm.

Proof : Assume that p starts at unmatched vertex f . Let q be a minlevel(v) path and assume it
starts at unmatched vertex f ′, which may or may not be the same as f . If p and q meet only at v
then f ∕= f ′ and p◦ q is an augmenting path of length tm, leading to a contradiction. Therefore the
intersection of p and q contains vertices in addition to v. Let u be the highest vertex of p[f to v)
that is also on q.
Now there are two cases. If u= f , then f = f ′ and p and q meet at two vertices, namely u= f

and v. Next assume that u ∕= f . If so, u is matched and p must contain the matched edge incident
at u. Therefore the vertex u must be even w.r.t. p. By definition, tenacity(u)≥ tm, and therefore by
Theorem 2, u is BFS honest on p as well as q. Therefore, evenlevel(u) = |p[f to u]|. If u is odd w.r.t.
q, then oddlevel(u) = |q[f ′ to u]| thereby implying that tenacity(u)< |p ◦ q|= tm, a contradiction.
Therefore u is even w.r.t. q as well and |q[f ′ to u]|= evenlevel(u).
Therefore in both cases, p[u to v] ◦ q[v to u] is an odd length cycle having two unmatched edges

incident at u and is fully matched otherwise. By concatenating p[f to u] to an appropriate subpath
of this cycle, we can obtain even and odd alternating paths to all vertices of this cycle, other than
u. For any vertex w ∕= u on this cycle, the sum of the lengths of the even and odd paths is tm.
Therefore, these must be minimum length alternating paths and tenacity(w) = tm. Furthermore,
since this cycle has length at least 3, evenlevel(u) = |p[f to u]|< i.
Assume that this odd cycle has length 2k+1 and number its edges consecutively, starting at u.

Let (w,w′) be the k+1st edge, i.e., the middle edge. Then clearly, minlevel(w) =minlevel(w′) = i.
Therefore, by Lemma 4, (w,w′) is a bridge of tenacity tm. Clearly, besides w and w′, no other
vertices on p can have minlevel of i. Therefore there are no other bridges of tenacity tm on it. □
Note that in the proof given above, v ∈ support(w,w′). In general, v may lie in the support of

several bridges of tenacity tm.

8.2.1. The Graphs Hm and H ′
m Proving that the set B(v) is a singleton is not straight-

forward even for vertices of tenacity tm. A major simplification is achieved by using the power of
DDFS — in particular, the DDFS Certificate provided on its termination. DDFS is carried out on
a special directed, layered graph Hm, which satisfies the DDFS Requirement. We start by defining
Hm and a closely related graph, H ′

m; the latter is a subgraph of G.
Let Um = {v ∈ V | tenacity(v) = tm}. Let Bm denote the set of all bridges of tenacity tm and let

Tm denote the set of end points of bridges in Bm.

Lemma 6. Let v ∈ Tm and let p be a minlevel(v) path. Then all edges on p are props.

Proof : Assume that p starts at unmatched vertex f and let u be any vertex on p other than v.
Clearly tenacity(u)≥ tenacity(v) and therefore by Theorem 2, u is BFS honest on p. Furthermore
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|p[f to u]|=minlevel(u), since otherwise tenacity(u)< tenacity(v). Therefore p gives minlevels to
all vertices on it and hence all its edges are props. □
Consider each vertex v ∈ Tm and let p denote an arbitrary minlevel(v) path. Denote by Vm the

union of all vertices on all such paths p for all vertices v ∈ Tm. Furthermore, denote by Pm the
union of all edges on all such paths p. By Lemma 6, all edges in Pm are props in the original graph
G. Define H ′

m = (Vm, (Pm ∪Bm)) and define a matching in H ′
m as follows: edge e ∈ (Pm ∪Bm) is

matched if and only if e is matched in G. Clearly, H ′
m is a subgraph of G.

The next definition is related to Definition 10.
Definition 18. (The relations predm and pred∗

m) If u∈Um, v ∈ Vm and v is a predecessor of u,
then we will say that v is predm of u, denoted by v=predm(u). Observe that under this definition,
we do not allow tenacity(u)> tm; tenacity(u) must be tm. On the other hand, tenacity(v)> tm is
allowed and v may even be an unmatched vertex. Next let u ∈ Um and v ∈ Vm, with u ∕= v, such
that there is a path from u to v in H ′

m and all vertices on this path are in Um, except possibly v.
Then we will say that v is pred∗

m of u, denoted by v=pred∗
m(u).

Lemma 7. For every v ∈Um, H
′
m contains all possible evenlevel(v) and oddlevel(v) paths that

are present in G.

Proof : We will use the fact that, by construction, H ′
m contains all possible minlevel(u) and

maxlevel(u) paths for all vertices u∈ Tm.
For v ∈Um, let p and q be minlevel(v) and maxlevel(v) paths, respectively, in G, which start at

unmatched vertex f , say. Let (u,u′) be the unique bridge of tenacity tm on q, with u′ being higher
than u on q; for definition of “higher on a path” see Definition 16. Then, q[f to u] is a minlevel(u)
path and therefore it is present in H ′

m. Furthermore, p◦ q[v to u′] is a minlevel(u′) path and is also
present in H ′

m. Therefore H ′
m contains p and q, hence proving the lemma. □

Next we will define the directed, layered graph Hm. For each edge (u, v) ∈ Pm, direct it from v
to u if u is a predecessor of v. To keep notation simple, we will denote this set of directed edges
by Pm as well; the context will easily clarify which graph is being referred to.
We will partition Vm into i+1 layers numbered 0, . . . , i, where tm = 2i+1 and the layer number

of v ∈ Vm is l(v) =minlevel(v). Let Hm = (Vm, Pm). Observe that each edge of Hm runs from a layer,
say l, to l− 1, i.e., it is of unit length. In contrast, the graph Ht, defined in Section 8.3.1, has long
edges. It is easy to check that Hm satisfies the DDFS Requirement. We will use the information
obtained from DDFS on Hm to find minlevel and maxlevel paths in H ′

m. The mapping between
the vertices of Hm and H ′

m is the obvious one.
Corresponding to each bridge (u, v)∈Bm, conduct DDFS in Hm starting at u and v, and denote

by k(u,v) the bottleneck found. Clearly, each bottleneck is an outer vertex. Note that two different
bridges may have the same bottleneck. Using the DDFS Certificate and the mapping between Hm

and H ′
m we get:

Lemma 8. Let bridge (u, v)∈Bm and let w ∈ support(u, v). Then:
1. w=pred∗

m(u) or w=pred∗
m(v) or both.

2. k(u,v) =pred∗
m(w).

Procedure Bottleneck: The input to this procedure is a bridge (u, v)∈Bm.
Conduct DDFS in Hm, starting at u and v, to find the bottleneck k(u,v).
If tenacity(k(u,v))> tm, HALT.
Otherwise, there is a bridge of tenacity tm, say (u′, v′), such that k(u,v) ∈ support(u′, v′). Conduct
DDFS on bridge (u′, v′) to find its bottleneck, k(u′,v′). Clearly, minlevel(k(u′,v′))<minlevel(k(u,v)),
and k(u′,v′) = pred∗

m(k(u,v)). If tenacity(k(u′,v′)) = tm repeat this process until a bottleneck, say b,
is encountered which has tenacity > tm. This is bound to happen because the minlevels of the
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bottlenecks are decreasing and eventually the bottleneck will turn out to be an unmatched vertex,
say f , and f satisfies tenacity(f)≥ lm > tm.
Example 13. Let us illustrate Procedure Bottleneck on the graph of Figure 18. When called

with bridge (u,u′), the bottleneck found is b′. However, tenacity(b′) = tm = 15 and b′ is in the
support of (v, v′). DDFS on this bridge will result in the bottleneck of b. Since tenacity(b)> 15,
the procedure halts and b is the base of the endpoints of both bridges.
The vertex b identified by Procedure Bottleneck is very special, as will be established next. It is

called a base; a formal definition is given below. Clearly, b is an outer vertex. In general, H ′
m will

have a number of bases.
For each base b in H ′

m, define the set

Sb,tm = {v ∈Um | b is pred∗
m of v}.

Observe that b /∈ Sb,tm and if b, b′ are two bases in H ′
m then Sb,tm ∩ Sb′,tm = ∅. The next lemma is

implied by Lemma 1 and the fact that set Sb,tm is defined via Procedure Bottleneck.

Lemma 9. Let v ∈ Sb,tm and let v′ be the matched neighbor of v. Then v′ ∈ Sb,tm.

