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Abstract

In 1979, Hylland and Zeckhauser [HZ79] gave a simple and general scheme for implement-
ing a one-sided matching market using the power of a pricing mechanism. Their method has
nice properties – it is incentive compatible in the large and produces an allocation that is
Pareto optimal – and hence it provides an attractive, off-the-shelf method for running an ap-
plication involving such a market. With matching markets becoming ever more prevalent and
impactful, it is imperative to finally settle the computational complexity of this scheme.

We present the following partial resolution:
1. A combinatorial, strongly polynomial time algorithm for the dichotomous case, i.e., 0/1

utilities, and more generally, when each agent’s utilities come from a bi-valued set.
2. An example that has only irrational equilibria, hence proving that this problem is not in

PPAD.
3. A proof of membership of the problem in the class FIXP.
4. A proof of membership of the problem of computing an approximate HZ equilibrium

in the class PPAD.
We leave open the (difficult) questions of determining if computing an exact HZ equilib-

rium is FIXP-hard and an approximate HZ equilibrium is PPAD-hard.
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1 Introduction

In a brilliant and by-now classic paper, Hylland and Zeckhauser [HZ79] gave a simple and
general scheme for implementing a one-sided matching market using the power of a pricing
mechanism1. Their method produces an allocation that is Pareto optimal, envy-free [HZ79] and
is incentive compatible in the large [HMPY18]. The Hylland-Zeckhauser (HZ) scheme can be
viewed as a marriage between fractional perfect matching and a linear Fisher market, both of
which admit not only polynomial time algorithms but also combinatorial ones. These facts have
enticed numerous researchers over the years to seek an efficient algorithm for the HZ scheme.
The significance of this problem has only grown in recent years, with ever more diverse and
impactful matching markets being launched into our economy, e.g., see [ftToC19].

Our work on resolving this problem started with an encouraging sign, when we obtained a
combinatorial, strongly polynomial time algorithm for the dichotomous case, in which all utilities
are 0/1, by melding a prefect matching algorithm with the combinatorial algorithm of [DPSV08]
for the linear Fisher market, see Section 4. This algorithm can be extended to solve a more
general problem which we call the bi-valued utilities case, in which each agent’s utilities can take
one of only two values, though the two values can be different for different agents. However, this
approach did not extend any further, as described in the next section.

One-sided matching markets can be classified along two dimensions: whether the utility func-
tions are cardinal or ordinal, and whether agents have initial endowments or not. Under this
classification, the HZ scheme is (cardinal, no endowments). Section 1.2 gives mechanisms for
the remaining three possibilities as well as their game-theoretic properties. Ordinal and cardinal
utility functions have their individual pros and cons, and neither dominates the other. Whereas
the former are easier to elicit, the latter are far more expressive, enabling an agent to not only re-
port if she prefers one good to another but also by how much, thereby producing higher quality
allocations as illustrated in Example 1, which is taken from [GTV20].

Example 1. ([GTV20]) The instance has three types of goods, T1, T2, T3, and these goods are
present in the proportion of (1%, 97%, 2%). Based on their utility functions, the agents are
partitioned into two sets A1 and A2, where A1 constitute 1% of the agents and A2, 99%. The
utility functions of agents in A1 and A2 for the three types of goods are (1, ε, 0) and (1, 1− ε, 0),
respectively, for a small number ε > 0. The main point is that whereas agents in A2 marginally
prefer T1 to T2, those in A1 overwhelmingly prefer T1 to T2. Clearly, the ordinal utilities of all
agents in A1 ∪ A2 are the same. Therefore, a mechanism based on such utilities will not be able
to make a distinction between the two types of agents. On the other hand, the HZ mechanism,
which uses cardinal utilities, will fix the price of goods in T3 to be zero and those in T1 and T2
appropriately so that by-and-large the bundles of A1 and A2 consist of goods from T1 and T2,
respectively.

While studying the dichotomous case of two-sided markets, Bogomolnaia and Moulin [BM04]
called it an “important special case of the bilateral matching problem.” Using the Gallai-Edmonds
decomposition of a bipartite graph, they gave a mechanism that is Pareto optimal and group strat-
egyproof. They also gave a number of applications of their setting, some of which are natural

1See Remark 5 for a discussion of the advantages of this mechanism.
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applications of one-sided markets as well, e.g., housemates distributing rooms, having different
features, in a house. Furthermore, they say, “Time sharing is the simplest way to deal fairly with
indivisibilities of matching markets: think of a set of workers sharing their time among a set
of employers.” It turns out that the HZ (fractional) equilibrium allocation is a superior starting
point for the problem of designing a randomized time-sharing mechanism; this is discussed in
Remark 5 after introducing the HZ model. Roth, Sonmez and Unver [RSÜ05] extended these
results to general graph matching under dichotomous utilities; this setting is applicable to the
kidney exchange marketplace.

1.1 The gamut of possibilities

The most useful solution for practical applications would of course have been a combinatorial,
polynomial time algorithm for the entire scheme. At the outset, this didn’t seem unlikely, espe-
cially in view of the existence of such an algorithm for the dichotomous case. Next we considered
the generalization of the bi-valued utilities case to tri-valued utilities, in particular, to the case of
{0, 1

2 , 1} utilities. However, even this case appears to be intractable and its status is discussed in
Section 9.

Underlying the polynomial time solvability of a linear Fisher market is the property of weak
gross substitutability2. We note that this property is destroyed as soon as one goes to a slightly
more general utility function, namely piecewise-linear, concave and separable over goods (SPLC
utilities), and this case is PPAD-complete3 [VY11]; the class PPAD was introduced in [Pap94].
Since equilibrium allocations for the HZ scheme do not satisfy weak gross substitutability, e.g.,
see Example 10, we were led us to seek a proof of PPAD-completeness.

A crucial requirement for membership in PPAD is to show that there is always a rational equi-
librium if all parameters of the instance are rational numbers. However, even this is not true; we
found an example which admits only irrational equilibria, see Section 6. This example consists
of four agents and goods, and hence can be viewed as belonging to the four-valued utilities case;
see Remark 21 for other intriguing aspects of this example.

The irrationality of solutions suggests that the appropriate class for this problem is the class
FIXP, introduced in [EY10]. The proof in [HZ79], showing the existence of an equilibrium, uses
Kakutani’s theorem and does not seem to lend itself in any easy way to showing membership in
FIXP. For this purpose, we give a new proof of the existence of equilibrium. Our proof defines
a suitable Brouwer function which adjusts prices and allocations in case they are not an equi-
librium. It uses elementary arithmetic operations that improve their optimality or feasibility of
the current prices and allocations. The adjustment scheme is such that the only stable prices and
allocations are forced to be equilibria. The proof of the FIXP membership is presented in Section
7.

Next, we define the notion of an approximate equilibrium. This is still required to be a fractional
perfect matching on agents and goods; agents’ allocations are allowed to be slightly suboptimal
and/or their cost is allowed to slightly exceed the budget of 1 dollar. We show in Section 8 that

2Namely, if you increase the price of one good, the demand of another good cannot decrease.
3Independently, PPAD-hardness was also established in [CT09].
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the problem of computing such an approximate equilibrium is in PPAD. This involves relating
approximate equilibria to the approximate fixed points of the Brouwer function we defined for
our proof of membership in FIXP.

We leave open the questions of determining if the computation (to desired accuracy) of an exact
HZ equilibrium is FIXP-hard, and if the computation of an approximate HZ equilibrium is PPAD-
hard. We discuss briefly in Section 9 some of the obstacles in this regard and differences with
other models of markets with hard equilibrium problems.

1.2 Related work

We first present mechanisms for the remaining three possibilities for the classification of one-
sided matching market mechanisms given in the Introduction. The famous Top Trading Cycles
mechanism is (ordinal, endowments) [SS74]; it is efficient, strategyproof and core-stable. Under
(ordinal, no endowments) are Random Priority [Mou18], which is strategyproof though not effi-
cient or envy-free, and Probabilistic Serial [BM01], which is efficient and envy-free but not strat-
egyproof. Under (cardinal, endowments) is ε-Approximate ADHZ (for Arrow-Debreu Hylland-
Zeckhauser) scheme [GTV20], which satisfies Pareto optimality, approximate envy-freeness and
incentive compatibility in the large.

We are aware of only the following two computational results on the HZ scheme. Using the
algebraic cell decomposition technique of [BPR95], [DK08] gave a polynomial time algorithm for
computing an equilibrium for an Arrow-Debreu market under piecewise-linear, concave (PLC)
utilities (not necessarily separable over goods) if the number of goods is fixed. One can see
that their algorithm can be adapted to yield a polynomial time algorithm for computing an
equilibrium for the HZ scheme if the number of goods is a fixed constant. Extending these
methods, [AJKT17] gave a polynomial time algorithm for the case that the number of agents is a
fixed constant.

There are several results establishing membership and hardness in PPAD and FIXP for equilibria
computation problems in different settings. The quintessential complete problem for PPAD is
2-Nash [DGP09, CDDT09] and that for FIXP is multiplayer Nash equilibrium [EY10]. For the
latter problem, computing an approximate equilibrium is PPAD-complete [DGP09].

For the case of market equilibria, in the economics literature, there are two parallel streams of
results: one assumes that an excess demand function is given and the other assumes a specific
class of utility functions. [EY10] proved FIXP-completeness of Arrow-Debreu markets whose
excess demand functions are algebraic. This result is for the first stream and it does not estab-
lish FIXP-completeness of Arrow-Debreu markets under any specific class of utility functions.
Results for the second stream include proofs of membership in FIXP for Arrow-Debreu markets
under Leontief and piecewise-linear concave (PLC) utility functions in [Yan13] and [GMV16],
respectively. This was followed by a proof of FIXP-hardness for Arrow-Debreu markets with
Leontief and PLC utilities [GMVY17]. For the case of Arrow-Debreu markets with CES (constant
elasticity of substitution) utility functions, [CPY17] show membership in FIXP but leave open
FIXP-hardness.

