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The following issues in computational complexity remain imprecisely understood: The striking 
difference in the complexities of computing the permanent and determinant of a matrix despite 
their similar looking formulae, the complexity of checking if a directed graph contains an even 
length cycle, and the complexity of computing the number of perfect matchings in a graph using 
Pfaffian orientations. Via polynomial time equivalences, we show inter-relationships among these 
issues. 

1. Introduction 

The expression for computing the permanent of a matrix differs from that of the 
determinant only in the sign terms; yet the computational complexities of these two 
problems are strikingly different. The determinant of a matrix can be computed in 
polynomial time using the age-old Gaussian elimination; on the other hand, all 
attempts at computing the permanent efficiently have failed. In an early attempt, 
Polya [15] suggested computing the permanent of a O-l matrix A by reducing it to 
a suitable determinant. His idea was to change some of the + 1 entries of A into - 1 
so that the determinant of the resulting matrix I3 equalled the permanent of A. How- 
ever, he showed that such a transformation is not always possible. In a r-elated 
result, Marcus and Mint [13] showed that for n 2 3, there is no linear transformation 
7 which reduces permanent to determinant, i.e., such that perm(A) =det(T(A)) for 
all real matrices of order n. Valiant [19] explained the hardness of computing the 
permanent using modern complexity theory notions, by showing that this problem 
is #P-complete. This holds even when the problem is restricted to O-l matrices. 

In this paper, we first reconsider Polya’s scheme and study the complexity of the 
following problem: Given a O-l matrix A, does there exist a transformed matrix B, 
obtained by changing some of the +l entries of A into - 1, so that perm(A) = 
det(B)? We show that this problem is polynomial-time equivalent to the problem 
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of determining if a given directed graph contains an even length cycle. This later 
problem has algebraic connections (for example with the sign-solvability of matrices 
[6,12,18]), and is an outstanding open problem in computational graph theory 
[16,17]. 

The problem of computing the permanent of a O-l matrix is the same as the prob- 
lem of counting the number of perfect matchings in a bipartite graph. Let us con- 
sider the generalization of this later problem to arbitrary graphs. Clearly, this 
problem is also #P-complete. This problem has applications in physics (see for ex- 
ample [5]), especially when the given graph is planar. 

In a classic result, Kasteleyn, a physicist, gave a poynomial time algorithm for 
computing the number of perfect matchings in planar graphs [5]. In retrospect, 
Kasteleyn’s method may be viewed as an extension of Polya’s idea to general 
graphs. The idea is to start with the Tutte matrix of the graph, and substitute either 
+1 or -1 for the variables so that the determinant of the resulting matrix is the 
square of the number of perfect matchings in the graph. Kasteleyn defined the 
notion of Pfaffian orientation of a graph; this orientation tells us how to do the 
above substitution. Once the Pfaffian orientation of a graph is found, the number 
of perfect matchings in it can be computed in polynomial time. Kasteleyn also 
showed that every planar graph has such an orientation, and gave a polynomial time 
algorithm for finding it. 

Little [8] extended Kasteleyn’s work by showing that every K3,3-free graph has a 
Pfaffian orientation. It is easy to see that Little’s proof yields a polynomial time 
algorithm for computing the number of perfect matchings in a Ks,s-free graph; 
moreover, this can also be done in NC [21]. Is there a larger class of graphs which 
have Pfaffian orientation? More importantly, a long standing open problem is to 
resolve the complexity of determining if a given graph has a Pfaffian orientation, 
or even to determine if a given orientation for a graph is Pfaffian (see [ll]). 

We partially resolve this mystery: We show that the problem of determining if a 
given graph has a Pfaffian orientation is in Co-NP; moreover, it is polynomial-time 
equivalent to determining if a given orientation for a graph is Pfaffian. We also 
show that for the case of bipartite graphs, these problems are equivalent to the even 
cycle problem. For the first result, we use Lovasz’s [lo] polynomial time algorithm 
for computing the GF[2] rank of the set of perfect matchings of a graph. Lovasz’s 
algorithm is based on a decomposition of the graph into “bricks” and “braces”. 
We show that the given graph has a Pfaffian orientation iff all of its bricks and 
braces have Pfaffian orientations. The proof is constructive; given valid orienta- 
tions for the bricks and braces, we can obtain an orientation for the graph in poly- 
nomial time. Braces are bipartite graphs, so their Pfaffian orientation reduces to the 
even cycle problem. On the other hand, the complexity of orienting bricks remains 
an intriguing open problem. As a corollary we show that the number of Pfaffian 
orientations in a graph is either zero or a power of 2. 