Lemma 10. Let v ∈ Sb,tm. Then every evenlevel(v) and oddlevel(v) path in the graphs H ′
m and

G consists of an evenlevel(b) path followed by an alternating path using vertices of Sb,tm.

Proof : Let (u,u′)∈Bm be a bridge of tenacity tm whose endpoints are in Sb,tm , and let p be any
minlevel(u) path. By Lemma 8 and the procedure given above, p−1 starts at u and follows down
predecessors until it arrives at k(u,u′). If k(u,u′) ∕= b, p−1 follows down predecessors until it arrives
at b. In either case, the rest of p−1 is an evenlevel(b) path followed in reverse. Therefore, p has the
structure described in the statement of the lemma.
Next, assume that v ∈ Sb,tm and let p and q be minlevel(v) and maxlevel(v) paths in G. Using the

arguments given in Lemma 7, q ◦ p−1 can be decomposed into minlevel(u) and minlevel(v) paths
and the unique bridge on q. Now, by the assertion made above, p and q also have the structure
described in the statement of the lemma. □

Corollary 2. For every v ∈Um, the set B(v) is a singleton.

Definition 19. (The base of a vertex of tenacity tm and basal vertices) For each v ∈Um, define
base(v) to be the unique vertex, say b, in the set B(v). We will say that the base of v is b. Each
such vertex b will be called a basal vertex. Clearly, b is an outer vertex and tenacity(b)> tm.
Example 14. In the graph of Figure 17, vertices u and v do not have a base, even though they

are of finite tenacity. Clearly tenacity(u) = tenacity(v) = tenacity(f1) = tenacity(f2) = 3 and the
graph has no vertex of tenacity greater than 3. Since lm = 3, u and v are not of eligible tenacity;
this explains why they do not have a base. The following question arises: can f1 be viewed as the
base of u and v, even though its tenacity is the same as that of u and v? A negative answer is easy
to see after adding unmatched edge (f2, v), since then the graph has minlevel(v) and maxlevel(u)
paths which don’t contain f1.
Definition 20. (Blossom of tenacity tm and base b) Let b be a basal vertex as defined in

Definition 19. Then the blossom of tenacity tm and base b is the set Bb,tm = {v ∈Um | base(v) = b}.
Clearly, Bb,tm ∕= ∅, Bb,tm = Sb,tm , b /∈ Bb,tm and for each vertex v ∈ Bb,tm , b= pred∗

m(v). The next
fact follows from Lemmas 1 and 9.

Corollary 3. Let (u, v) be a matched edge of tenacity tm. Then u and v have the same base,
say b, and both belong to the same blossom of tenacity tm, namely Bb,tm.

Example 15. Blossoms of tenacity tm can be quite complex, as illustrated in Figure 18, even
though they do not contain nested blossoms. This blossom has two bridges of tenacity tm, both
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Figure 17. Vertices u and v have no base. The tenacity of bridge (u, v) is 3 and so is the tenacity of u, v, f1 and f2.

having non-empty support, and therefore it will have two petals, see Section 5.2 for this notion.
The exact petals will depend on the order in which DDFS is conducted on bridges (u,u′) and
(v, v′).
Definition 21. (Shortest path from a base to a vertex of tenacity tm) Let v ∈ Um and b =

base(v). Then by an evenlevel(b;v) (oddlevel(b;v)) path we mean a minimum even (odd) length
alternating path in G from b to v that starts with an unmatched edge.

Figure 18. The set of vertices having base b form a blossom of tenacity 15 and tm = 15. Observe that b′ is not basal.
This blossom contains the endpoints of bridges (u,u′) and (v, v′).

Lemma 11. Let v ∈Um and b=base(v). Let p be an evenlevel(b) path and q be an evenlevel(b;v)
or oddlevel(b;v) path. Then q meets p at b only.

Proof : By Lemma 1, it suffices to prove this lemma for an oddlevel(b;v) path q. For contra-
diction, assume that q meets p at vertices besides b. By Lemma 10, oddlevel(v)≥ |p|+ |q|. We will
define certain subpaths of q as segments as follows. Follow along q from b until it meets p, at w
say. Then q[b to w] will be called a segment. Subsequent to this, each time q leaves p, at vertex r,
say, and meets up p again, at s, say, then q[r to s] is called a segment. Eventually, q leaves p at y,
say, and ends up at v. Then, q[y to v] is the last segment.
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Now, there are two cases: either there is a segment, say q[u to w] such that u and w are both
outer vertices or there is no such segment. In the first case, consider the odd length cycle q[u to w]◦
p[w to u] and assume that u is higher than w on p. Then, all vertices on this cycle, other than w
have tenacity < tm, a contradiction.
In the second case, since the first segment starts at an outer vertex, namely b, it ends at an inner

vertex. Therefore, the next segment again starts at an outer vertex and so on. Finally, for the last
segment, q[y to v], y must be an outer vertex. Assume that p starts at unmatched vertex f . If so,
p[f to y] ◦ q[y to v] is a shorter odd alternating path from f to v than |p|+ |q|, leading to another
contradiction. The lemma follows. □
Lemmas 10 and 11 give:

Corollary 4. Let v ∈ Um and b = base(v). Then the matched neighbor of v also lies in the
blossom and every evenlevel(v) (oddlevel(v)) path consists of an evenlevel(b) path followed by an
evenlevel(b;v) (oddlevel(b;v)) path, where the latter lies in Bb,tm ∪ {b}.
Lemma 10 and Corollary 4 give:

Lemma 12. Let Bb,tm and Bb′,tm be two blossoms with bases b ∕= b′. Then Bb,tm ∩Bb′,tm = ∅.
Finally we need to prove one more fact, which captures the disciplined manner in which a

minimum length alternating path, which intersects a blossom of tenacity tm, Bb,tm , uses vertices of
(Bb,tm ∪ {b}). This fact will be used in the induction step.

Lemma 13. Let p be an evenlevel(v) path from unmatched vertex f to an arbitrary vertex v
such that there is a blossom Bb,tm with p∩Bb,tm ∕= ∅. Then the base of this blossom, b, also lies on
p and there is a vertex u∈ (p∩Bb,tm) such that p[b to u] contains all the vertices of p∩ (Bb,tm ∪{b})
and p[b to u] is an evenlevel(b;u) path.

Proof : For the sake of contradiction, assume that p does not intersect Bb,tm ∪{b} in the manner
described above. If so, two cases arise.

Case 1: b lies on p and there is a vertex u∈ (p∩Bb,tm) such that p[b to u] contains all the vertices
of p∩ (Bb,tm ∪ {b}) as well as some vertices not in Bb,tm , i.e., p[b to u] enters and exits (Bb,tm ∪ {b})
more than once.
If so, by Corollary 4, p[b to u] is longer than an evenlevel(b;u) path. Therefore, replacing the

former with the latter will result in a shorter even path to v, giving a contradiction.

Case 2: The first vertex of p in (Bb,tm ∪{b}) is x∈Bb,tm , the last vertex is y ∈Bb,tm and p(x to y)
is arbitrary, i.e., it may visit b as well as other vertices not in Bb,tm . For ease, we will call p[f to x]
the blue path and p[y to v] the red path.
Let q be an evenlevel(b) path starting at unmatched vertex f ′, say, where f ′ = f is allowed. Now

there are several cases. If the red path does not intersect q then by Corollary 4, q ◦ s ◦ p[y to v] is
a shorter even path17 to v than p, where s is an evenlevel(b;y) path.
If the red path does intersect q and the last vertex of p on q is even w.r.t. q, say w, then follow

q to w and then follow by p to v; this is shorter than p. Next assume that the last vertex of p on q
is odd w.r.t. q, say w. Then we ask whether the blue path intersects q(w to b]. If the answer is no,
then via Corollary 4 we get that the blue path, followed by r−1 to b, followed by q to w, followed
by p to v is a shorter even path to v, where r is an evenlevel(b;x) path.