For the CES market problem stated above, computing an approximate equilibrium is PPAD-
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complete, and the same holds more generally for a large class of ‘non-monotonic’ markets
[CPY17]. Computing an (exact or approximate) equilibrium under separable, piecewise-linear,
concave (SPLC) utilities for Arrow-Debreu and Fisher markets is also known to be PPAD-complete
[CDT09, CT09, VY11].

In recent years, several researchers have proposed Hylland-Zeckhauser-type mechanisms for a
number of applications, e.g., see [Bud11, HMPY18, Le17, McL18]. The basic scheme has also
been generalized in several different directions, including two-sided matching markets, adding
quantitative constraints, and to the setting in which agents have initial endowments of goods
instead of money, see [EMZ19a, EMZ19b].

2 The Hylland-Zeckhauser Scheme

Hylland and Zeckhauser [HZ79] gave a general mechanism for a one-sided matching market
using the power of a pricing mechanism. Their formulation is as follows: Let A = {1, 2, . . . n}
be a set of n agents and G = {1, 2, . . . , n} be a set of n indivisible goods. The mechanism will
allocate exactly one good to each agent and will have the following two properties:

• The allocation produced is Pareto optimal.

• The mechanism is incentive compatible in the large.

The Hylland-Zeckhauser scheme is a marriage between linear Fisher market and fractional per-
fect matching. The agents will reveal to the mechanism their desires for the goods by stating
their von Neumann-Mogenstern utilities. Let uij represent the utility of agent i for good j. We
will use language from the study of market equilibria to describe the rest of the formulation. For
this purpose, we next define the linear Fisher market model.

A linear Fisher market consists of a set A = {1, 2, . . . n} of n agents and a set G = {1, 2, . . . , m} of
m infinitely divisible goods. By fixing the units for each good, we may assume without loss of
generality that there is a unit of each good in the market. Each agent i has money mi and utility
uij for a unit of good j. If xij, 1 ≤ j ≤ m is the bundle of goods allocated to i, then the utility accrued
by i is ∑j uijxij. Each good j is assigned a non-negative price, pj. Allocations and prices, x and
p, are said to form an equilibrium if each agent obtains a utility maximizing bundle of goods at
prices p and the market clears, i.e., each good is fully sold and all money of agents is fully spent.

In order to mold the one-sided market into a linear Fisher market, the HZ scheme renders goods
divisible by assuming that there is one unit of probability share of each good. An allocation to
an agent is a collection of probability shares over the goods. Let xij be the probability share that
agent i receives of good j. Then, ∑j uijxij is the expected utility accrued by agent i. Each good j
has price pj ≥ 0 in this market and each agent has 1 dollar with which it buys probability shares.
The entire allocation must form a fractional perfect matching in the complete bipartite graph over
vertex sets A and G as follows: there is one unit of probability share of each good and the total
probability share assigned to each agent also needs to be one unit. Subject to these constraints,
each agent should buy a utility maximizing bundle of goods having the smallest possible cost. Note
that the last condition is not required in the definition of a linear Fisher market equilibrium. It
is needed here to guarantee that the allocation obtained is Pareto optimal, see Section 2.1 for an
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illustrative example. A second departure from the linear Fisher market equilibrium is that in the
latter, each agent i must spend her money mi fully; in the HZ scheme, i need not spend her entire
dollar. Since the allocation is required to form a fractional perfect matching, all goods are fully
sold. We will define these to be equilibrium allocation and prices; we state this formally below after
giving some preliminary definitions.

Definition 2. Let x and p denote arbitrary (non-negative) allocations and prices of goods. By
size, cost and value of agent i’s bundle we mean

∑
j∈G

xij, ∑
j∈G

pjxij and ∑
j∈G

uijxij,

respectively. We will denote these by size(i), cost(i) and value(i), respectively.

Definition 3. (Hylland and Zeckhauser [HZ79]) Allocations and prices (x, p) form an equilibrium
for the one-sided matching market stated above if:

1. The total probability share of each good j is 1 unit, i.e., ∑i xij = 1.

2. The size of each agent i’s allocation is 1, i.e., size(i) = 1.

3. The cost of the bundle of each agent is at most 1.

4. Subject to constraints 2 and 3, each agent i maximizes her expected utility at minimum
possible cost, i.e., maximize value(i), subject to size(i) = 1, cost(i) ≤ 1, and lastly, cost(i) is
smallest among all utility-maximizing bundles of i.

Using Kakutani’s fixed point theorem, the following is shown:

Theorem 4. [Hylland and Zeckhauser [HZ79]] Every instance of the one-sided market defined above
admits an equilibrium; moreover, the corresponding allocation is Pareto optimal.

Finally, if this “market” is large enough, no individual agent will be able to improve her allocation
by misreporting utilities nor will she be able to manipulate prices. For this reason, the HZ scheme
is incentive compatible in the large.

As stated above, Hylland and Zeckhauser view each agent’s allocation as a lottery over goods.
In this viewpoint, agents accrue utility in an expected sense from their allocations. Once these
lotteries are resolved in a manner faithful to the probabilities, an assignment of indivisible goods
will result. The latter can be done using the well-known Theorem of Birkhoff [Bir46] and von
Neumann [VN53] which states that any doubly stochastic matrix can be written as a convex
combination of permutation matrices, i.e., perfect matchings; moreover, this decomposition can
be obtained efficiently. Next, pick one of these perfect matchings from the discrete distribution
given by coefficients in the convex combination. As is well known, since the lottery over goods is
Pareto optimal ex ante, the integral allocation, viewed stochastically, will also be Pareto optimal
ex post.

Another viewpoint, forwarded by Bogomolnaia and Moulin [BM04], considers the fractional
perfect matching, or equivalently the doubly-stochastic matrix, as the output of the mechanism,
i.e., without resorting to randomized rounding. This viewpoint assumes that the agents are going
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to ”time-share” the goods or resources and the doubly-stochastic matrix, which is derived from
a market mechanism, provides a “fair” way of doing so.

Remark 5. In their paper studying the dichotomous case of two-sided matching markets, Bogo-
molnaia and Moulin [BM04] state that the preferred way of dealing with indivisibilities inherent
in matching markets is to resort to time sharing using randomization. Their method builds on
the Gallai-Edmonds decomposition of the underlying bipartite graph; this classifies vertices into
three categories: disposable, over-demanded and perfectly matched. This is a much more coarse
insight into the demand structure of vertices than that obtained via the HZ equilibrium. The
latter is the output of a market mechanism in which equilibrium prices reflect the relative impor-
tance of goods in an accurate and precise manner, based on the utilities declared by buyers, and
equilibrium allocations are as equitable as possible across buyers. Hence the latter yields a more
fair and desirable randomized time-sharing mechanism.

2.1 The importance of minimizing cost of bundles

Example 6. Our example has 3 agents A1, A2, A3 and 3 goods g1, g2, g3. The agents’ utilities for
the goods are given in Table 1.

Table 1: Agents’ utilities.
g1 g2 g3

A1 0 1 1
A2 1 1

2 0
A3 1 0 1

2

If the condition of minimizing the cost of agents’ bundles is removed, the instance defined in
Example 6 admits the following three solutions – the proof is quite straightforward.

Solution 1: The prices are p1 = 2, p2 = 0, p3 = 1 and allocations as in Table 2.

Solution 2: The prices are p1 = 2, p2 = 1, p3 = 0 and allocations as in Table 3.

Solution 3: The prices are p1 = 2, p2 = 0, p3 = 0 and allocations as in Table 4.

Observe that Solution 3 Pareto dominates the other two. Also observe that in each of the first
two solutions, agent A1 buys a utility maximizing bundle which is not the cheapest. Therefore,
Solution 3 is the only HZ equilibrium for this example.

Table 2: Allocations under Equilibrium 1.
g1 g2 g3

A1 0 0 1
A2

1
2

1
2 0

A3
1
2

1
2 0
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Table 3: Allocations under Equilibrium 2.
g1 g2 g3

A1 0 1 0
A2

1
2 0 1

2
A3

1
2 0 1

2

Table 4: Allocations under Equilibrium 3.
g1 g2 g3

A1 0 1
2

1
2

A2
1
2

1
2 0

A3
1
2 0 1

2

3 Properties of Optimal Allocations and Prices

Let p be given prices which are not necessarily equilibrium prices. An optimal bundle for agent
i, xi, is a solution to the following LP, which has two constraints, one for size and one for cost.

max ∑
j

xijuij (1)

s.t. (2)

∑
j

xij = 1 (3)

∑
j

xij pj ≤ 1 (4)

∀j xij ≥ 0 (5)

Taking µi and αi to be the dual variables corresponding to the two constraints, we get the dual
LP:

min αi + µi (6)
s.t. (7)
∀i, j αi pj + µi ≥ uij (8)

αi ≥ 0 (9)

Clearly µi is unconstrained. µi will be called the offset on i’s utilities. By complementary slack-
ness, if xij is positive then αi pj = uij − µi. All goods j satisfying this equality will be called optimal
goods for agent i. The rest of the goods, called suboptimal, will satisfy αi pj > uij − µi. Obviously
an optimal bundle for i must contain only optimal goods.
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The parameter µi plays a crucial role in ensuring that i’s optimal bundle satisfies both size and
cost constraints. If a single good is an effective way of satisfying both size and cost constraints,
then µi plays no role and can be set to zero. However, if different goods are better from the
viewpoint of size and cost, then µi attains the right value so they both become optimal and i
buys an appropriate combination. We provide an example below to illustrate this.