Lovasz’s work [lo] draws on several important papers which study the perfect 
matching polytope, the linear space generated by incidence vectors of perfect mat- 
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things, and the ear and brick decompositions of matching covered graphs; and 
extends significantly this rich theory. The results stated above provide a natural 
application of this work. 

We finally study the complexity of determining if the permanent of a given integer 
matrix is equal to its determinant. We consider several cases: When the en- 
tries are O-l (and generally, nonnegative), when they are arbitrary, and when the 
computations are done mod k, for a fixed integer k. The first case is the most inter- 
esting, and is shown to be polynomial-time equivalent to the even cycle problem. 

The interface between algebra and graph theory has yielded interesting results. 
The algebraic connection of matching, via Tutte’s theorem, has resulted in efficient 
algorithms, even fast parallel algorithms [4,14]. On the other hand, despite its alge- 
braic connections, the complexity of the even cycle problem remains unresolved. In 
this paper, we have established a link between evaluating O-l permanents (i.e., 
counting the number of perfect matchings in a bipartite graph) and the even cycle 
problem. It remains to be seen if this link yields algorithmic ideas for the even cycle 
problem (see Section 6 for a detailed discussion). 

2. The complexity of Polya’s scheme 

Let A be an n x n matrix, and let cr be a permutation in the symmetric group S,. 
The permanent of A 1; defined as follows: 

perm(A) = c value(a), 
UES” 

where, 
value(o) = I ~5,A(ldOb 

s 

We will be concerned with the special case when A is a O-l matrix. Let G(U, V, E) be 
the bipartite graph whose adjacency matrix is A. The bipartition is U= (u,, . . . . u,}, 
I/= (v,, . . . . v,), and the edge set is E. The permutation cr is a perfect matching in 
G iff for llispr, (Ui, v,(i)) E E. Hence 

value(a) = 
1, if o is a perfect matching in G, 

0, otherwise. 

Thus perm(A) is equal to the number of perfect matchings in G. 
The determinant of A is defined as follows: 

det(A) = c sign(o) - value(o), 
UC& 

where sign(a) is + 1 if o is an even permutation and - 1 otherwise. Thus det(A) may 
fall short of perm(A) because of perfect matchings in G which are odd permuta- 
tions. Polya’s scheme for “remedying” this is the following: Change some of the 
+l in A into -1 to obtain a new matrix B such that 
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V perfect matching o: sign(o) = value&). 

Then clearly, det(B)=perm(A). We will study the computational complexity of: 

POLYA’S PROBLEM. 

-Instance: An n x n O-l matrix A. 
-Question: Is there an n x n O-l- - 1 matrix B satisfying Polya’s scheme? 

Let us define: 

EVEN CYCLE. 

-Instance: A directed graph G. 
-Question: Is there an even length simple cycle in G? 

TheOrem 2.1. POLYA'S PROBLEM is polynomial-time eqUiV&nt 10 EVEN CYCLE. 

Before giving the proof, we need to introduce another problem. Say that a 
directed graph is even if for every assignment of O-l weights to its edges, it contains 
an even weight cycle. The weight of a cycle is simply the sum of the weights of its 
edges. Seymour and Thomassen [16] show that the problem of testing if a given 
graph is even is polynomial-time equivalent to EVEN CYCLE. Section 3 is motivated 
by their theorem; however, in Section 3 we introduce a new proof method which 
can also be used to give a simpler proof of their theorem. 