The main case: Finally, assume that the blue and red paths both intersect q in arbitrary ways
and the last vertex of the red path on q is odd w.r.t. q, say w. Both paths will traverse some

17 For clarity, in subsequent cases we will describe the path constructed in plain English as follows: Follow q to b,
then s to y, then the red path to v, where s is an evenlevel(b;y) path.
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matched edges of the path q. We will say that such an edge is blue (red) if the blue (red) path
traverses it; furthermore, we will direct the edge in the direction in which the path traverses it.
We will say that such an edge is directed up if it points towards b and is directed down if it points
towards f ′.
A subpath of q[w to b) is said to be unicolored if it does not contain matched edges of both colors;

it is allowed to contain uncolored matched edges. A maximal unicolored subpath which starts and
ends with colored matched edges is called an interval. In each interval, we will mark one edge as
follows: in a blue interval, mark the lowest18 edge on the blue path and in a red interval, mark
the highest edge on the red path. The rest of the arguments will only be based on the marked
edges and not the rest of the intervals. Clearly on q[w to b), the color of the marked edges must
be alternating, with the lowest marked edge being red and directed down.
There are two cases: either all marked red edges are directed down or not. In the latter case,

let e1 be the lowest marked red edge which is directed up and let e2 be the marked red edge just
below e1; e2 is directed down. Let e3 be the marked blue edge in between e1 and e2. Now if e3 is
directed down then follow the blue path from f to e3, then follow q to e2 and finally follow the red
path all the way to v. However, if e3 is directed up then follow the blue path from f to e3, then
follow q to e1 and finally follow the red path all the way to v.
Next we deal with the case that all marked red edges are directed down. Now we ask what is

the color of the highest marked edge, say e. If e is red, then we follow the entire blue path from
f to x, then follow r−1 to b, then follow q to e and then follow the red path to v, where r is an
evenlevel(b;x) path.
Finally assume that e is blue. Again two cases arise: If e is directed down, then we follow the

blue path from f to e, then follow q to the highest red edge (which is directed down), and then
follow the red path to v. If e is directed up, then we follow the blue path from f to e, then follow
q to b, then follow s to y and then follow the red path to v, where s is an evenlevel(b;y) path. In
all cases, a shorter even path to v is obtained, leading to a contradiction. □
Definition 22. (BFS honesty on p with respect to the base) Let p be an evenlevel(v) or

oddlevel(v) path starting at unmatched vertex f to an arbitrary vertex v, let u lie on p with
tenacity(u) = tm and let b=base(u). Then we will say that u is BFS honest on p w.r.t. b if p[b to u]
is an evenlevel(b;u) (oddlevel(b;u)) path assuming |p[b to u]| is even (odd). Note that we are
allowing b to appear either before or after u on path p.
Lemma 13 and Theorem 2 yield:

Lemma 14. Let p be an evenlevel(v) path from unmatched vertex f to an arbitrary vertex v.
Let w ∈ p with tenacity(w) = tm and let b= base(w). Then b also lies on p and w is BFS honest
on p w.r.t. b.

Proof : By Lemma 13 there is a vertex u on p such that p[b to u] contains all vertices in
p ∩ (Bb,tm ∪ {b}) and p[b to u] is an evenlevel(b;u) path. Let q be an evenlevel(b) path. Then by
Corollary 4, q ◦ p[b to u] is an evenlevel(u) path. Since w lies on this path and tenacity(w) =
tenacity(u) = tm, by Theorem 2, w is BFS honest on this path. Hence w is BFS honest on p w.r.t.
b. □
Note that in Lemmas 13 and 14, we took p to be an evenlevel(v) path; by Remark 1, this is

without loss of generality. Observe that Lemma 13 allows b to appear either before or after u on
path p. The following question arises: how does this affect whether b and u are BFS honest on p?
Lemma 15 provides an answer and Example 16 illustrates the various cases.

18 See Definition 16.
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Lemma 15. Let p be an evenlevel(v) path from unmatched vertex f to an arbitrary vertex v
such that there is a blossom Bb,tm with p∩Bb,tm ∕= ∅. Let vertex u∈ (p∩Bb,tm) be such that p[b to u]
contains all the vertices of p∩ (Bb,tm ∪ {b}). Then the following hold:

1. If b appears before u on path p, then b and u are either both BFS honest or both not BFS
honest on p.

2. If b appears after u on path p, then u is not BFS honest on p; furthermore, if b is BFS honest
on p then p[f to b] is a maxlevel(b) path.

Proof : 1). The proof follows from Corollary 4.
2). If b appears after u on path p, then by Corollary 4, u is not BFS honest on p. Furthermore,

if b is BFS honest on p then since p[f to b] cannot be a minlevel(b) = evenlevel(b) path, it must be
an oddlevel(b) =maxlevel(b) path. □
Example 16. In the graph of Figure 23, evenlevel(u) = 8; let p be this path. Vertex w appears

on the p, tenacity(w) = tm = 13, base(w) = b and b appears before w on p. Observe that b and w
are both BFS honest on p. Additionally, w is BFS honest on p w.r.t. b.
In the graph of Figures 25 and 26, tenacity(u) = tm = 11 and base(u) = b. This graph has

three bridges — of tenacity 11, 13 and 15. Observe that evenlevel(v) = 16, and let p denote the
evenlevel(v) path; the three bridges appear in the order 15, 11, 13 on p. Now, b appears before u
on p. Observe that b and u are both not BFS honest on p; however, u is BFS honest on p w.r.t. b.
In the graph of Figure 23, evenlevel(c) = 12; let q be the evenlevel(c) path. Observe that b appears

after w on q and w is not BFS honest on q. However, b is BFS honest on q and q[f to b] is a
maxlevel(b) path. Additionally, w is BFS honest on q w.r.t. b.
In the graph of Figure 23, evenlevel(v) = 16; let r be the evenlevel(v) path. Observe that b

appears after w on r, and b and w are both not BFS honest on r; however, w is BFS honest on r
w.r.t. b.
Remark 3. As a result of the induction basis, we have established that every vertex v of

tenacity tm has a unique base, base(v). As stated in Section 8.1, the induction step in Theorem 3,
will enable us to establish an analogous fact about higher and higher tenacity vertices, eventually
establishing it for every vertex of eligible tenacity. As a result, every such vertex w will have a
unique base, base(w), which is an outer vertex and satisfies tenacity(base(w))> tenacity(w). For
ease of exposition, Definition 23 assumes that base(w) is well defined for each vertex w of eligible
tenacity, in order to define the iterated bases of v, where tenacity(v) = tm. A more “correct”, though
more cumbersome, way of doing this would be to define higher and higher iterated bases of v after
each induction step.
Definition 23. (Iterated bases of a vertex of tenacity tm) For v ∈Um, let base(v) = b. Define

the first iterated base of v to be b, denoted as follows: base1(v) = b. When base(b), base(base(b))
etc. get defined in the induction step, we can define higher iterated bases of v. Thus, for k≥ 1, we
will say that basek+1(v) = base(basek(v)), assuming that basek(v) and base(basek(v)) exist in the
graph.

8.3. The Induction Step In this section, we will prove the induction step for Theorem 3;
the basis of the induction was proved in Section 8.2.
Induction Hypothesis: Let t be an eligible tenacity, with tm + 2 ≤ t < lm. Then each of the
statements in Theorem 3 holds for tenacities in the range [tm, t− 2].
After proving Statement 2, certain key notions will become well defined for the case of tenacity

t. These definitions are formally stated after the proof of Statement 2 and they will be used for
formally stating and proving the rest of the statements. These include the base of vertices of
tenacity t, blossoms of tenacity t and iterated bases of a vertex.
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In the induction step, we will need the following definition regarding the iterated bases of a
vertex v such that tenacity(v)< t; these bases would already be defined in the previous iterations
of the induction.
Definition 24. Let vertex v be such that tenacity(v)< t. Define k(t, v) such that basek(t,v)(v)

is the first iterated base of v having tenacity at least t, i.e.,

k(t, v) =min{l | tenacity(basel(v))≥ t}.

Theorem 3. Let t be an eligible tenacity, Ut = {u ∈ V | tenacity(u) = t} and v ∈ Ut. The
following hold:
Statement 1: Every maxlevel(v) path contains a bridge of tenacity t.
Statement 2: The set B(v) is a singleton.
Statement 3: Let b = base(v). Then every evenlevel(v) (oddlevel(v)) path consists of an

evenlevel(b) path followed by an evenlevel(b;v) (oddlevel(b;v)) path, where the latter lies in Bb,t ∪
{b}19.
Statement 4: The blossoms of tenacity t are disjoint and the set of blossoms of tenacity at most

t forms a laminar family.
Statement 5: Let p be an evenlevel(u) path from unmatched vertex f to an arbitrary vertex u.

Let w ∈ p with tenacity(w) = t and let b=base(w). Then b also lies on p and w is BFS honest on
p w.r.t. b.