Example 7. Suppose i has positive utilities for only two goods, j and k, with uij = 10, uik = 2
and their prices are pj = 2, pk = 0.1. Clearly, neither good satisfies both size and cost constraints
optimally: good j is better for the size constraint and k is better for the cost constraint. If i buys
one unit of good j, she spends 2 dollars, thus exceeding her budget. On the other hand, she
can afford to buy 10 units of k, giving her utility of 20; however, she has far exceeded the size
constraint. It turns out that her optimal bundle consists of 9/19 units of j and 10/19 units of k;
the costs of these two goods being 18/19 and 1/19 dollars, respectively. Clearly, her size and cost
constraints are both met exactly. Her total utility from this bundle is 110/19. It is easy to see that
αi = 80/19 and µi = 30/19, and for these settings of the parameters, both goods are optimal.

We next show that equilibrium prices are invariant under the operation of scaling the difference
of prices from 1.

Lemma 8. Let p be an equilibrium price vector and fix any r > 0. Let p′ be such that ∀j ∈ G,
p′j − 1 = r(pj − 1). Then p′ is also an equilibrium price vector.

Proof. Consider an agent i. Clearly, ∑j∈G pjxij ≤ 1. Now,

∑
j∈G

p′jxij = ∑
j∈G

(rpj − r + 1)xij ≤ 1,

where the last inequality follows by using ∑j∈G xij = 1.

Using Lemma 8, it is easy to see that if the allocation x provides optimal bundles to all agents
under prices p then it also does so under p′. In the rest of this paper we will enforce that the
minimum price of a good is zero, thereby fixing the scale. Observe that the main goal of the
Hylland-Zeckhauser scheme is to yield the “correct” allocations to agents; the prices are simply
a vehicle in the market mechanism to achieve this. Hence arbitrarily fixing the scale does not
change the essential nature of the problem. Moreover, setting the minimum price to zero is
standard [HZ79] and can lead to simplifying the equilibrium computation problem as shown in
Remark 9.

Remark 9. We remark that on the one hand, the offset µi is a key enabler in construing optimal
bundles, on the other, it is also a main source of difficulty in computing equilibria for the HZ
scheme. We identify here an interesting case in which µi = 0 and this difficulty is mitigated. In
particular, this holds for all agents in the dichotomous case presented in Section 4. Suppose good
j is optimal for agent i, uij = 0 and pj = 0, then it is easy to check that µi = 0. If so, the optimal
goods for i are simply the maximum bang-per-buck goods; the latter notion is replete in market
equilibrium papers, e.g., see [DPSV08].
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Finally, we extend Example 7 to illustrate that optimal allocations for the Hylland-Zeckhauser
model do not satisfy the weak gross substitutes condition in general.

Example 10. In Example 7, let us raise the price of k to 0.2 dollars. Then the optimal allocation
for i changes to 4/9 units of j and 5/9 units of k. Notice that the demand for j went down from
9/19 to 4/9. One way to understand this change is as follows: Let us start with the old allocation
of 10/19 units of k. Clearly, the cost of this allocation of k went up from 1/19 to 2/19, leaving
only 17/19 dollars for j. Therefore size of j needs to be reduced to 17/38. However, now the
sum of the sizes becomes 37/38, i.e., less than a unit. We wish to increase this to a unit while
still keeping cost at a unit. The only way of doing this is to sell some of the more expensive good
and use the money to buy the cheaper good. This is the reason for the decrease in demand of j.

4 Strongly Polynomial Algorithm for Bi-Valued Utilities

In this section, we will study the restriction of the HZ scheme to the bi-valued utilities case,
which is defined as follows: for each agent i, we are given a set {ai, bi}, where 0 ≤ ai < bi,
and the utilities uij, ∀j ∈ G, are picked from this set. However first, using a perfect matching
algorithm and the combinatorial algorithm [DPSV08] for linear Fisher markets, we will give a
strongly polynomial time algorithm for the dichotomous case, i.e., when all utilities uij are 0/1.
Next we define the notion of equivalence of utility functions and show that the bi-valued utilities
case is equivalent to the dichotomous case, thereby extending the dichotomous case algorithm to
this case.

We need to clarify that we will not use the main algorithm from [DPSV08], which uses the notion
of balanced flows and l2 norm to achieve polynomial running time. Instead, we will use the
“simple algorithm” presented in Section 5 in [DPSV08]. Although this algorithm is not proven
to be efficient, the simplified version we define below, called Simplified DPSV Algorithm, is
efficient; in fact it runs in strongly polynomial time, unlike the balanced-flows-based algorithm of
[DPSV08]. Remark 9 provides an insight into what makes the dichotomous case computationally
easier.

We note that recently, [GTV20] gave a rational convex program (RCP) for the dichotomous case
of HZ. An RCP, defined in [Vaz12], is a nonlinear convex program all of whose parameters are
rational numbers and which always admits a rational solution in which the denominators are
polynomially bounded. An RCP can be solved exactly in polynomial time using the ellipsoid
algorithm and diophantine approximation [GLS12, Jai07], and therefore directly implies the ex-
istence of a polynomial time algorithm for the underlying problem.

Notation: We will denote by H = (A, G, E) be the bipartite graph on vertex sets A and G, and
edge set E, with (i, j) ∈ E iff uij = 1. For A′ ⊆ A and G′ ⊆ G, we will denote by H[A′, G′] the
restriction of H to vertex set A′ ∪ G′. If ν is a matching in H, ν ⊆ E, and (i, j) ∈ ν then we will say
that ν(i) = j and ν(j) = i. For any subset S ⊆ A (S ⊆ G), N(S) will denote the set of neighbors,
in G (A), of vertices in S.

If H has a perfect matching, the matter is straightforward as stated in Steps 1a and 1b; allocations
and prices are clearly in equilibrium. For Step 2, we need the following lemma.
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Algorithm 12. Algorithm for the Dichotomous Case

1. If H has a perfect matching, say ν, then do:
(a) ∀i ∈ A: allocate good ν(i) to i.
(b) ∀j ∈ G: pj ← 0. Go to Step 3.

2. Else do:
(a) Find a minimum vertex cover in H, say G1 ∪ A2, where G1 ⊂ G and A2 ⊂ A.

Let A1 = A − A2 and G2 = G − G1.
(b) Find a maximum matching in H[A2, G2], say ν.
(c) ∀i ∈ A2: allocate good ν(i) to i.
(d) ∀j ∈ G2: pj ← 0.
(e) Run the Simplified DPSV Algorithm on agents A1 and goods G1.
(f) ∀i ∈ A1: Allocate unmatched goods of G2 to satisfy the size constraint.

3. Output the allocations and prices computed and Halt.

Lemma 11. The following hold:

1. For any set S ⊆ A2, |N(S)| ≥ |S|.

2. For any set S ⊆ G1, |N(S) ∩ A1| ≥ |S|.

Proof. 1). If |N(S)| < |S| then (G1 ∪ N(S)) ∪ (A2 − S) is a smaller vertex cover for H, leading to
a contradiction.

2). If |N(S) ∩ A1| < |S| then (G1 − S) ∪ (A2 ∪ N(S)) is a smaller vertex cover for H, leading to a
contradiction.

The first part of Lemma 11 together with Hall’s Theorem implies that a maximum matching in
H[A2, G2] must match all agents. Therefore in Step 2a, each agent i ∈ A2 is allocated one unit of
a unique good from which it derives utility 1 and having price zero; clearly, this is an optimal
bundle of minimum cost for i. The number of goods that will remain unmatched in G2 at the
end of this step is |G2|− |A2|.

Allocations are computed for agents in A1 as follows. First, Step 2e uses the Simplified DPSV
Algorithm, which we describe below, to compute equilibrium allocations and prices for the sub-
market consisting of agents in A1 and goods in G1. At the end of this step, the money of each
agent in A1 is exhausted; however, her allocation may not meet the size constraint. To achieve
the latter, Step 2f allocates the unmatched zero-priced goods from G2 to agents in A1. Clearly,
the total deficit in size is |A1|− |G1|. Since this equals |G2|− |A2|, the market clears at the end
of Step 2f. As shown in Lemma 13, each agent in A1 also gets an optimal bundle of goods of
minimum cost.

Let p be the prices of goods in G1 at any point in this algorithm. As a consequence of the second
part of Lemma 11, the equilibrium price of each good in G1 will be at least 1. The Simplified
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DPSV algorithm will initialize prices of goods in G1 to 1 and declare all goods active. The
algorithm will always raise prices of active goods uniformly4.

For S ⊆ G1 let p(S) denote the sum of the equilibrium prices of goods in S. A key notion from
[DPSV08] is that of a tight set; set S ⊆ G1 is said to be tight if p(S) = |N(S)|, the latter being
the total money of agents in A1 who are interested in goods in S. If set S is tight, then the local
market consisting of goods in S and agents in N(S) clears. To see this, one needs to use the
flow-based procedure given in [DPSV08] to show that each agent i ∈ N(S) can be allocated 1
dollar worth of those goods in S from which it accrues unit utility. Thus equilibrium has been
reached for goods in S.

As the algorithm raises prices of all goods in G1, at some point a set S will go tight. The algorithm
then freezes the prices of its goods and removes them from the active set. It then proceeds to raise
the prices of currently active goods until another set goes tight, and so on, until all goods in G1
are frozen.

We can now explain in what sense we need a “simplified” version of the DPSV algorithm. As-
sume that at some point, S ⊂ G1 is frozen and goods in G1 − S are active and their prices are
raised. As this happens, agents in A1 − N(S) start preferring goods in S relative to those in
G1 − S. In the general case, at some point, an agent i ∈ (A1 − N(S)) will prefer a good j ∈ S as
much as her other preferred goods. At this point, edge (i, j) is added to the active graph. As a
result, some set S′ ⊆ S, containing j, will not be tight anymore and will be unfrozen. However,
in our setting, the utilities of agents in (A1 − N(S)) for goods in S is zero, and therefore no new
edges are introduced and tight sets never become unfrozen. Hence the only events of the Sim-
plified DPSV Algorithm are raising of prices and freezing of sets. Clearly, there will be at most
n freezings. One can check details in [DPSV08] to see that the steps executed with each freez-
ing run in strongly polynomial time, hence making the Simplified DPSV Algorithm a strongly
polynomial time algorithm5.