Proof. Let us first reduce POLYA'S PROBLEM to EVEN CYCLE. Let A be the n x n 
adjacency matrix of bipartite graph G(U, V,E). Find a perfect matching A4 in G (if 
G has none, then perm(A) =O). W.1.o.g. assume that this perfect matching cor- 
responds to the identity permutation (since permuting the columns of A will not 
change its permanent), i.e., A has +1’s on its diagonal. W.1.o.g. we may fix each 
diagonal entry B to +l. 

Now, the signs of the remaining perfect matchings (permutations) depend on the 
lengths of their alternating cycles w.r.t. M. Construct a directed graph H on vertex 
set X= {xi, . . . . xn} as follows: Corresponding to each edge (ui, vj) in G, there is a 
directed edge (xi + Xi) in H. Notice that H will have a self-loop on each vertex, cor- 
responding to the edges in M. Furthermore, each perfect matching in G corresponds 
to a cycle cover in H, i.e., a set of directed edges such that each vertex has one in- 
coming and one outgoing edge. Consider the cycle cover C, corresponding to a per- 
fect matching N, and let e be the number of even cycles in it. Then sign(N) = (-l)e. 
Let us define sign(C) to also be (-l)e. We will now prove an easy though impor- 
tant lemma which will be useful in Section 5 as well. 

Lemma 2.2. Let H be a digraph with a self-loop on each vertex, and let A be its 
adjacency matrix (notice that A will have l’s on its diagonal). Then, det(A)= 
perm(A) iff H has no even cycle. 
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Proof. Clearly, det(A)sperm(A); equality holds iff H has no cycle cover having 
negative sign. If H has no even cycles, clearly every cycle cover has positive sign and 
equality holds. On the other hand, if H has an even cycle, we can complete it into 
a cycle cover C by picking self-loops on the vertices not in this cycle. Since C has 
negative sign, equality does not hold. q 

Thus, if H has no even cycles, the answer to Polya’s problem is trivially “yes”. 
Lemma 2.2 also indicates that we need to “repair” the even cycles in H in order 
to solve Polya’s problem. The following lemma shows how to do this. 

Lemma 2.3. There is a matrix B satisfying Polya’s scheme iff the directed graph H 
is not even. 

Proof. Suppose H is not even. Then there is an assignment of O-l weights to the 
edges of H so that there is no even weight cycle. The edges of H correspond to the 
off-diagonal entries of A. Make an entry - 1 iff the corresponding edge has weight 
0. Let B be the resulting matrix. We will show: 

V perfect matching 6: sign(o) = value&). 

First notice that even (odd) length cycles in H must have an odd (even) number of 
0 weight edges. Suppose cr is even. Then Q “traces” an even number of even length 
cycles in H, and hence it “traces” an even number of 0 weight edges. Therefore 
value&) = +l. Similarly, if cr is odd, it “traces” an odd number of even length 
cycles in H, and so values(o) = - 1. 

Next suppose there is a matrix B satisfying Polya’s scheme. Assign O-l weights 
to the edges of H so that the 0 weight edges correspond to the - 1 entries in B. Now, 
for each cycle in H, we can demonstrate a perfect matching in G that “traces” 
exactly this one cycle. Hence all cycles in H must have odd weight. Cl 

Lemma 2.3 together with [ 161 completes the reduction from POLYA'S PROBLEM to 
EVEN CYCLE. The reduction in the other direction is also obvious: Given a directed 
graph H, construct the O-l matrix A with l’s on its diagonal, and the remaining 1 
entries correspond to the directed edges in H. By Lemma 2.3, H is not even iff A 
is a “yes-instance” of POLYA'S PROBLEM. cl 

3. Pfaffian orientations 

Definition. Say that a cycle C in graph G(KE) is good if it has even length and 
G(V-- C) has a perfect matching. A graph obtained by directing each edge in G is 
called an orientation of G. An even cycle in an oriented graph is oddly oriented if 
in traversing the cycle, an fdd number of its edges are directed in the direction of 
traversal. An orientation G of a graph G is a Pfaffian orientation if every good 
cycle is oddly oriented. 
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It can be shown that in order to obtain a Pfaffian orientation it is sufficient to 
oddly orient all the alternating cycles w.r.t. any perfect matching in G (see [l]). The 
importance of Pfaffian orientation stems from the following: Let 6 be a Pfaffian 
orientation of G(V,E). Let A be the (symmetric) n x n adjacency matrix of G, 
) V ( = n. Obtain a matrix B from A as follows: 

B(i, j) = 

c 

+l, if (Vi+vj)EG, 

-1, if (Vj+Vi)EC, 

0, otherwise. 