Note that in Statement 5, we took p to be an evenlevel(v) path; by Remark 1, this is without
loss of generality.
Proof of Statement 1: The proof is given in Lemma 16 and is very different from the proof of

the analogous fact, given in Lemma 5, in the induction basis. The reason is that the former needs
to account for blossoms defined in the previous iterations of the induction.

Lemma 16. Let v be a vertex of tenacity t and p be a maxlevel(v) path. Then p contains a
bridge of tenacity t.

Proof : Assume that p starts at unmatched vertex f and let u be an arbitrary vertex on p.
If tenacity(u) = t then by Theorem 2, u is BFS honest on p and therefore |p[f to u]| is either
minlevel(u) or maxlevel(u). If tenacity(u)< t then by applying Lemma 20 from the previous induc-
tion step to p we get that x=basek(t,u)(u) lies on p and p[x to u] lies in {x}∪Bx,t−2, where Bx,t−2

is the blossom of tenacity t− 2 with base x.
Define sets S1, S2 and S as follows:

S1 = {w | w is on p, tenacity(w) = t and |p[f to w]|=maxlevel(w)}

S2 = {w | w is on p, tenacity(w)< t and basek(t,w)(w) is higher than w on p}

S = S1 ∪S2

For a definition of “higher/lower on a path” see Definition 16. Let w be the lowest vertex of S
on p and let w′ be the matched neighbor of w. First assume that w ∈ S2; therefore tenacity(w)< t.
Let x=basek(t,w)(w) and w ∈Bx,t−2. Applying Lemma 17 from the previous induction step we get
that w′ ∈ Bx,t−2. Since w′ is not the lowest vertex of S on p, we get that w must be odd w.r.t. p.
Consider the following two cases.
Case 1: w is even with respect to p.

By the argument given above, w /∈ S2. Therefore w ∈ S1 and hence tenacity(w) = t and |p[f to w]|=

19 Note that Bb,t, namely a blossom of tenacity t and base b, is defined in Definition 29, after proving Statement 2.
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maxlevel(w) = evenlevel(w). By Lemma 1, tenacity(w′) = tenacity(w,w′) = t and w′ is lower than
w on p. Since w′ is not the lowest vertex of S on p, w′ /∈ S, and therefore |p[f to w′]|=minlevel(w′).
Furthermore, since w′ is odd w.r.t. p, w′ is an inner vertex. Since maxlevel(w) = evenlevel(w), w
is also an inner vertex. Therefore, the predecessors of w and w′ are given by unmatched edges
incident at them. Therefore neither is w a predecessor of w′ nor is w′ a predecessor of w. Hence
(w,w′) is a bridge of tenacity t.
Case 2: w is odd with respect to p.

Let (u,w) be the unmatched edge on p incident at w. Clearly u is lower than w on p and |p[f to u]|
is even. We will show that (u,w) is a bridge of tenacity t.
First let us show that w is not a predecessor of u. Suppose tenacity(u)≥ t. By Theorem 2, u is

BFS honest on p and since u /∈ S1, |p[f to u]| ∕=maxlevel(u). Therefore |p[f to u]|=minlevel(u) =
evenlevel(u). Furthermore the predecessor of u is its matched neighbor and not w.
Next suppose that tenacity(u)< t. Let x= basek(t,u)(u) and u ∈ Bx,t−2. Clearly the predecessor

of u is either x or it lies in the blossom Bx,t−2. Applying Lemma 20 from the previous induction
step to p we get that x lies on p and the path p[x to u] lies in {x}∪Bx,t−2. Since u /∈ S2, the base
of Bx,t−2, namely x, is lower than u on p. If w ∈ S1, tenacity(w) = t and therefore w does not lie
in Bx,t−2. If w ∈ S2, the base of the blossom containing w is higher than w on p and again w does
not lie in Bx,t−2. Therefore, in both cases, w is not a predecessor of u. As stated above, by Lemma
20, p[x to u] lies in {x}∪Bx,t−2. Furthermore, since w does not lie in Bx,t−2 and w is not the base
of Bx,t−2, we get that p[x to u] contains all vertices in p∩ (Bx,t−2 ∪ {x}). Now by Lemma 19 of the
previous induction step, p[x to u] is an evenlevel(x;u) path20. Since tenacity(x)≥ t, by Theorem
2, x is BFS honest on p. Therefore |p[f to u]|= evenlevel(u) in this case as well.
Next, let us show that u is not a predecessor of w. If tenacity(w) = t then w ∈ S1 and |p[f to w]|=

maxlevel(w). Therefore the predecessor of w is its matched neighbor and not u. If tenacity(w)< t
then w ∈ S2 and w ∈ By,t−2, where y = basek(t,w)(w). Therefore the predecessor of w lies in the
blossom By,t−2; again, u is not a predecessor of w. Hence (u,w) is a bridge.
Finally, we will show that tenacity(u,w) = t, thereby completing the proof. We will consider two

cases. First assume that tenacity(w) = t. By Theorem 2, |p[f to w]|= oddlevel(w) = evenlevel(u)+
1; the last equality follows from the fact that |p[f to u]|= evenlevel(u). Now,

tenacity(u,w) = evenlevel(u)+ evenlevel(w)+ 1= evenlevel(u)+ (t− oddlevel(w))+ 1= t.

Next, assume that tenacity(w)< t. If so, w ∈ S2 and y=basek(t,w)(w) is higher than w on p. Let
q be a minlevel(v) path from f to v. Since tenacity(v) = t, |p|+ |q|= t. Since tenacity(y)≥ t, by
Theorem 2, y is BFS honest on p. Therefore p[f to y] is an oddlevel(y) path. Also, q ◦ p[v to y] is
an even path from f to y and therefore its length is at least evenlevel(y).
Now |p[f to y]| + |q ◦ p[v to y]| = |p| + |q| = t ≥ oddlevel(y) + evenlevel(y) = tenacity(y) ≥ t,

thereby implying that tenacity(y) = t and q ◦ p[v to y] is an evenlevel(y) path. Since p[y to w]
contains all vertices in p∩ (By,t−2 ∪ {y}), by Lemma 19 of the previous induction step, p[y to w]
is an evenlevel(y;w) path. Together with the previous assertion we get that q ◦ p[v to w] is an
evenlevel(w) path. Finally,

tenacity(u,w) = evenlevel(u)+ evenlevel(w)+ 1= |p[f to u]|+ |q ◦ p[v to w]|+1= |p|+ |q|= t.

□
Remark 4. As was done in Lemma 5, Lemma 16 can be strengthened to show uniqueness of

the bridge as well. Since we will not need this fact, we will not prove it.

20 Observe that the conclusion of Remark 6 does not apply here.
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8.3.1. The Graphs Ht and H ′
t For proving the induction step, we will define graphs Ht

and H ′
t, which are analogous to Hm and H ′

m defined in Section 8.2.1. The main difference is that
whereas all edges in the directed graph Hm are of unit length, those in Ht can be longer. The long
edges help “jump” over lower tenacity blossoms.
Recall that Ut = {v ∈ V | tenacity(v) = t}. Let Bt denote the set of all bridges of tenacity t and

let Wt denote the end points of all bridges in Bt.
Definition 25. For v ∈Wt, define

v∗ =

󰀫
v if tenacity(v) = t,

basek(t,v)(v) if tenacity(v)< t

Note that k(t, v) is defined in Definition 24. We now explain the second case of the definition of
v∗, i.e., if tenacity(v) < t. In this case, v is in a blossom of tenacity t− 2 which must have been
defined in the previous induction step. Now, v∗ is meant to be the base of this blossom; it is given
by basek(t,v)(v).
Let W ∗

t = {v∗ | v ∈Wt}. For a vertex v∗ ∈W ∗
t , let p denote an arbitrary minlevel(v∗) path. Let

Vt denote the set of all vertices of tenacity at least t on all minlevel(v∗) paths p, for all vertices
v∗ ∈W ∗

t .
The next definition is related to Definition 18 and is motivated by Statement 5 of the induction

hypothesis.
Definition 26. (The relations predt and pred∗

t ) Let v ∈ Vt with tenacity(v) = t and let u be a
predecessor of v; clearly, u may be unmatched. Define:

predt(v;u) =

󰀫
u if tenacity(u)≥ t,

basek(t,u)(u) if tenacity(u)< t

We will say that a vertex w is predt of v, denoted by w= predt(v), if tenacity(v) = t and there
is a predecessor u of v such that predt(v;u) = w. The relation pred∗

t is recursively defined as
follows: given vertices u, v ∈ Vt, with tenacity(v) = t, we will say that u is pred∗

t of v, denoted by
u=pred∗

t (v), if either u=predt(v) or u=pred∗
t (predt(v)). Observe that if u=pred∗

t (v) then u ∕= v.
Next, we define directed graph Ht and undirected graph H ′

t. Analogous to the definitions of
graphs Hm and H ′

m given in Section 8.2.1, the vertex sets of both Ht and H ′
t are the same, namely

Vt. The edge set of Ht, Et, is defined as follows: For vertices w,v ∈ Vt, if w= predt(v), then there
is a directed edge (v,w)∈Et. This edge is of unit length if predt(v) is obtained from the first case
of Definition 26 and it is longer if predt(v) is obtained from the second case of Definition 26. In
contrast, graph Hm, defined in Section 8.2.1, has unit length edges only. Define directed graph
Ht = (Vt,Et).
Corresponding to the set of bridges of tenacity t, Bt, define

B∗
t = {(u∗, v∗) | (u, v)∈Bt}.