Lemma 13. Each agent in A1 will get an optimal bundle of goods of minimum cost.

Proof. First note that for agents in A1, there are no utility 1 goods in G2 – this follows from
the fact that no vertices from A1 ∪ G2 are in the vertex cover picked. Therefore, for i ∈ A1, an
optimum bundle consists of the cheapest way of obtaining one dollar worth of goods from N{i},
which are in G1, together with the right amount of zero-priced goods from G2 to satisfy the size
constraint.

Assume that the algorithm freezes k sets, S1, . . . Sk, in that order; the union of these sets being
G1. Let p1, p2, . . . pk be the prices of goods in these sets, respectively. Clearly, successive freezings
will be at higher and higher prices and therefore, 1 ≤ p1 < p2 < . . . < pk, and for 1 ≤ j ≤ k, pj =
|N(Sj)|/|Sj|. If i ∈ N(Sj), the algorithm will allocate 1/pj amount of goods to i from Sj, costing
1 dollar.

By definition of neighborhood of sets, if i ∈ N(Sj), then i cannot have edges to S1, . . . Sj−1 and

4In [DPSV08], prices of active goods are raised multiplicatively, which amounts to raising prices of active goods
uniformly for our simplified setting.

5In contrast, in the general case, the number of freezings is not known to be bounded by a polynomial in n, as
stated in [DPSV08].
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can have edges to Sj+1, . . . , Sk. Therefore, the cheapest goods from which it accrues unit utility
are in Sj, the set from which she gets 1 dollar worth of allocation. The rest of the allocation of i,
in order to meet i’s size constraint, will be from G2, which are zero-priced and from which i gets
zero utility. Clearly, i gets an optimal bundle of minimum cost.

Since all steps of the algorithm, namely finding a maximum matching, a minimum vertex cover
and running the Simplified DPSV Algorithm, can be executed in strongly polynomial time, we
get:

Lemma 14. Algorithm 12 finds equilibrium prices and allocations for the dichotomous case of the Hylland-
Zeckhauser scheme. It runs in strongly polynomial time.

Definition 15. Let I be an instance of the HZ scheme and let the utility function of agent i be
ui = {ui1, ui12, . . . , uin}. Then u′

i = {u′
i1, u′

i12, . . . , u′
in} is equivalent to ui if there are two numbers

s > 0 and h ≥ 0 such that for 1 ≤ j ≤ n, u′
ij = s · uij + h. The numbers s and h will be called the

scaling factor and shift, respectively.

Lemma 16. Let I be an instance of the HZ scheme and let the utility function of agent i be ui. Let u′
i be

equivalent to ui and let I′ be the instance obtained by replacing ui by u′
i in I. Then x and p are equilibrium

allocation and prices for I if and only if they are also for I′.

Proof. Let s and h be the scaling factor and shift that transform ui to u′
i. By the statement of the

lemma, xi = {xi1, . . . , xin} is an optimal bundle for i at prices p and hence is a solution to the
optimal bundle LP (1). The objective function of this LP is

n

∑
j=1

uijxij.

Next observe that the objective function of the corresponding LP for i under instance I′ is

n

∑
j=1

u′
ijxij =

n

∑
j=1

(s · uij + h)xij = h + s ·
n

∑
j=1

uijxij,

where the last equality follows from the fact that ∑n
j=1 xij = 1. Therefore, the objective function of

the second LP is obtained from the first by scaling and shifting. Furthermore, since the constraints
of the two LPs are identical, the optimal solutions of the two LPs are the same. Finally, for each
i ∈ A: the bundle under allocation x is a minimum cost optimal bundle for I if and only if it is
also for I′. The lemma follows.

Next, let ui be bi-valued with the two values being 0 ≤ a < b. Obtain u′
i from ui by replacing

a by 0 and b by 1. Then, u′
i is equivalent to ui, with the shift and scaling being a and b − a,

respectively. Therefore the bi-valued instance can be transformed to a unit instance, with both
having the same equilibria. Now using Lemma 14 we get:

Theorem 17. There is a strongly polynomial time algorithm for the bi-valued utilities case of the Hylland-
Zeckhauser scheme.

13



5 Characterizing Optimal Bundles

In this section we give a characterization of optimal bundles for an agent at given prices p which
are not necessarily equilibrium prices. This characterization will be used critically in Section 7, 8
and to some extent in Section 6.

Notation: For each agent i, let G∗
i ⊆ G denote the set of goods from which i derives maximum

utility, i.e., G∗
i = arg maxj∈G{uij}. With respect to an allocation x, let Bi = {j ∈ G | xij > 0}, i.e.,

the set of goods in i’s bundle.

We identify the following four types of optimal bundles.

Type A bundles: αi = 0 and cost(i) < 1.

By complementary slackness, optimal goods will satisfy uij = µi and suboptimal goods will
satisfy uij < µi. Hence the set of optimal goods is G∗

i and Bi ⊆ G∗
i . Note that the prices of goods

in Bi can be arbitrary, as long as cost(i) < 1.

Type B bundles: αi = 0 and cost(i) = 1.

The only difference from the previous type is that cost(i) is exactly 1. The reason for distinguish-
ing the two types will become clear in Section 7.

Type C bundles: αi > 0 and all optimal goods for i have the same utility.

Recall that good j is optimal for i if6 αi pj = uij − µi. Suppose goods j and k are both optimal.
Then uij = uik and αi pj = uij − µi = uik − µi = αi pk, i.e., pj = pk. Since αi > 0, by complementary
slackness, cost(i) = 1. Further, since size(i) = 1, we get that each optimal good has price 1.

Type D bundles: αi > 0 and not all optimal goods for i have the same utility.

Suppose goods j and k are both optimal and uij ∕= uik. Then αi pj = uij − µi ∕= uik − µi = αi pk,
i.e., pj ∕= pk. Therefore optimal goods have at least two different prices. Since αi > 0, by
complementary slackness, cost(i) = 1. Further, since size(i) = 1, there must be an optimal
good with price more than 1 and an optimal good with price less than 1. Finally, if good z is
suboptimal for i, then αi pz < uiz − µi.

6 An Example Having Only Irrational Equilibria

Our example has 4 agents A1, . . . , A4 and 4 goods g1, . . . , g4
7. The agents’ utilities for the goods

are given in Table 5, with rows corresponding to agents and columns to goods.

Thus, agents A1 and A2 like, to varying degrees, three goods only, g1, g2, g4, while agents A3 and
A4 like two goods each, {g1, g3} and {g2, g3}, respectively. The precise values of the utilities are

6Note that under this case, optimal goods are not necessarily maximum utility goods; the latter may be suboptimal
because their prices are too high.

7It can be shown, by analyzing relations in the bipartite graph on agents and goods with edges corresponding to
non-zero allocations, that any instance with 3 agents and 3 goods and rational utilities has a rational equilibrium.
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Table 5: Agents’ utilities.
g1 g2 g3 g4

A1 2 4 0 8
A2 2 3 0 8
A3 2 0 5 0
A4 0 4 5 0

not that important; the important aspects are: which goods each agent likes, the order between
them, and the ratios u14−u12

u12−u11
and u24−u22

u22−u21
. Notice that the latter are unequal.

We will show that this example has a unique equilibrium solution with minimum price 0. In this
solution, good g1 has price 0, and all the other goods have positive irrational values. Agents A1,
A3 and A4 buy the goods that they like, and A2 buys g1 and g4 only.

Consider any equilibrium with minimum price 0. We will analyze its properties, and show
eventually that they force specific prices and allocations.

Lemma 18. Equilibrium prices satisfy:

0 = p1 < p2 < 1 and p3, p4 > 1.

The equilibrium bundle of each agent is of Type D and contains goods having positive utilities only.

Proof. Suppose p3 ≤ 1. Then agents A3 and A4 will demand 1 unit each of good g3, leading to
a contradiction. Similarly, if p4 ≤ 1 then A1 and A2 will demand 1 unit each of g4. Therefore,
p3, p4 > 1. Since the maximum utility goods of every agent have price > 1, all agents spend
exactly 1. Therefore, the sum of the prices of the goods is 4.

Suppose p2 = 0 ≤ p1. Then A1, A2, A4 do not buy g1, since they prefer g2 and it is weakly
cheaper than g1. Therefore A3 must buy the entire unit of g1. Clearly A1, A2 do not buy g3, since
they prefer g2. Therefore, the only agent who buys g3 is A4; however, she cannot afford the entire
unit of g3 since p3 > 1, contradicting market clearing. Therefore p2 > 0 and hence the 0-priced
good is g1 and p1 = 0 < p2. Furthermore, p2 + p3 + p4 = 4.

Next suppose p2 ≥ 3/4. Then p4 = 4 − (p2 + p3) < 9/4. For both agents A1 and A2, a
combination of g1 and g4 in proportion 2:1 has a price less than 3/4 for one unit and utility
4, and is therefore preferable to g2. Hence, A1, A2 will not buy any g2, and since A3 does not
buy any g2 either, since she prefers g1, it follows that A4 must buy the entire unit of g2. This
is possible only if p2 = 1 and A4 buys nothing else; in particular, she does not buy any g3.
Clearly, A1, A2 do not buy any g3 since they prefer g1. Therefore the entire unit of g3 must be
bought by A3, which is impossible because p3 > 1. Hence p2 < 3/4. These facts together with
p1 = 0 < p2 < 1 < p3, p4 imply that the agents’ bundles are not Type B or C. Therefore they are
all of Type D.