B is a skew-symmetric matrix, and det(B) will be the square of the number of perfect 
matchings in G. B is derived from the Tutte matrix of G. For a detailed explanation 
of this theory see [1,5,11]. 

The complexity of the following two problems is as yet unresolved: 

PROBLEM 1. “Does the given graph G have a Pfaffian orientation?” 

PROBLEM2. “Is 6 a Pfaffian orientation for G?” 

Notice that since G may have exponentially many good cycles, PROBLEM 2 is not 
trivially solvable. 

Theorem 3.1. PROBLEM 1 and PROBLEM 2 are polynomial-time equivalent. 

Proof. The basic idea behind Theorem 3.1 is the following principle from linear 
algebra: Suppose we have a set of linear equations Ax=6 over an arbitrary field. 
Suppose A is m xn, with m>n, and rank(A)=r. Choose a basis for the row space 
of A, and denote this by A,. Let 6, be the vector containing the corresponding 
components of 6, and let s be any solution to A,x= 6,. Then, Ax= b is solvable 
(i.e., consistent) iff As= b. 

Let us first orient G arbitrarily to obtain graph G. Now. for each edge e in G 
assign a GF[2] variable x,. Any other orientation for G cali be described in terms 
of H and an assignment for the variables x~: x,=0 if e has the same oriemation as 
in H, and x, = 1 otherwise. 
PROBLEM 1 c PROBLEM 2. Let M be any perfect matching in G. The condition of 

oddly orienting an alternating cycle w.r.t. Mean be written as a GF[2] equation over 
the variables occurring on the edges of this cycle. Thus each alternating cycle gives 
one equation, and G has a Pfaffian orientation iff these equations are consistent. 
Let us write this set of GF[2] equations as Ax= b where x is the vector of the edge 
variables. The matrix A simply describes the set of alternating cycles in G. Notice 
that A may have exponentially many rows. 

In [lo], Lovasz gives a polynomial time algorithm for computing the GF[2] rank 
of the set of perfect matchings of a graph, and also for finding a basis. Find such 
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a basis for G, say B. Notice that the dimension of A is one less than the dimension 
of B; moreover, a basis for A can be obtained as follows: pick any vector in B and 
compute its GF[2] sum with each of the remaining vectors in B. These sums form 
a basis for A. 

Since the basis of A is small (polynomially bounded), we can find a solution S, 
@r x which satisfies all basis equations. This solution gives us an oriented graph 
G. Using the principle stated above, Ax= b is solvable iff As = b. Hence G has a 
Pfaffian orientation iff 6 is a Pfaffian orientation. This completes the reduction. 

PROBLEM 2 c PROBLEM 1. We want to check if 6 is a Pfaffian orientation for G. 
Let s be the vector which describes the orientations of edges in 8 w.r.t. 2. So, we 
want to check if As= b. Obtain again a basis for A, and first check if s satisfies the 
basis equations. If so, s satisfies all equations iff the set of equations is consistent, 
i.e., iff G has a Pfaffian orientation. 0 

Remark. The principle stated above can be used to obtain a simpler proof of the 
theorem in [16]: That the problem of testing if a given graph is even is polynomial- 
time equivalent to EVEN CYCLE. Once again, assign a GF[2] variable to each edge, 
representing its weight. For each directed cycle, there is a GF[2] equation saying that 
its weight is odd. This gives a system of equations Ax=b, with b being the all 1 
vector. Now, we can obtain a basis for A (i.e., the directed cycles of G) from the 
ear decomposition of G (assuming without loss of generality that G is strongly con- 
nected). The rest of the proof is similar to Theorem 3.1. 

Corollary 3.2. PROBLEM 1 is in Co-NP. 