Define undirected graph H ′
t = (Vt, (B

∗
t ∪ E′

t)), where the edge set E′
t is obtained from Et by

making each edge undirected. An edge e ∈ E′
t is matched in H ′

t if and only if the corresponding
edge is present in G and is matched in G.
Example 17. Figures 19 and 20 illustrate the graphsH ′

t corresponding to the graphs of Figures
14 and 26 for t= 19 and t= 15, respectively.
Remark 5. In Definition 25, for v ∈Wt, if tenacity(v) < t, then v∗ = basek(t,v)(v). This case

adds an extra step in the process of finding an augmenting path, stated in Section 5.4.1; this step
could not be described in that section due to lack of definition of v∗. We will explain this in the
context of the graph of Figure 26. In order to find an evenlevel(v) path, the algorithm needs to find
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Figure 19. Graph H ′
t for t= 19, corresponding to the graph of Figure 14.

Figure 20. Graph H ′
t for t= 15, corresponding to the graph of Figure 26.

a path from d to a in the blossom Bf,15. Since d∗ ∕= d, it realizes that a part of this path, namely
the path from d to d∗ = c, needs to be found in the nested blossom Bc,13.
The extra complexity that arises in the proof of the induction step is captured in the various

definitions given above in this section. This complexity does not change the basic ideas needed
for proving statements analogous to those given in Section 8.2 for the induction basis — the only
difference in the formal statements is that subscript “m” is replaced by “t” throughout and tm is
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replaced by t. Below, we will summarize this development. The proof of Statement 2 is followed
by some key definitions which are used by the rest of the statements of Theorem 3.
Lemmas 7 and 8 carry over and so does Procedure Bottleneck. The output of a run of this

procedure on input (u, v) ∈Bt is a vertex b. As in the induction basis, this vertex is very special,
and is called a base; a formal definition is given below. Clearly, b is an outer vertex. In general, H ′

t

will have a number of bases.

Figure 21. Vertex b is the base
of u,u′, v and v′. The tenacities
of bridges (u,u′) and (v, v′) are
indicated.

Figure 22. Vertex b is the base of u,u′, v and v′. The
tenacities of bridges (u,u′) and (v, v′) are indicated.

For each base b in H ′
t, define the set

Sb,t = {v ∈Ut | b is pred∗
t of v}.

Clearly b /∈ Sb,t.
Proof of Statement 2: Lemma 10 also carries over and so does Corollary 2, thereby proving

this statement.
Next, we formally define the base of vertices in Ut and blossoms of tenacity t.
Definition 27. (The base of a vertex of tenacity t and basal vertices) For each v ∈Ut, define

base(v) to be the unique vertex, say b, in the set B(v). We will say that the base of v is b. Each
such vertex b will be called a basal vertex. Clearly, b is an outer vertex and tenacity(b)> t.
We can now define the iterated bases of a vertex of tenacity at most t; this is done in Definition

28. Once the entire induction step is proven, this definition holds for all vertices of eligible tenacity.

Definition 28. (Iterated bases of a vertex of tenacity at most t) For v ∈ Ut, let base(v) = b.
Define the first iterated base of v to be b, denoted as follows: base1(v) = b. Next, consider a vertex
u with tenacity(u)< t and such that the induction hypothesis has established that basek(u) = v,
for k ∈Z+. Then basek+1(u) = b, i.e., basek+1(u) = base(basek(u)).
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Example 18. In the graph of Figure 23, the iterated bases of vertex w are base(w) =
b, base2(w) = b′ and base3(w) = f . Clearly, tenacity(w)< tenacity(b)< tenacity(b′)< tenacity(f).

We next come to the key definitions of blossom of tenacity t and the nesting of blossoms.

Definition 29. (Blossom of tenacity t and base b) Let b be a basal vertex with tenacity(b)> t.
Let Tb,t = {v ∈ Ut | base(v) = b}; observe that Tb,t = Sb,t. Then the blossom of tenacity t and base
b is the set

Bb,t = Tb,t ∪

󰀳

󰁅󰁃
󰁞

v∈(Tb,t∪{b}), v is basal

Bv,t−2

󰀴

󰁆󰁄 .

In the expression given above for Bb,t, if for v ∈ (Tb,t ∪ {b}), Bv,t−2 ∕= ∅ then we will say that
Bv,t−2 is a nested blossom of Bb,t. We will assume that the latter relation is transitively closed, i.e.,
if set A is a nested blossom of B and B is a nested blossom of C then A is a nested blossom of C.
Clearly if Tb,t = ∅, then Bb,t =Bb,t−2.
The next fact is analogous to Corollary 3.

Lemma 17. Let (u, v) be a matched edge of tenacity t. Then u and v have the same base, say
b, and both belong to the same blossom of tenacity t, namely Bb,t.

Example 19. Figures 21 and 22 show two graphs with nested blossoms. Although the two
“look different”, in both graphs, vertex b is the base of vertices u,u′, v and v′; the tenacities of
bridges (u,u′) and (v, v′) are 7 and 11, respectively; the set Tb,11 = {v, v′}; and the blossoms are
Bb,7 = {u,u′}, Bb,9 = {u,u′} and Bb,11 = {u,u′, v, v′}.

Figure 23. The iterated bases of vertex w are: base(w) = b, base2(w) = b′ and base3(w) = f , and those of vertex u
are: base(u) = b′ and base2(u) = f .
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Definition 30. (Shortest path from a base to a vertex of tenacity t) Let v ∈Ut and b=base(v).
Then by an evenlevel(b;v) (oddlevel(b;v)) path we mean a minimum even (odd) length alternating
path in G from b to v that starts with an unmatched edge.
We will extend Definition 30 to define a shortest path from an iterated base, say b, to a vertex v

of tenacity t. We will denote this path also by evenlevel(b;v) (oddlevel(b;v)) depending on whether
the path is even (odd) in length.

Proof of Statement 3: Claims analogous to Lemmas 10 and 11 hold, thereby proving this
statement; it is analogous to Corollary 4 in the induction basis.
A claim analogous to Lemma 12 also holds:

Lemma 18. Let Bb,t and Bb′,t be two blossoms with bases b ∕= b′. Then Bb,t ∩Bb′,t = ∅.

By Definition 29, if Bb,t and Bb′,t′ are two blossoms with t > t′, then either they are disjoint or
the former contains the latter; note that we are allowing b= b′. This gives:

Corollary 5. The set of blossoms of tenacity at most t forms a laminar family.

Proof of Statement 4: Lemma 18 and Corollary 5 prove this statement.

Definition 31. (BFS honesty on p with respect to an iterated base) Let p be an evenlevel(v)
path starting from unmatched vertex f to an arbitrary vertex v and let u lie on p with tenacity(u)≤
t. Let b = basek(u) be any one of the iterated bases of u that is well-defined at this stage
of the induction. Then we will say that u is BFS honest on p w.r.t. b if p[b to u] is an
evenlevel(b;u) (oddlevel(b;u)) path assuming |p[b to u]| is even (odd). Note that we are allowing b
to come either before or after u on p.

Proof of Statement 5: We will state a fact that is analogous to Lemma 13; its proof is also
analogous and is omitted.

Lemma 19. Let p be an evenlevel(u) path from unmatched vertex f to an arbitrary vertex u
such that there is a blossom Bb,t with p∩Bb,t ∕= ∅. Then the base of this blossom, b, also lies on p
and there is a vertex y ∈ (p∩ Bb,t) such that p[b to y] contains all vertices in p∩ (Bb,t ∪ {b}) and
p[b to y] is an evenlevel(b;y) path.