Finally we prove that none of the agents will buy an undesirable good (a good with utility 0).
For A1, A2, A3, such a good is dominated by another lower-priced good. Since p4 > 1, A4 does
not buy g4. Suppose agent A4 buys good g1. Since she spends 1 dollar, she must also buy g3.
Therefore we have: α4 p1 + µ4 = u41 = 0. Therefore µ4 = 0. Also α4 p3 + µ4 = u43 = 5; therefore
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α4 p3 = 5, which implies α4 < 5 since p3 > 1. Furthermore, α4 p2 + µ4 ≥ u42 = 4, hence p2 > 4/5,
which contradicts p2 < 3/4. Therefore, no agent buys any undesirable good.

Lemma 19. One of the agents A1, A2 buys all three desirable goods. If A1 buys g1, g2, g4, then A2 buys
g1, g4 only. If A2 buys g1, g2, g4, then A1 buys g2, g4 only.

Proof. Since all the bundles are of Type D, every bundle has at least two goods; clearly, every
good is bought by at least two agents.

Suppose that every agent buys two goods and every good is bought by two agents. If so, one
of A1, A2 must buy g1, g4 and the other must buy g2, g4. Consider the graph with the goods as
nodes and an edge joining two nodes if they are bought by the same agent. This graph must be
the 4-cycle g1, g4, g2, g3, g1. Therefore for some a, 0 < a < 1, each agent buys a units of one good
and b = 1 − a units of the second good and each good is sold to two agents in the amounts of a
and b.

Let ri = |1 − pi|. Observe that for every edge (gi, gj) of the cycle, one price is < 1 and the other
price is > 1, and we have api + bpj = 1. Therefore ari − brj = 0, and ri

rj
= b

a . Hence

r1

r4
=

r4

r2
=

r2

r3
=

r3

r1
,

which implies that all the ri are equal. Therefore p1 = p2, contradicting the previous claim that
p1 < p2. Hence at least one of A1, A2 will buy all three of her desirable goods.

Suppose that A1 buys all three desirable goods g1, g2, g4. Then we have α1 pj + µ1 = u1j for
j = 1, 2, 4. Therefore, (p4 − p1)/(p4 − p2) = (u14 − u11)/(u14 − u12) = 3/2. Agent A2 buys
g4 and at least one of g1, g2. Suppose she buys g2. Then α2 pj + µ2 = u2j for j = 2, 4, hence
α2(p4 − p2) = u24 − u22 = 5. This implies that α2(p4 − p1) > 6 = u24 − u21, hence α2 p1 + µ2 < u21,
a contradiction. Therefore A2 does not buy g2 and she buys g1 and g4 only.

Next suppose A2 buys all three desirable goods g1, g2, g4. By a similar argument we will prove
that A1 buys only two goods. We have α2 pj + µ2 = u2j for j = 1, 2, 4. Therefore, (p4 − p1)/(p4 −
p2) = (u24 − u21)/(u24 − u22) = 6/5. Agent A1 buys g4 and at least one of g1, g2. Suppose that
she buys g1. Then α2 pj + µ2 = u2j for j = 1, 4, hence α2(p4 − p1) = u24 − u21 = 6. This implies
that α2(p4 − p2) > 4 = u14 − u12, hence α2 p2 + µ2 < u12, a contradiction. Therefore, A1 does not
buy g1, hence she buys g2 and g4 only.

Theorem 20. The instance of Table 5 has a unique equilibrium; the allocations to agents and prices of
goods, other than the zero-priced good, are all irrational. The prices are as follows:
p1 = 0, p2 = (23 −

√
17)/32, p3 = (9 +

√
17)/8, p4 = (69 − 3

√
17)/32.

Proof. Let ri = |1− pi|. By Lemma 18, r1 = 1. We consider the two cases established in Lemma 19.
We will show that in Case 1 there is a unique equilibrium, while in Case 2 there is no equilibrium.

Case 1. A1 buys g1, g2, g4, and A2 buys g1, g4.
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Agent A3 spends her dollar on goods g1, g3 in the proportion r3 : r1, i.e., r3 : 1. Therefore,
x31 = r3

1+r3
, x33 = 1

1+r3
. Agent A4 buys goods g2, g3 in the proportion r3 : r2. Therefore, x42 =

r3
r2+r3

, x43 = r2
r2+r3

. Since only agents A3 and A4 buy good g3, we have x31 = 1 − x33 = x43, and
x42 = 1 − x43 = x33. This implies r2

3 = r2 ... (1).

Since agent A1 buys g1, g2, g4, we have, u14−u12
u12−u11

= p4−p2
p2−p1

. Therefore r2 + r4 = 2(1 − r2) ... (2).

The sum of the prices is equal to 4, therefore 1 + r2 − r3 − r4 = 0 ... (3)

Now we have three equations, (1), (2) and (3), in three unknowns r2, r3, r4. Using (1) and (2) we
can express r2 and r4 in terms of r3. Letting r3 = y, we have from (1), r2 = y2, and from (2),
r4 = 2 − 3r2 = 2 − 3y2. Substituting into (3), we get 4y2 − y − 1 = 0.

The only positive solution is y = 1+
√

17
8 . Therefore,

p1 = 0, p2 = 1 − r2 = 1 − y2 =
23 −

√
17

32
, p3 = 1 + r3 = 1 + y =

9 +
√

17
8

,

p4 = 1 + r4 = 3 − 3y2 =
69 − 3

√
17

32
.

Once we have the value of y, we get:

r1 = 1, r2 = y2 =
9 +

√
17

32
, r3 = y =

1 +
√

17
8

and r4 = 2 − 3y2 =
37 − 3

√
17

32
.

We can compute then the allocations from the ri. We already expressed the allocations for agents
A3, A4 in terms of the ri. Agent A2 buys goods g1, g4 in the proportion r4 : r1, i.e., r4 : 1. Therefore,
x21 = r4

1+r4
, x24 = 1

1+r4
. Agent A1 buys the remaining amount of each good g1, g2, g4. Thus, the

allocations of the agents in terms of the ri are:

A1 : x11 = 1 − r3

1 + r3
− r4

1 + r4
, x12 =

r2

r2 + r3
, x14 =

r4

1 + r4

A2 : x21 =
r4

1 + r4
, x24 =

1
1 + r4

A3 : x31 =
r3

1 + r3
, x33 =

1
1 + r3

A4 : x42 =
r3

r2 + r3
, x43 =

r2

r2 + r3

We conclude that, if there is an equilibrium in Case 1, then there can be only one and it must
have the above prices and allocations.

Conversely, we can verify that the above pair (p, x) is an equilibrium. First we note that all
allocations are nonnegative. This is obvious for all the allocations, except for x11, which, after
plugging in the values for the ri’s evaluates to approximately 0.084. Second, note that every good
has exactly one unit allocated: for good g3 this follows from equation (1), and for the other goods
it holds because A1 buys the remaining amounts. Third, every agent buys a total of one unit
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of goods: this is obvious for agents A2, A3, A4 from the allocations, and for agent A1 it follows
because exactly one unit is sold of each good. Fourth, every agent spends exactly one dollar: this
holds for agents A2, A3, A4 because they pay an average price of 1 for their goods, and for agent
A1 it follows from the fact that the total expenditure of the agents, which is equal to the sum of
the prices of the goods, is 4 (equation (3)).

Finally, it can be shown that the bundle of every agent is optimal for these prices, using the
dual LP and complementary slackness. The dual variables αi can be calculated as αi =

uij−uik
pj−pk

,
where gk, gj are (any) two goods bought by agent Ai; the shift µi = uij − αi pj (which is equal
to uik − αi pk). Thus, for example α1 = u12−u11

p2−p1
= 2

p2
, and µ1 = u11 − α1 p1 = 2. Note that

u12−u11
p2−p1

= u14−u12
p4−p2

= u14−u11
p4−p1

by equation (2), so it does not matter which goods gj, gk in Agent A1’s
bundle are used to calculate α1. Also, for each agent Ai, it does not matter which good gj in her
bundle is used to calculate µi.

Clearly αi ≥ 0 for all i. For all agents Ai and goods gj in the bundle of Ai, we have αi pj + µi = uij,
by construction. Furthermore, if good gj is not in the bundle of Ai then αi pj + µi > uij: For
agent A1 and good g3, note that g3 has higher price and lower utility than good g1 which is in
the bundle of A1, hence α1 p3 + µ1 > α1 p1 + µ1 = u11 > u13. The same argument applies to
agent A2 and good g3, agent A3 and goods g2, g4 (they are both dominated by good g1 in A3’s
bundle), and to agent A4 and good g4 (it is dominated by good g2). For agent A2 and good
g2, note that α2 = u24−u21

p4−p1
= u14−u11

p4−p1
= α1, and µ2 = u24 − α2 p4 = u14 − α1 p4 = µ1. Therefore

α2 p2 + µ2 = α1 p2 + µ1 = u12 = 4 > 3 = u22. The only remaining case that needs to be checked
numerically is agent A4 and good g1. Since p1 = 0 and u41 = 0, the inequality α4 p1 + µ4 > u41 is
equivalent to µ4 > 0. By construction, µ4 = u44 − α4 p3 = u44 − u43−u42

p3−p2
p3 = 5 − p3

p3−p2
= 4p3−5p2

p3−p2
.

Thus, µ4 > 0 is equivalent to 4p3 > 5p2, which holds for the above values of p2, p3. Therefore, the
values αi, µi satisfy the constraints of the dual LP, and since they and the xij satisfy clearly also
the complementary slackness conditions, it follows that the allocations xij give optimal bundles
to the agents for the prices pj. Therefore, (x, p) is an equilibrium.

Case 2. A2 buys g1, g2, g4, and A1 buys g2, g4.

We will show that there is no equilibrium in this case. Specifically, we will show that if there is
an equilibrium, it must have specific prices and allocations, and we will derive a contradiction.