Proof. From the proof of Theorem 3.1 it is easy to see that there is a short certifi- 
cate that enables us to verify in polynomial time that G has no Pfaffian orientation: 
If G has no Pfaffian orientation, the equations Ax = b are inconsistent. Then there 
must be a subset of rows of A, say A’, such that rank(A’) < rank(A’, b’), where b’ 
consists of the corresponding components of b. Notice that the number of rows in 
A’ is at most rank(A)+ 1, i.e., polynomial in n. 0 

Corollary 3.3. The following problem is in P: ‘*Given a graph G, output a number 
k such that k= #M(G) if G has a Pfaffian orientation, and k< #M(G) other- 
wise”, where #M(G) denotes the number of perfect matchings in G. 

Proof. As in Theorem 3.1, obtain an orientation for G, use it to substitute + l’s 
and -1’s in the Tutte matrix of G, and output the square root of the determinant 
of the resulting matrix. If G has a Pfaffian orientation, each perfect matching will 
contribute + 1 to this number, and it will be #M(G). Otherwise, some matchings 
will contribute +l and others will contribute - 1, making the resulting number 
strictly smaller than #M(G). q 



186 K K Vazirani, M. Yannakakis 

Corollary 3.4. The number of Pfaffian orientations in a graph is either zero, or a 
power of 2. 

Proof. Each solution to the equations Ax= b corresponds to a Pfaffian orientation. 
Since the equations are over GF[2], the number of solutions is either zero or a power 
of 2. Notice that even though we do not know how to decide between these two 
cases, we can compute the exponent of 2 in polynomial time; it is simply n- 
rank(A). Cl 

Remark. Corollary 3.3 gives an alternative method for computing the number of 
perfect matchings in K3,s-graphs. This method is quite different from the method 
used in [5,21]; however, at present we do not see clearly how these two methods 
relzte to each other. By Corollary 3.4, we can enumerate all the <brientations of 
K3,3-free graphs; however, we do not see how to achieve this using the method in 
E59211. 

4. Bricks and braces 

In this section, we address the complexity of the problems stated in Section 3. It 
is easy to see that the ideas in Theorem 2.1 yield the following: 

Theorem 4.1. The problem of testing if a given bipartitegraph has a Pfaffian orien- 
tation is polynomial-time equivalent to EVEN CYCLE. 

As for general graphs, we resort to the decomposition of graphs given by Lovisz 
[lo] for finding the GF[2] rank of the set of perfect matchings. We may assume 
that G( V,E) is matching covered, i.e., it is connected and every edge of G is in a 
perfect matching. A nonempty proper subset S of V determines a cut. Let O(S) 
denote the set of edges connecting S to V-S. S is a tight cut if every perfect mat- 
ching of G contains exactly one edge of V(S). A tight cut is nontrivial if S and V- S 
have at least two vertices each. Corresponding to a nontrivial tight cut S, two graphs 
can be obtained: One by contracting S to a single node, and the other by contracting 
V-S to a single node. Lovasz’s procedure decomposes G by finding a nontrivial 
tight cut, creating the two contractions and continuing the process on the contrac- 
tions until the pieces have no more nontrivial tight cuts. LovSsz proves that the 
pieces are of two types, “bricks” and “braces”, and the result of the decomposition 
is independent of the cuts chosen at each step. Bricks are bicritical, 3-connected 
graphs. A graph G is bicritical if G - u - u has a perfect matching for any two ver- 
tices u and u. A bipartite graph G( U, V, E) is called a brace if 1 I/ I= 1 I/ I, and each 
subset XC U with O< [XI< I UI - 1 has at least [XI+ 2 neighbors in V. 

Theorem 4.2. The graph G has a Pfaffian orientation iff each of the bricks and 
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braces in its decomposition have Pfaffian orientations. 

Proof. Suppose G is not a brick or a brace. Then G must have a nontrivia] tight 
cut [lo]. Let S determine such a cut in G, and let Gr and G2 be the corresponding 
contractions. Notice that by Lovasz’s procedure it is sufficient to prove that G has 
a Pfaffian orientation iff Gr and Gz have Pfaffian orientations. 