One difference between Lemma 13 and Lemma 19 is that in the former, b= base(u) whereas in
the latter b may be any iterated base of y which is defined at this stage. Even so, Statement 5
follows from Lemma 19, along on the lines of Lemma 14. The reason is that the only iterated base of
vertex w, occurring in Statement 5, which is defined at this stage is base(w), since tenacity(w) = t.
This completes the proof of Statement 5. Next let us integrate this statement over all the induc-

tion steps, until the current one, to get the following fact about iterated bases and nested blossoms.
It will be used in the proof of Lemma 16 in the next induction step.

Lemma 20. Let p be an evenlevel(v) path from unmatched vertex f to an arbitrary vertex
v. Let vertex u ∈ p with tenacity(u) ≤ t, and let l = k(t + 2, u). Let the iterated bases of u,
base1(u), . . . ,basel(u), be x1, . . . , xl, respectively. For 1≤ i≤ l, let si = tenacity(xi), and let Bxi,si−2

be the blossom of tenacity si − 2 with base xi. Then,
1. The iterated bases of u, x1, . . . , xl, lie on p.
2. For 1≤ i≤ l, the path p[xi to u] lies in {xi}∪Bxi,si−2.

Remark 6. In Lemma 20, u need not be BFS honest on p w.r.t. xi, for 1< i≤ l; see Theorem
6 and Example 21.
Lemma 21, stated below, is analogous to Lemma 15. The various cases discussed in this lemma

can be illustrated for any eligible tenacity t > tm, similar to the way it was done in Example 16.
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However, since the examples become large, we have illustrated only a subset of the cases in Example
20.

Lemma 21. Let p be an evenlevel(v) path from unmatched vertex f to an arbitrary vertex v
such that there is a blossom Bb,t with p ∩ Bb,t ∕= ∅. Let vertex u ∈ (p ∩ Bb,t) be such that p[b to u]
contains all the vertices of p∩ (Bb,t ∪ {b}). Then the following hold:

1. If b appears before u on path p, then b and u are either both BFS honest or both not BFS
honest on p.

2. If b appears after u on path p, then u is not BFS honest on p; furthermore, if b is BFS honest
on p then p[f to b] is a maxlevel(b) path.

This completes the proof of Theorem 3.

Example 20. In the graphs of Figures 23 and 24, vertex u ∈ Bb′,15. Consider the evenlevel(v)
paths in both these graphs. On these paths, u appears before b′. Furthermore, u is not BFS honest
and b′ is BFS honest on these paths.
In the graph of Figure 24, consider the oddlevel(w) path. b′ appears before u on this path and

b′ and u are both BFS honest on this path.
Finally, in the graph of Figure 26, consider the evenlevel(v) path, p. This path goes through the

blossom Bc,13; it enters the blossom at vertex d. d appears before c on this path and whereas d is
not BFS honest, c is BFS honest on this path.

Figure 24. Let p be the evenlevel(v) path. Vertex u is BFS honest on p w.r.t. b and b′; however, u is not BFS honest
on p w.r.t. f .

As observed in Example 14, vertices of tenacity lm may have no base and as a result, Statements
2 to 5 of Theorem 3 do not hold for them. However, Statement 1 does hold and needs to be proven;
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in particular, DDFS on the corresponding bridge will reveal an augmenting path if one exists. This
case is singled out in the next theorem. Its proof is identical to that of Statement 1.

Theorem 4. For every vertex v of tenacity lm, every maxlevel(v) path contains a bridge of
tenacity lm.

8.4. BFS Honesty and Iterated Bases The properties established in Sections 8.2 and 8.3
help prove that the MV algorithm correctly finds the first minimum length augmenting path in a
phase; in particular, the information left in the graph, such as pointers, is critical to accomplishing
this task. After finding an augmenting path, the algorithm removes it and all vertices which cannot
be present on a disjoint minimum length augmenting path.
This raises the following question: Does the remaining graph have the required structural prop-

erties and information to enable the algorithm to find successive augmenting paths? In this section,
we prove additional properties which provide a positive answer to this question. These properties
also show the sense in which minimum length alternating paths are not arbitrarily BFS dishonest,
as stated in the Introduction.
Definition 32. (The number of iterated bases of a vertex of eligible tenacity) Let v be a

vertex of eligible tenacity. As noted earlier, the tenacities of its iterated bases keep increasing, i.e.,
tenacity(base(v))< tenacity(base2(v))< tenacity(base3(v)) . . .. Let l be the smallest number such
that tenacity(basel(v))≥ lm; clearly, such a number exists, since the tenacity of unmatched vertices
is at least lm. Since basel(v) is not a vertex of eligible tenacity, by definition it does not have a
base. We will say that v has exactly l iterated bases.

Theorem 5. Let v be a vertex of eligible tenacity, and let p be an evenlevel(v) or oddlevel(v)
path, starting at unmatched vertex f , say. Assume that v has exactly l iterated bases. Then the
following hold:

1. All l iterated bases of v lie on p; moreover, they occur in the order basel(v),basel−1(v), . . . ,base(v)
on p.

2. Each iterated base is BFS honest on p.
3. v is BFS honest on p w.r.t. each iterated base.

Proof : We will prove by an induction on k, for 1≤ k≤ l, the following statement: basek(v) lies
on p and p[f to basek(v)] is an evenlevel(basek(v)) path. This will establish the first two statements
of the theorem and the third will then follow by Theorem 3.
Let base(v) = b. By Statement 3 of Theorem 3, every evenlevel(v) (oddlevel(v)) path consists of

an evenlevel(b) path concatenated with an evenlevel(b;v) (oddlevel(b;v)) path. Therefore p[f to b]
is an evenlevel(b) path, hence establishing the basis of the induction.
Assume that the claim is true for k, where 1≤ k < l, and let basek(v) = u. Then p[f to u] is an

evenlevel(u) path. Let base(u) = w; clearly basek+1(v) = w. Again by Statement 3 of Theorem 3,
w lies on p[f to u] and p[f to w] is an evenlevel(w) path, hence establishing the induction step. □

Theorem 6. Let v be a vertex of eligible tenacity and p be an evenlevel(v) or oddlevel(v) path,
starting at unmatched vertex f , say. Let u be a vertex of eligible tenacity which is on p and assume
that u has exactly l iterated bases. Then the following hold:

1. If u is BFS honest on p then the l iterated bases of u satisfy the three conditions stated in
Theorem 5.

2. If u is not BFS honest on p then:
(a) All l iterated bases of u lie on p.
(b) u is BFS honest on p w.r.t. base(u), and for 1≤ k < l, basek(u) is BFS honest on p w.r.t.

basek+1(u).



Vazirani: A Theory of Alternating Paths and Blossoms
42 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Figure 25. evenlevel(v) is
finite; the reader is encouraged
to find such a path.

Figure 26. The evenlevel(v) path, p, is indicated. Vertices
b and u are not BFS honest on p even though b occurs
before u on p.

(c) basel(u) is BFS honest on p.

Proof :
1). Since p[f to u] is a minimum alternating path to u, the three conditions of Theorem 5 apply.
2). Next assume that u is not BFS honest on p. Even so, the first and second facts follow using

Lemmas 13 and 19, and an easy induction on k. Since tenacity(basel(u))≥ lm and tenacity(v)< lm,
by Theorem 2, basel(u) is BFS honest on p, giving the third fact. □
Example 21. In the graph of Figure 23, let p be the evenlevel(v) path; it contains vertices u

and w which are both not BFS honest on p. The iterated bases of w are b, b′ and f , and all three
lie on p. Of these, b′ and f are BFS honest on p, and b is not BFS honest on p; furthermore, each
iterated base is BFS honest w.r.t. the next higher base, as proved in Theorem 6. Additionally, w
is BFS honest w.r.t. b′, w is not BFS honest w.r.t. f and b is not BFS honest w.r.t. f on p. The
iterated bases of u are b′ and f . Both lie on p and both are BFS honest on p, and b′ is BFS honest
on p w.r.t. f .
In the graph of Figure 26, the evenlevel(v) path, p, is indicated. The length of p is 16 and it

contains vertex u. The iterated bases of u are b, c and f , and all three lie on p. Of these, c and f
are BFS honest on p, and b is not BFS honest on p. Furthermore, each iterated base is BFS honest
w.r.t. the next higher base; however, u is not BFS honest w.r.t. c, u is not BFS honest w.r.t. f and
b is not BFS honest w.r.t. f on p.