Consider any equilibrium for Case 2. The allocations for agents A3, A4 are the same as in Case 1,
i.e., x31 = r3

1+r3
, x33 = 1

1+r3
, and x42 = r3

r2+r3
, x43 = r2

r2+r3
. Again we have x31 = x43 and x42 = x33,

which implies r2
3 = r2 ... (1).

Since agent A2 buys g1, g2, g4, we have, u24−u22
u22−u21

= p4−p2
p2−p1

, therefore r2 + r4 = 5(1 − r2) ... (2’).

The sum of the prices is 4, thus again 1 + r2 − r3 − r4 = 0 ... (3)

We can solve now for r2, r3, r4. Using (1) and (2’) we can express r2 and r4 in terms of r3. Letting
r3 = y, we have from (1), r2 = y2, and from (2’), r4 = 5 − 6r2 = 5 − 6y2. Substituting into (3), we
get 7y2 − y − 4 = 0.
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The only positive solution is y = 1+
√

113
14 . Therefore,

p1 = 0, p2 = 1 − r2 = 1 − y2 =
41 −

√
113

98
, p3 = 1 + r3 = 1 + y =

15 +
√

113
14

,

p4 = 1 + r4 = 6 − 6y2 =
246 − 6

√
113

98
.

As in the previous case, the value of y gives:

r1 = 1, r2 = y2 =
57 +

√
113

98
, r3 = y =

1 +
√

113
14

and r4 = 5 − 6y2 =
148 − 6

√
113

98
.

If there is any equilibrium in Case 2, then it must have the above prices. We can compute again
the allocations from the ri. The allocations of A3 and A4 are as before. Agent A1 buys goods
g2, g4 in the proportion r4 : r2. Therefore, x12 = r4

r2+r4
, x14 = r2

r2+r4
. Substituting the values of the

ri’s in the expressions for x12 and x42, we get x12 = r4
r2+r4

≈ 0.554 and x42 = r3
r2+r3

≈ 0.546. Thus,
x12 + x42 ≈ 1.1 > 1, i.e., good g2 is oversold. Therefore, there is no equilibrium in Case 2.

Remark 21. Observe that in the equilibrium, the allocations of all four agents are irrational even
though each one of them spends their dollar completely and the allocations form a fractional
perfect matching, i.e., add up to 1 for each good and each agent.

7 Membership of Exact Equilibrium in FIXP

In this section, we will prove that the problem of computing an HZ equilibrium lies in the
class FIXP, which was introduced in [EY10]. This is the class of problems that can be cast, in
polynomial time, as the problem of computing a fixed point of an algebraic Brouwer function.
Recall that basic complexity classes, such as P, NP, NC and #P, are defined via machine models.
For the class FIXP, the role of “machine model” is played by one of the following: a straight line
program, an algebraic formula, or a circuit; further it must use the standard arithmetic operations
of +, - * /, min and max. We will establish membership in FIXP using straight line programs.
Such a program should satisfy the following:

1. The program does not have any conditional statements, such as if ... then ... else.

2. It uses the standard arithmetic operations of +, - * /, min and max.

3. It never attempts to divide by zero.

A total problem is one which always has a solution, e.g., Nash equilibrium and Hylland-Zeckhauser
equilibrium. A total problem is in FIXP if there is a polynomial time algorithm which given an
instance I of length |I| = n, outputs a polynomial sized straight line program which computes a
function FI on a closed, convex, real-valued domain D(n) satisfying: each fixed point of FI is a
solution to instance I.
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Algorithm 22. Straight line program for function Fp

1. For all j ∈ [n] do: pj ← min{n, max{0, pj + ∑i∈A xij − 1}}
2. r ← minj∈[n]{pj}
3. For all j ∈ [n] do: pj ← pj − r

Let p and x denote the allocation and price variables. We will give a function F over these
variables and a closed, compact, real-valued domain D for F. The function will be specified
by a polynomial length straight line program using the algebraic operations of +,−, ∗, /, min
and max, hence guaranteeing that it is continuous. We will prove that all fixed points of F are
equilibrium allocations and prices, hence proving that Hylland-Zeckhauser is in FIXP.

Notation: We will denote the set {1, . . . .n} by [n]. xi will denote agent i’s bundle. For each
agent i, choose one good from G∗

i and denote it by i∗. If e is an expression, we will use (e)+ as a
shorthand for max{0, e}.

Domain D = Dp × Dx, where Dp and Dx are the domains for p and x, respectively, with Dp =
{p | ∀j ∈ [n], pj ∈ [0, n]} and Dx = {x | ∀i ∈ [n], ∑j∈G xij = 1, and ∀i, j ∈ [n], xij ≥ 0}.

Let (p′, x′) = F(p, x). (p, x) can be viewed as being composed of n + 1 vectors of variables,
namely p and for each i ∈ [n], xi. Similarly, we will view F as being composed of n+ 1 functions,
Fp and for each i ∈ [n], Fi, where p′ = Fp(p, x) and for each i ∈ [n], x′i = Fi(p, x). The straight
line programs for Fp and Fi are given in Algorithm 22 and Algorithm 23, respectively. It is
easy to see that if Fi alters a bundle, the new bundle still remains in the domain; in particular,
∀i ∈ [n], size(i) = 1. Similarly, it is easy to see that the output of Fp is in the domain Dp.

Requirements on F: Observe that (p, x) will be an equilibrium for the market if, in addition to
the conditions imposed by the domain, it satisfies the following:

1. ∀j ∈ [n], ∑i∈A xij = 1.

2. ∀i ∈ [n], cost(i) ≤ 1.

3. ∀i ∈ [n], xi is an optimal bundle for i. Furthermore, cost(i) is minimum over all optimal
bundles.

Function F has been constructed in such a way that if any of these conditions is not satisfied by
(p, x), then F(p, x) ∕= (p, x), i.e., (p, x) is not a fixed point of F. Equivalently, every fixed point of
F must satisfy all these conditions and is therefore an equilibrium. Conversely, every equilibrium
(p, x) is a fixed point of F.

We will prove that if (p, x) is a fixed point, then no step of F will change (p, x), i.e., it couldn’t be
that some step(s) of F change (p, x) and some other step(s) change it back, restoring it to (p, x).
This is easy to check for Fp, and is left to the reader. The proof for Fi is more delicate and uses
a potential function argument based on the changes in value(i) = ∑j uijxij and cost(i) = ∑j pjxij
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Algorithm 23. Straight line program for function Fi

1. r ← (∑j pjxij − 1)+.

2. For all j ∈ [n] do: xij ←
xij+r·(1−pj)+

1+r·∑k(1−pk)+

3. t ← (1 − ∑j pjxij)+
4. For all k /∈ G∗

i do:
(a) d ← min{xik, t

n2 }
(b) xik ← xik − d
(c) xii∗ := xii∗ + d

5. For all pairs j, k of goods s.t. uij ≤ uik do:
(a) d ← min{xij, (pj − pk)+}
(b) xij ← xij − d/n
(c) xik ← xik + d/n

6. For all triples j, k, l of goods such that uij < uik < uil do:
(a) d ← min{xik, ((uil − uik)(pk − pj)− (uik − uij)(pl − pk))+}
(b) xik ← xik − d
(c) xij ← xij +

uil−uik
uil−uij

d

(d) xil ← xil +
uik−uij
uil−uij

d

7. For all triples j, k, l of goods such that uij < uik < uil do:
(a) d := min(xij, xil , ((uik − uij)(pl − pk)− (uil − uik)(pk − pj))+)
(b) xik := xik + d
(c) xij := xij − uil−uik

uil−uij
d

(d) xil := xil −
uik−uij
uil−uij

d
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caused by any change in the allocation xi in every step of the algorithm for Fi, as stated in the
following lemma.

Lemma 24. Let (p, x) be such that p ∈ Dp, x ∈ Dx. Then, cost(i) and value(i) are modified by the
steps of Fi as follows.

1. If Steps 1, 2 modify xi, then the initial cost is > 1, and steps 1,2 decrease strictly cost(i).

2. If steps 3, 4 modify xi, then they increase strictly value(i) while maintaining cost(i) ≤ 1.

3. If anyone of steps 5, 6, 7 modifies xi, then it increases weakly value(i) and decreases strictly cost(i).

Proof. For the first part, note that if steps 1,2 modify the allocation xi, then we must have r ∑k(1−
pk)+ > 0, hence r > 0 and ∑k(1 − pk)+ > 0. Therefore, the initial cost cost(i) = ∑j pjxij =

r + 1 is > 1. The new cost is ∑j pjxij+r ∑j pj(1−pj)+
1+r ∑j(1−pj)+

which is < cost(i), because r ∑j pj(1 − pj)+ ≤
r ∑j(1 − pj)+ < (r ∑j(1 − pj)+)cost(i); the last inequality is strict because r ∑j(1 − pj)+ > 0, and
cost(i) > 1.

For the second part, note that if the cost of the allocation, cost(i) = ∑j pjxij before step 3 is ≥ 1,
then t = 0 in line 3, and steps 3, 4 make no change. Suppose that the cost is < 1, i.e. t > 0. For
every good k /∈ G∗

i , if xik = 0 then no change is made for this good. Thus, if steps 3,4 change xi,
then there must be some good(s) k /∈ G∗

i with xik > 0. For every such good k, we swap d units of
k for i∗, and as a result the value is increased by d(uii∗ − uik) > 0, since d > 0 and uii∗ > uik. The
cost is increased at most by d(pi∗ − pk) ≤ t

n2 n = t
n . Hence, over all the goods k /∈ G∗

i , the cost is
increased by less than t, hence it remains < 1.

For the third part, we consider the following three cases.

• If Step 5 modifies xi for a pair j, k of goods then we must have pj > pk and xij > 0. Since
uij ≤ uik, step 5 weakly increases value(i) and strictly decreases cost(i).