Suppose G has a Pfaffian orientation 6. Let M be a perfect matching in G, and 
let Qv, u) be the edge of M in V(S). Let UES and UE V-S. W.1.o.g. assume that 
in G this edge is directed from u to o. Let SC S be those vertices in S which have 
an edge incident from the set V(S). Pick any edge (s, t) + (u, u) in V(S), s E S and 
t E V- S. Since G is matching covered and S is a tight cut, there is a perfect matching 
N which contains (s, t) but not (u, 0). The symmetric difference of M and N has an 
alternating cycle involving exactly the edges (s, t) and (u, u) from V(S). Therefore, 
for each vertex s E S’, there is an even length alternating path from u to s. 

Consider any such path from u to s, and compute the parity of the number of 
edges on this path directed along the direction of the path. Suppose there are two 
such paths with different parities. Consider the two alternating cycles formed using 
these paths and any one alternating path from t to o in V-S. One of these cycles 
must not be oddly oriented, giving a contradiction. Therefore the parity of every 
even length alternating path from u to s must be the same. This helps us partition 
S’ into two sets Se and S, corresponding to even and odd parity respectively. Let 
Gt be the graph obtained by contracting V-S to u. To obtain a Pfaffian orien- 
tation for G,, orient edges not incident on u as in G, orient (u, o) from u to u, 
orient (w, o), w E S, from w to o, and orient (w, u), w E S,, from o to w. A Pfaffian 
orientation for Gz can similarly be obtained. 

Next, given Pfaffian orientations dt and Gz for Gr and Gz, we want to obtain 
an orientation for G. First notice that we can switch the orientations of all edges 
incident at one vertex and still obtain a valid Pfaffian orientation. Therefore we may 
assume that the edge (u, o) is oriented from u to u in both 6, and G,. As before, 
consider even length alternating paths in S starting from u and obtain sets S, and 
S,. Similarly, consider even length alternating paths in V,-S stafting from o, and 
obtain sets T, and TO. Direct the edges E- V(S) as in Gt or G2, and direct the 
edges in V(S) as follows: 

(i) (u,u): from u to u, 
(ii) (s,t), SE&, tE T,: from s to t, 

(iii) (s, t), SE S,, t E TO: from t to s, 
(iv) (s, t), SE SO, trz T,: from t to s, 
(v) (s, t), SE&,, tE TO: from s to t. 

This will be a Pfaffian orientation for G. Cl 

By Theorem 4.1, Pfaffian orienting braces reduces to EVEN CYCLE. On the other 
hand, characterizing the complexity of Pfaffian orienting bricks remains open. We 
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finally use Theorem 4.1 to show that the following problem is also polynomial-time 
equivaht t0 EVEN CYCLE: 

CYCLE SUM. 

- Ins?mce: A directed graph G( V, E). 
- Question: Is there a cycle in G which can be expressed as the GF[2] sum of an 

even number of cycles? 
- Comment: Here we are expressing each cycle as an [El-dimensional GF[2] 

vector. 

Theorem 4.3. CYCLE SUM is polynomiQ/-time equivalent to EVEN CYCLE. 

Proof. Let G(U, I/,E) be a bipartite graph. We will reduce the problem of deciding 
whether G has a Pfaffian orientation to CYCLE SUM. Let M be a perfect matching 
in G. Orient the edges of G to obtain 6 as follows: Orient edges in M from U to 
V, and orient the remaining edges from Vto U. Now assign a GF[2] variable to each 
edge and as in Theorem 3.1, write the system of equations, Ax = b, for oddly orien- 
ting the alternating cycles w.r.t. M. Notice that because of the special orientation 
given to Gt b will be a vector of 1’s. Therefore, Ax=b will be inconsistent iff an 
odd number of rows of A add to 0. Next colrcract the edges of M in 6 to obtain 
a directed graph H. The alternating cycles w.r.t. M in G correspond to directed 
cycles in I-I. Furthermore, Ax=b is inconsistent iff an odd number of cycles in H 
add to 0, or equivalently if H contains a cycle which can be written as the GF[2] 
sum of an even number of cycles. 