9. Proof of Correctness and a Post-Mortem As stated in the Introduction, besides the
procedure of DDFS, the other main idea behind the MV algorithm is the precise synchronization



Vazirani: A Theory of Alternating Paths and Blossoms
Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 43

of events; this is described and proved in Section 9.1. Section 9.3 proves that the MV algorithm
correctly executes a phase and also establishes the running time of the algorithm. Finally, Section
9.4 provides a post-mortem by raising and answering the question, “Why is it essential to formalize
such an elaborate purely graph-theoretic structure for proving correctness of the MV algorithm?”

9.1. Synchronization of Events

Theorem 7. Let t be an odd number with tm ≤ t≤ lm, i.e., t is either an eligible tenacity or
t= lm. The following hold:

1. Algorithm 1 finds Br(t), the set of bridges of tenacity t, by the end of execution of procedure
MIN at search level i, where t= 2i+1.

2. For each vertex v such that tenacity(v) = t, Algorithm 1 assigns minlevel(v) and maxlevel(v)
correctly.

Proof : We will show, by strong induction on i, for i= 0 to (lm − 1)/2, that at search level i,
Algorithm 1 will accomplish:
Task 1: Procedure MIN assigns a minlevel of i + 1 to exactly the set of vertices having this

minlevel. It also identifies all props that assign a minlevel of i+1.
Task 2: By the end of execution of procedure MIN at this search level, Br(2i+1) is the set of

all bridges of tenacity 2i+1.
Task 3: Procedure MAX assigns correct maxlevels to all vertices having tenacity 2i+1.

This will establish both statements of the theorem.
The base case, i = 0, is obvious: MIN will assign an oddlevel of 1 to each neighbor of each

unmatched vertex. Next we assume the induction hypothesis for all search levels less than i, and
prove that Algorithm 1 will accomplish the three tasks at search level i.
Task 1: By the induction hypothesis, the minlevel assigned to vertex v at the beginning of

execution of MIN at search level i is ∞ if and only if minlevel(v)≥ i+1. Since MIN searches from
all vertices having level i along the correct parity edges and assigns a minlevel to a vertex only if
its currently assigned minlevel is ≥ i+ 1, any vertex v that is assigned a minlevel in this search
level must indeed satisfy minlevel(v) = i+1, and the edge that reaches v will be correctly classified
as a prop.
We next prove that every vertex v with minlevel(v) = i + 1 will be assigned its minlevel in

this search level, and every prop that assigns a minlevel of i+ 1 will be classified as a prop. Let
minlevel(v) = i+1, let p be a minlevel(v) path, and let (u, v) be the last edge on p. Clearly (u, v)
is a prop, and every prop that assigns a minlevel of i+ 1 is of this type. Now, u must be BFS
honest on p: If not, then v must occur on a shorter path to u, contradicting minlevel(v)< i+1. If
|p[f to u]|= i=maxlevel(u) then tenacity(u)< 2i+1. Otherwise, |p[f to u]|= i=minlevel(u).
In either case, by the induction hypothesis, u has already been assigned a level of i. Therefore, at

search level i, MIN will search from u along edge (u, v) and will find v. By the induction hypothesis,
at this point, either the minlevel of v is set to either ∞ or i+121. In either case, v will be assigned
a minlevel of i+1, u will be declared a predecessor of v and (u, v) will be declared a prop.
Task 2: Let (u, v) be a matched bridge with tenacity(u, v) = 2i+1. By Lemma 1, tenacity(u) =

tenacity(v) = tenacity(u, v), and u and v are both inner. Therefore, oddlevel(u) = oddlevel(v) = i.
Hence during search level i, MIN will determine that (u, v) is a bridge, that its tenacity is 2i+1,
and will insert it in Br(2i+1).
Next assume that (u, v) is an unmatched bridge with tenacity(u, v) = 2i+ 1. By Lemma 3, if

tenacity(v) = tenacity(u, v) = 2i+1, then v is an outer vertex and evenlevel(v)≤ i. Therefore, the

21 The latter case happens if evenlevel(u) = i and v has been reached earlier in this search level while searching along
an edge (u′, v) with evenlevel(u′) = i.
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algorithm has already determined evenlevel(v). On the other hand, if tenacity(v) < 2i+ 1, then
both its levels were determined by the end of the previous search level. By Lemma 3, these are the
only two cases.
Therefore, in both cases, tenacity(u, v) will be ascertained by the end of execution of procedure

MIN at search level i and Br(2i+1) will be the set of all bridges of tenacity 2i+1.
Task 3: Let tenacity(v) = t. By Statement 1 of Theorem 3 or by Theorem 4, depending on

whether t is an eligible tenacity or t= lm, v lies in the support of a bridge of tenacity 2i+1, and
by Task 2, this bridge is in Br(2i+1) at the start of MAX in search level i. Therefore, DDFS will
ascertain maxlevel(v) in this search level. □

Figure 27. Can DDFS be performed on bridge (u, v) at
search level 6?
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Figure 28. If so, vertices a and b will get wrong tenacities.

Example 22. This example gives an insight into the idea of synchronizing of events. In Figure
27, the algorithm determines that (u, v) is a bridge of tenacity 15 at search level 6. However,
according to Algorithm 1, DDFS should be performed on (u, v) at search level 7. The question
arises, “Why wait till search level 7; why not perform DDFS on (u, v) when procedure MAX is
run at search level 6?” In the graph of Figure 27 no mistakes will be made, provided the algorithm
assigns tenacities of 15 vertices to a and b, i.e., the same as the tenacity of bridge (u, v).
However in the graph of Figure 28, when DDFS is performed on the bridge of tenacity 13 at

search level 6, a and b will be assigned tenacities of 13; these are their correct tenacities in the
graph of Figure 28. Next assume that bridge (u, v) is also processed at search level 6 and assume
that it is processed before the bridge of tenacity 13; this is consistent with the arbitrary order in
which bridges are processed. If so, a and b will be wrongly assigned tenacities of 15.
The synchronization of events imposed by the MV algorithm helps avoid such errors. Even

though the tenacity of bridge (u, v) is determined at search level 6, DDFS on it is performed at
search level 7, consistent with its tenacity. As a result, when the bridge of tenacity 13 is processed
at search level 6, a and b are assigned their correct tenacities, i.e., 13. When processing bridge
(u, v), DDFS will skip over the blossom of tenacity 13 and not encounter a and b.
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9.2. Relationship between Graph-Theoretic and Algorithmic Notions As stated in
Section 5.2, the notions of petal and bud are intimately related to the notions of blossom and
base; whereas the former are algorithmic notions, the latter are graph-theoretic. This relationship
is formally established in Lemma 22. At the end of search level i, once MAX is done processing all
bridges of tenacity t= 2i+1, all blossoms of tenacity t can be identified via this lemma; its proof
is straightforward and is omitted.

Lemma 22. Let tenacity(v) = t, and at the end of search level i= (t−1)/2, assume that bud∗(v)
is b. Then base(v) = b and the set Tb,t defined in Definition 29 is:

Tb,t = {u | tenacity(u) = t and bud∗(u) = b}.

Furthermore, the blossom Bb,t consists of the union of all petals whose bud∗ is b at the end of
search level i= (t− 1)/2, together with each blossom of tenacity (t− 2) whose base is b or any of
the vertices of these petals.

Observe that if bud∗(v) is computed at the end of search level j > i, then it may not be b
anymore; however, it will be an iterated base of v.

9.3. Execution of a Phase and Proof of Running Time The proofs given in Section 9.1
show that the MV algorithm correctly finds one minimum length augmenting path in the given
graph with an initial matching. Lemma 24 shows that it correctly finds a maximal set of such paths
as well; it critically uses Lemma 23. Finally, Theorem 8 concludes with a proof of the running time.

Lemma 23. For a blossom Bb,t, if b is removed then procedure RECURSIVE REMOVE will
remove all vertices of this blossom.

Proof : We will prove the lemma by induction on the tenacity t of the blossom. The basis follows
easily, since for each v ∈ Bb,tm , b= pred∗

m(v), and therefore RECURSIVE REMOVE will remove
the vertices of this blossom by increasing minlevel.
Next, assume that the statement is true for all blossoms of tenacity t− 2, where tm < t < lm.

Consider a blossom Bb,t. For each vertex v ∈ Tb,t, b = pred∗
t (v), see Definition 29. Moreover, the

base of each blossom of tenacity t− 2 nested in Bb,t is a vertex from {b}∪Tb,t. Once b is removed,
the vertices of Tb,t will be removed in order of increasing minlevels, together with nested blossoms
of tenacity t− 2; the latter follows by the induction hypothesis. Hence Bb,t will be fully removed.
□

Lemma 24. The procedures given in Section 5.4 will find a maximal set of disjoint minimum
length augmenting paths in G.