• If Step 6 kicks in for a triple of goods j, k, l, then the net change in value(i) is

d
uil − uik

uil − uij
uij + d

uik − uij

uil − uij
uil − duik = 0.

The net change in cost(i) is

d
uil − uik

uil − uij
pj + d

uik − uij

uil − uij
pl − dpk =

d∆
uil − uij

,

where ∆ = (uik − uij)(pl − pk)− (uil − uik)(pl − pk) < 0.

• If Step 7 kicks in for a triple of goods j, k, l,, then the net change in value(i) is again 0, and
the net change in cost is −d∆

uil−uij
< 0.

Corollary 25. If (p, x) is a fixed point of F, then no step of Fi will change xi.
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Proof. Suppose that some step(s) of Fi change the allocation xi of fixed point (x, p), and consider
the earliest such step. If it is step 2, then the initial cost(i) > 1, and step 2 decreases strictly the
cost. Step 3,4 either do not change the allocation or if they do change it, the new cost is ≤ 1,
i.e. still smaller than the initial one. Steps 5, 6, 7 do not increase the cost, hence the final cost is
strictly smaller than the initial. Thus, the final allocation xi cannot be the same as the initial.

If the earliest step that changes xi is step 4, then it increases strictly the value and the subsequent
steps do not decrease it, hence the final value is strictly higher than the initial. If the earliest
modifying step is one of 5, 6, 7, then it decreases strictly the cost, and all other subsequent
changes do not increase it. We conclude that no step of Fi can change the allocation xi of a fixed
point.

Lemma 26. If (p, x) is a fixed point of F, as defined in Algorithms 22 and 23, then

1. ∃z ∈ G such that pz = 0.

2. ∀i ∈ [n], cost(i) ≤ 1.

3. ∀j ∈ [n], ∑i∈A xij = 1, i.e. the market clears.

Proof. 1. Steps 2 and 3 of Fp ensure that there is a good with price 0.

2. If for some i ∈ [n], cost(i) > 1, then Steps 1 and 2 of Fi will modify xi since r = cost(i)− 1 >
0, and ∑k(1 − pk)+ > 0 because some good z has pz = 0.

3. Suppose that there is a good j such that ∑i xij ∕= 1. Since ∑j xij = 1 for all agents i ∈ [n],
there must be a good k such that ∑i xik < 1, and another good l such that ∑i xil > 1.

We claim that then pk = 0. Since ∑i xik < 1, if pk > 0, then line 1 of Fp will strictly decrease
pk, and line 3 certainly does not increase it, contradicting Fp(p, x) = p. Thus, pk = 0, the
price pk will stay 0 after line 1, hence r = 0 in line 2, and line 3 will not change any prices.

On the other hand, we claim that pl = n. Since ∑i xil > 1, if pl < n, then line 1 of Fp will
increase strictly pl , and since line 3 has no effect, this contradicts Fp(p, x) = p.

But cost(i) = ∑j pjxij ≤ 1 for all i ∈ [n] implies that ∑i ∑j pjxij ≤ n, which contradicts the
fact that pl = n and ∑i xil > 1, hence ∑i plxil > n.

Lemma 27. If (p, x) is a fixed point of F, as defined in Algorithms 22 and 23, then xi is an optimal bundle
for i at prices p. Furthermore, cost(i) is minimum among optimal bundles.

Proof. We will consider the following exhaustive list of cases. Each contradiction is based on
applying Corollary 25. We will assume that αi and µi are optimal variables of the dual to i’s
optimal bundle LP and that u = maxj{uij}.

Case 1: Assume that cost(i) < 1. If Bi ∕⊆ G∗
i , then Steps 3 and 4 will kick in, contradicting the

fact that (p, x) is a fixed point. Therefore Bi ⊆ G∗
i . Clearly, u is the maximum utility that i can

derive from a bundle satisfying size(i) = 1 and cost(i) ≤ 1. Therefore, xi is an optimal bundle
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for i. Since step 5 does not modify xi, all goods in Bi must have minimum price among the goods
of G∗

i . Therefore, cost(i) is minimum among the optimal bundles.

Henceforth, we will assume that cost(i) = 1.

Case 2: Assume that i derives the same utility from all goods j ∈ Bi and Bi ⊆ G∗
i . As in the

previous case, xi is an optimal bundle for i and hence each good in Bi is optimal. Furthermore,
again since step 5 does not modify the allocation, as in Case 1, cost(i) is minimum among the
optimal bundles.

Case 3: Assume that i derives the same utility from all goods j ∈ Bi and Bi ∕⊆ G∗
i . Let k be a good

in Bi and let z be a good having price 0. Each good in Bi must be a minimum price good having
utility uik, since otherwise Step 5 of Fi will alter the bundle. Since cost(i) = 1, size(i) = 1 and all
goods in Bi have the same price, each good in Bi has price 1.

Let l be a good such that uil > uik; observe that any good in G∗
i is such a good. We will prove

that pl > 1 = pk. Clearly uiz < uik, since otherwise Step 5 will kick in and change the bundle.
Hence we have uiz < uik < uil . However, since Step 6 did not kick in, (uil − uik)(pk − pz) ≤ (uik −
uiz)(pl − pk). Since (uil − uik)(pk − pz) > 0, we get that (pl − pk) > 0. Therefore pl > pk = 1.
Hence we can conclude that the optimal bundle for i at prices p is not a Type A or Type B bundle.

Next, assume for the sake of contradiction that xi is not an optimal bundle for i at prices p; in
particular, this entails that the optimal bundle for i is not Type C. Therefore, i’s optimal bundle
must be Type D and k is a suboptimal good. As argued in Section 5, an optimal Type D bundle
must contain a good of price < 1 and a good of price > 1; let j and l be such goods, respectively.
Clearly uiz < uik < uil . Then we have,

αi pj = uij − µi, αi pk > uik − µi and αi pl = uil − µi

Subtracting the first from the second and the second from the third we get

αi(pk − pj) > (uik − uij) and αi(pl − pk) < (uil − uik)

This gives
(uil − uik)(pk − pj)− (uik − uij)(pl − pk) > 0.

Therefore, Step 6 should kick in, leading to a contradiction. Hence xi is a Type C optimal bundle.
Since all goods in G∗

i have price > 1, every bundle with cost < 1 is suboptimal, thus xi has
minimum cost among optimal bundles.

Henceforth, we will assume that cost(i) = 1 and ∃ s, t ∈ Bi with uis < uit.

Case 4: Assume that the set {uij | j ∈ G} has exactly two elements. Clearly, these utilities must
be uis and uit. Now, s must be the zero-priced good, since otherwise Step 5 will kick in. Since
cost(i) = 1 and size(i) = 1, pt > 1. Again since Step 5 didn’t kick in, s and t must be the cheapest
goods having utilities uis and uit. Therefore, xi is a Type D optimal bundle. It has minimum cost
(=1) among optimal bundles for the same reason as in case 3.

Case 5: Assume that the set {uij | j ∈ G} has three or more elements. Since size(i) = 1 and
cost(i) = 1, ∃ t ∈ Bi, s.t. pt > 1. Now, any good having utility u must have price > 1, since
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otherwise Step 5 will alter the bundle. Therefore, xi cannot be a Type A or Type B bundle.
Therefore, αi > 0.

Suppose that xi is not an optimal bundle. Then there are two cases: that the optimal bundle is
Type C or Type D. In the first case, let k ∈ G be an optimal good; pk = 1. Let j, l ∈ Bi with
pj < 1 < pl and at least one of j or l is suboptimal. Clearly, uij < uik < uil , otherwise Step 5 will
kick in. Therefore we have

αi pj ≥ uij − µi, αi pk = uik − µi and αi pl ≥ uil − µi,

with at least one of the inequalities being strict. Therefore,

(uik − uij)(pl − pk) > (uil − uik)(pk − pj),

and Step 7 should kick in, leading to a contradiction. Hence xi is a Type C optimal bundle.

Next suppose the optimal bundle is Type D. There are two cases. First, suppose ∃ k ∈ Bi such
that k is a suboptimal good for i and there are optimal goods j and l with uij < uik < uil . Then
we have

αi pj = uij − µi, αi pk > uik − µi and αi pl = uil − µi

As before we get
(uil − uik)(pk − pj)− (uik − uij)(pl − pk) > 0.

Therefore, Step 6 should kick in, leading to a contradiction.

Second, suppose that there is no such good j ∈ Bi. Let v and w be optimal goods with the
smallest and largest utilities for i. Then all suboptimal goods in Bi have either less utility than uiv
or more utility than uiw. Suppose there are both types of goods, say j and l, respectively. Then
Step 7 should kick in with the triple j, v, l. Else there is only one type, say j with uj < uv. Then
∃ l ∈ Bi with pl > 1. Now, Step 7 should kick in with the triple j, v, l. In the remaining case,
∃ j, l ∈ Bi with pj < 1 and uil > uiw. Now, Step 7 should kick in with the triple j, w, l.

The contradictions give us that xi does not contain a suboptimal good and is hence a Type D
optimal bundle. The minimality of the cost holds for the same reason as in Cases 3, 4.

Lemmas 26 and 27 give:

Theorem 28. The problem of computing an exact equilibrium for the Hylland-Zeckhauser scheme is in
FIXP.

8 Membership of Approximate Equilibrium in PPAD

In this section we define approximate equilibria, and show that the problem of computing an
approximate equilibrium is in PPAD.

First let us scale the utilities of all the agents so that they lie in [0, 1]. This can be done clearly
without loss of generality without changing the equilibria.
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Definition 29. A pair (p, x) of (non-negative) prices and allocations is an ε-approximate equilibrium
for a given one-sided market if:

1. The total probability share of each good j is 1 unit, i.e., ∑i xij = 1.

2. The size of each agent i’s allocation is 1, i.e., size(i) = 1.

3. The cost of the allocation of each agent is at most 1 + ε.

4. The value of the allocation of each agent i is at least v∗(i)− ε where v∗(i) is the value of the
optimal bundle for agent i under prices p, i.e. the optimal value of the program: maximize
value(i), subject to size(i) = 1 and cost(i) ≤ 1. Furthermore, we require that the cost of the
allocation xi is at most c∗(i)− ε, where c∗(i) is the minimum cost of a bundle for agent i
that has the maximum value v∗(i).