The reduction from CYCLE SUM to the problem of determining whether a bipar- 
tite graph has a Pfaffian orientation is straightforward using the above-stated 
ideas. Cl 

5. The complexity of testing if determinant equals permanent 

Polya’s idea of using determinants for computing permanents can be useful in a 
simpler setting: When the determinant equals the permanent. We study below the 
complexity of testing this. One can ask if the ideas of Polya, or Marcus and Mint 
can be used for computing permanents mod k, for a fixed integer k. A negative 
answer is given in [20], by showing that if k is not an exact power of 2, this problem 
is NP-hard under randomized redtctions (in case k is a power of 2, a polynomial 
time algorithm is given in [19]). An extension of this problem is also studied. 

Theorem 5.1. Let A be an n x n integer matrix. 
(a) If the entries of A are nonnegative integers, the problem “det(A) = perm(A)?” 

is polynomial-time equivalent to EVEN CYCLE. This holds even if A is a O-l matrix. 
(b) “det(A) = perm(A)?” is NP-hard. 
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(c) If k> 1 is not an exact power of 2, the problem “det(A) = perm(A)(mod k)?” 
is NP-hard under randomized reductions, even if A is a O-l matrix. 

Proof. (a) Lemma 2.2 directly yields a reduction from EVEN CYCLE to the problem 
“det(A) = perm(A)?“: Suppose G is the given digraph; add a self-loop on each 
vertex, and let A be the adjacency matrix of the resulting graph. 

To show the reduction in the other direction, first notice that det(A)=perm(A) 
iff value(o) = 0 for each odd permutation o. Hence, it is sufficient to consider the 
problem for O-l matrices: Replace all nonzero entries of A by 1. 

First check if value(o) #0 for some permutation tr, i.e., if A(i, a(i)) = 1, 15 is n, 
for some 6. This is simply the problem of determining if the bipartite graph, whose 
adjacency matrix is A, has a perfect matching. If not, det(A) = perm(A) = 0. Else let 
o be this permutation. If 0 is odd, det(A) # perm(A). Else permute the columns of 
A by 0-l to obtain matrix B whose diagonal entries are all 1. Since c is even, 
det(B) = det(A). Also, perm(B) = perm(A). Let G be the digraph on n vertices whose 
adjacency matrix is B. By Lemma 2.2, det(B) = perm(B) iff G has no even cycle. 

(b) We will reduce from the NP-hard problem “perm(A)=O?” [19]. Suppose A 
is an n x n matrix. The reduced matrix B will be (n + 2) x (n + 2), with bl I = b12 = 
9, = bz2 = 1. The remaining entries in the first two rows and columns are 0. The 
rest of B, which is n x n, is A. Clearly det(B) = 0 and perm(B) = 2 perm(A). There- 
fore det(B) = perm(B) iff perm(A) = 0. 

(c) The proof is similar to [20, Corollary 31. First reduce SAT to USAT. Let f 
be the formula obtained. Then using Valiant’s [19] transformation, obtain a matrix 
A such that perm(A) equals #f - 4’(mod k), where #f is the number of solutions 
f. Finally, obtain a matrix B by embedding A as in (b). Again det(B) = O(mod k) and 
perm(B) = #f - 2 - 4’(mod k). If #f = 1, perm(B) +O(mod k) since k is not an exact 
power of two. •i 

6. Discussion and open problems 

Some of the ideas presented here, in particular Lemma 2.2, were carried further 
by Friedland [3] to partially settle a long open conjecture of Lovasz [9]. Friedland 
shows that for kr 7, any k-regular digraph must contain an even cycle. Koh [7] had 
shown a 2-regular digraph which has no even cycle. The intermediate cases are still 
open. As such, this result does not yield an algorithmic schema for EVEN CYCLE 
since, for kr2, the problem of checking whether a given digraph has a k-regular 
subdigraph is NP-complete. 

Another open problem is to show that any 3-connected digraph must have an even 
cycle [9]. Currently only one 2-connected graph is known that does not have an even 
cycle; it is open whether this is the only such example (see [lS]). Settling these open 
problems will yield a polynomial time algorithm for EVEN CYCLE. Towards this 
end, we leave the following open problem: Yc s.t. Vkrc, every k-connected graph 
contains a 3-regular (respectively, 7-regular) subdigraph. 
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