Proof : Clearly, the first path, say p, found by the algorithm will be of length lm, i.e., it will
be a minimum length augmenting path. As argued earlier, the vertices removed by procedure
RECURSIVE REMOVE of Section 5.4.2 cannot be part of a minimum length augmenting path
that is disjoint from p.
The crux of the matter is: how do we guarantee that the remaining graph will “look like” a graph

in which the first path is found, i.e., it has all the pointers and properties needed. The theorems
of Section 8.4 guarantee that if a vertex v ∈ p then each of its iterated bases is on p and will
be removed. By Lemma 23, once the base of a blossom is removed, RECURSIVE REMOVE will
remove all its vertices and therefore there will be no “half-eaten” blossoms in the graph when the
next path needs to be found. The lemma follows. □



Vazirani: A Theory of Alternating Paths and Blossoms
46 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Theorem 8. The MV algorithm finds a maximum matching in general graphs in time O(m
√
n)

on the RAM model and O(m
√
n ·α(m,n)) on the pointer model, where α is the inverse Ackerman

function.

Proof : In a phase, each of the procedures MIN, MAX, finding augmenting paths, and RECUR-
SIVE REMOVE examine each edge a constant number of times. The only other operation per-
formed by the algorithm is that of computing bud∗ during DDFS. This can be implemented on the
pointer model using the set union algorithm of Tarjan [31], which will take O(m ·α(m,n)) time per
phase. Alternatively, it can be implemented on the RAM model using the linear time algorithm
for a special case of set union [10]; this will take O(m) time per phase. Since O(

√
n) phases suffice

for finding a maximum matching [15, 19], the theorem follows. □
Remark 7. A question arising from Theorem 8 is whether there is a linear time implementation

of bud∗ in the pointer model. [24] had claimed, without proof, that path compression by itself
suffices to achieve this. They stated that because of the special structure of blossoms, a charging
argument could be given that assigns a constant cost to each edge. This claim is left as an open
problem. See a related open problem in Section 10.
Finally we note that since the MV algorithm consists of simple operations, involving no hidden

constants, especially if implemented using the set union algorithm [31], it is not only fast in theory
but also in practice. Over the years, several researchers have produced very fast implementations.

9.4. The role of graph-theoretic structural properties in the MV algorithm Finally
we address the following question, “Why was it essential to formalize such an elaborate purely
graph-theoretic structure for proving correctness of the MV algorithm?” Now that the reader is
familiar with the structural definitions and claims, this question can be answered.
Assume that minlevel(v) = i + 1 and maxlevel(v) = j + 1, so that tenacity(v) = i + j + 2 = t,

where t is an eligible tenacity or t= lm. It is easy to see that there must be a neighbor, say u, of
v, such that evenlevel(u) = i or oddlevel(u) = i, depending on the parity of i. Therefore one step of
breadth first search, while searching from u, will lead to assigning v its correct minlevel. We will
say that u is the agent that assigns v its minlevel.
In contrast, none of the neighbors of v may have j as one of its levels. For instance, vertex b in the

graph of Figure 5 has maxlevel(b) = oddlevel(b) = 11. Observe that evenlevel(a) = evenlevel(c) = 8
and evenlevel(u) = 12, i.e., none of the neighbors of b has an evenlevel of 10. The following questions
arise:
1. What is the agent that assigns v its maxlevel and does it exist for each vertex v?
2. Can this agent be found for each “relevant” vertex v?
3. How does this agent help assign v its maxlevel?
This paper provides very precise answers to all these questions. The agent that assigns v its

maxlevel is a bridge whose tenacity equals tenacity(v). Statement 1 of Theorem 3 and Theorem 4
prove that every maxlevel(v) path contains such a bridge. Thus, in a sense, the central structural
fact that needed to be proven was this one.
For our purpose, relevant vertices are those whose tenacity is eligible or is lm. Theorem 7 proves

that for each such vertex, a bridge will be found by the algorithm; moreover, it will be found “well
in time”. Finally, the way a bridge helps assign a vertex its maxlevel is via the procedure of DDFS
executed on the endpoints of the bridge.
These structural properties suffice for finding the first augmenting path. However, after its

removal, can it be that the graph is left with “half-eaten blossoms” which simply do not support
finding the next path via the same process as the first one, even though a path exists? Lemma 24,
which is based on additional properties established in Section 8.4, shows that subsequent paths can
never use “half-eaten blossoms” and RECURSIVE REMOVE will remove all of them. Therefore
subsequent paths can be found in the same way as the first one.
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10. Discussion Matching is one of the “big three” problems in combinatorial optimization,
along with linear programming and flow. Spectacular progress in this field has led to improved
running times of the last two, as well as other fundamental problems, in the last three decades,
e.g., see [29] as well as recent papers. Recent improvements in flow algorithms have also led to
improved running times for the maximum matching problem in bipartite graphs: O(m10/7) [23],
O(m4/3) [21] and Õ(m+n1.5) [33]. Very recently, an almost linear time O(m1+o(1)) algorithm was
obtained [3]; however, it is currently unclear if this impressive theoretical running time translates
into very fast implementations for use in practice. A concerted effort has been made to improve
the running time for general graph matching as well, but so far the MV algorithm has stood the
test of time.
As is well-known, the general graph matching problem has numerous applications. We single out

a particularly interesting and important one — to the kidney exchange matching market, which was
first studied in [28]; see also the Scientific Background [4] for the 2012 Nobel Prize in Economics,
awarded to Alvin Roth and Lloyd Shapley.
Assume that agent A requires a kidney transplant and agent B has agreed to donate one of

her kidneys to A; however, their kidney types are not compatible. Assume further that (A′,B′) is
another pair of people with an incompatibility. If it turns out that (A,B′) and (A′,B) are both
compatible pairs, then let us say that the two pairs are consistent; if so, both transplants can be
performed.
Next assume that a number of incompatible pairs are specified, (A1,B1), . . . , (An,Bn) and for

every two pairs, we know whether they are consistent. Then the rudimentary problem22 of finding
the maximum number of disjoint consistent pairs reduces to maximum matching as follows. Let
G= (V,E) be a graph with V = {v1, . . . , vn} where vi represents the pair (Ai,Bi), and (vi, vj) ∈E
if and only if the two pairs (Ai,Bi) and (Aj,Bj) are consistent. Clearly a maximum matching in
G will yield the answer.
In addition to the profound influence matching has had on the theory of algorithms (see the

Introduction), it has also played a significant role in game theory and economics; we describe
this next. The matching game forms one of the cornerstones of cooperative game theory, e.g.,
see [25], and its special case, the assignment game, forms a paradigmatic setting for studying the
quintessential solution concept of the core23 of a game [30].
Several matching-based problems form essential ingredients in the area of online and matching-

based market design. Besides the application of general graph matching to kidney exchange
(described above), two other variants of matching, namely stable matching [13] and online bipartite
matching [18], lie at the core of this area, e.g., see [6]. The seminal 1962 paper of Gale and Shapley
[13], on stable matching, initiated this area. With the advent of the Internet and mobile computing,
it underwent a resurgence, leading to the launching of highly impactful new matching markets, e.g.,
the digital ads marketplaces, Uber, Lyft, Airbnb, Upwork and Match.com. The online bipartite
matching problem has emerged as a paradigm for this area because of the online decision-making
feature of these marketplaces.
Finally, here is an open question: Is there a linear time implementation of a phase of MV on the

pointer model? Remark 7 states the approach mentioned in [24] for addressing this question. The
following approach may be easier: Is it the case that the MV algorithm, implemented using the set
union algorithm [31], actually runs in linear time per phase? The running time of O(m

√
n ·α(m,n)),

reported in Theorem 8, is based on imprecise assumptions that the number of calls to this data

22 Solution concepts proposed by economists are more involved, taking into account issues such as incentive compat-
ibility, more general exchanges, etc., see [6].

23 The recent paper [35] rectifies the fact that the core of the general graph matching game is empty via the notion
of an approximate core.
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structure is O(m) and number of elements manipulated is O(n). More precise bounds on these two
quantities are the number of calls to DDFS, i.e., the number of bridges of eligible tenacity, and the
number of buds of petals24 respectively. Using these facts and structural properties established in
this paper, can one show that the total time devoted to set union in a phase is bounded by O(m)?
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