The corresponding computational problem is: Given a one-sided matching market M and a
rational ε > 0 (in binary as usual), compute an ε-approximate equilibrium for M. Polynomial
time in this context means time that is polynomial in the encoding size of the market M and
log(1/ε). We define also a more relaxed version, called a relaxed ε-approximate equilibrium where
condition 1 is relaxed to |∑i xij − 1| ≤ ε for all goods j. It is easy to see that the two versions are
polynomially equivalent, i.e., if one can be solved in polynomial time then so can the other.

Proposition 30. The problems of computing an ε-approximate equilibrium and a relaxed approximate
equilibrium are polynomially equivalent.

Proof. Clearly, the relaxed version is no harder than the nonrelaxed version. On the other hand, if
we have an algorithm for the relaxed version, then we can compute an ε-approximate equilibrium
as follows. Given a one-sided market M and a rational ε > 0, assume without loss of generality
that ε ≤ 1. Compute a relaxed δ-approximate equilibrium (p, x) where δ = ε/4n. In this
equilibrium some goods may be oversold or undersold by an amount at most δ. Set up a bipartite
transportation network with the goods and agents as nodes, where the edge connecting agent i
with good j has capacity xij. For each good j that is oversold, the corresponding node is a source
with supply ∑i xij − 1; for each good j that is undersold, the corresponding node is a sink with
demand 1 − ∑i xij. Since ∑j xij = 1 for all agents i, the sum of the supplies over all sources is
equal to the sum of the demands over all sinks. It is straightforward to construct a feasible flow
that ships all the supply from the sources to the sinks, where the flow on each edge is at most δ.
Combining this flow with the allocation x results in a new allocation x′ that satisfies ∑j x′ij = 1
for all agents i, and ∑i x′ij = 1 for all goods j.

The flow on each edge is at most δ, so every allocation xij is changed at most by δ. Since
∑j xij pj ≤ 1 + δ for all agents i, ∑i ∑j xij pj = ∑j pj ∑i xij ≤ n(1 + δ). Since ∑i xij ≥ 1 − δ for all
goods j, it follows that the sum of the prices ∑j pj ≤ n(1 + δ)/(1 − δ) ≤ 2n. Since |x′ij − xij| ≤ δ

for all i, j, it follows that |cost′(i)− cost(i)| ≤ 2nδ ≤ ε/2. Therefore, the new cost cost′(i) of each
agent’s allocation is at most 1 + δ + ε/2 ≤ 1 + ε. Since all the utilities uij are in [0, 1], the value
of each agent’s allocation is changed at most by nδ < ε/2. Therefore, the new value′(i) is at least
v∗(i)− δ − ε/2 > v∗(i)− ε. Thus, the prices p and the new allocations x′ form an ε-approximate
equilibrium.
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Note however, that in general an ε-approximate equilibrium may not be close to an actual equi-
librium of the matching market. This phenomenon is similar to the case of market equilibria for
the standard exchange markets and to the case of Nash equilibria for games.

We will show membership of the approximate equilibrium problem in PPAD by showing that a
relaxed approximate equilibrium can be obtained from an approximate fixed point of a variant
of the function F defined in Section 7.

Definition 31. A weak ε-approximate fixed point of a function F (or weak ε-fixed point for short) is a
point x such that ||F(x)− x||∞ ≤ ε.

Let F be a family of functions, where each function FI in F corresponds to an instance I of a
problem (in our case a one-sided matching market) that is encoded as usual by a string. The
function FI maps a domain DI , to itself. We assume that DI is a polytope defined by a set of
linear inequalities with rational coefficients which can be computed from I in polynomial time;
this clearly holds for our problem. We use |I| to denote the length of the encoding of an instance
I (i.e., the length of the string). If x is a rational vector, we use size(x) to denote the number of
bits in a binary representation of x.

Definition 32. A family F of functions is polynomially computable if there is a polynomial q and
an algorithm that, given the string encoding I of a function FI ∈ F and a rational point x ∈ DI ,
computes FI(x) in time q(|I|+ size(x)).
A family F of functions is polynomially continuous if there is a polynomial q such that for every
FI ∈ F and every rational ε > 0 there is a rational δ such that log(1/δ) ≤ q(|I|+ log(1/ε)) and
such that ||x − y||∞ ≤ δ implies ||FI(x)− FI(y)||∞ ≤ ε for all x, y ∈ DI .

It was shown in [EY10] that, if a family of functions is polynomially computable and polyno-
mially continuous, then the corresponding weak approximate fixed point problem (given I and
rational δ > 0, compute a weak δ-approximate fixed point of FI) is in PPAD. The family F of
functions for the online matching market problem defined in Section 7 is obviously polynomially
computable. It is easy to check also that it is polynomially continuous.

We will use a variant F′ of the function F of Section 7, where the functions Fi for the allocations
are modified as follows. Step 5 for all pairs j, k of goods, and steps 6, and 7 for all triples
j, k, l are applied all independently in parallel to the allocation that results after step 4. In order
for the allocation to remain feasible (i.e. have xij ≥ 0 for all i, j), we change line 5a in F′

i to d ←
min{ xij

3 , (pj − pk)+}, change line 6a to d ← min{ xik
3n2 , ((uil − uik)(pk − pj)− (uik − uij)(pl − pk))+},

and we change line 7a to d ← min{ xij

3n2 , xil
3n2 , ((uik − uij)(pl − pk)− (uil − uik)(pk − pj))+}. In this

way, a coordinate xij can be decreased by the operations of step 5 for all pairs j, k at most by xij/3
in total, and the same is true for the total decrease from the operations of steps 6 and 7 for all
triples involving good j; therefore, the coordinates xij remain nonnegative. The function for the
prices remains the same as before. All the properties shown in Section 7 for F hold also for F′.

The family F ′ of these functions F′
I is clearly also polynomially computable and polynomially

continuous. We shall show that, given an instance I of the matching market problem and a
rational ε > 0, we can pick a δ > 0 such that log(1/δ) is bounded by a polynomial in |I| and
log(1/ε), and every weak δ-approximate fixed point of F′

I is a relaxed ε-approximate equilibrium
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of the market I.

Every utility uij is a rational number, without loss of generality in [0, 1], which is given as the ratio
of two integers represented in binary. Let m be the maximum number of bits needed to represent
a utility. Note that every nonzero uij is at least 1/2m and the difference between any two unequal
utilities is at least 1/22m. Given a positive rational ε (wlog in [0, 1]), let δ = ε/(n1026m). We shall
show that every weak δ-fixed point of F′

I is a relaxed ε-approximate equilibrium of the matching
market I. The proof follows and adapts the proof in Section 7 of the analogous statement for the
exact fixed points.

Lemma 33. If (p, x) is a weak δ-fixed point of F′, then

1. ∃z ∈ G such that pz ≤ δ.

2. ∀i ∈ [n], cost(i) ≤ 1 + 2n2δ.

3. ∀j ∈ [n], 1 − 3n3δ ≤ ∑i∈A xij ≤ 1 + 3n2δ.

4. ∑j pj < 2n.

Proof. 1. From Steps 2 and 3 of Fp, there is a good z such that the price of z in the output is 0.
Therefore, pz ≤ δ.

2. Suppose for some i ∈ [n], cost(i) > 1. Then Steps 1 and 2 of F′
i will modify xi since

r = cost(i)− 1 > 0, and ∑k(1 − pk)+ > 0 because some good z has pz ≤ δ. The new cost

is ∑j pjxij+r ∑j pj(1−pj)+
1+r ∑j(1−pj)+

. This is at most 1+r+rpz(1−pz)
1+r(1−pz)

= 1 + rpz(2−pz)
1+r(1−pz)

< 1 + 2δ. Steps 3, 4 of F′
i

will either not change the allocation or if they do change it, the new cost will be less than
1. Steps 5, 6, 7 will not increase the cost. Thus, the final cost will be less than 1 + 2δ. Since
F′

i changes each coordinate xij at most by δ and every price pj is at most n, the total change
in the cost is at most n2δ. Therefore, the initial cost(i) is at most 1 + 2δ + n2δ < 1 + 2n2δ.

3. Suppose that there is a good l such that ∑i xil > 1 + 3n2δ. Since ∑j xij = 1 for all agents
i ∈ [n], there must be a good k such that ∑i xik < 1 − 3nδ.

We claim that then pk ≤ δ, and that line 3 of Fp does not change the prices. Since ∑i xik <
1− 3nδ, if pk > δ, then line 1 of Fp will decrease pk by more than δ, and line 3 certainly does
not increase it, contradicting ||Fp(p, x)− p||∞ ≤ δ. Thus, pk ≤ δ, the price pk will become 0
after line 1, hence r = 0 in line 2, and line 3 will not change the prices.

On the other hand, we claim that pl ≥ n − δ. Since ∑i xil > 1 + 3n2δ, if pl < n − δ, then
line 1 of Fp will increase pl by more than δ, and since line 3 does not change the prices, the
final value of pl exceeds the initial value by more than δ, contradicting the assumption that
(p, x) is a δ-fixed point.

But cost(i) = ∑j pjxij ≤ 1 + 2n2δ for all i ∈ [n] implies that ∑i ∑j pjxij ≤ n(1 + 2n2δ), which
contradicts the fact that pl ≥ n − δ and ∑i xil > 1 + 3n2δ, hence ∑i plxil > (n − δ)(1 +
3n2δ) > n(1 + 2n2δ).

We conclude that ∑i xil ≤ 1 + 3n2δ for all goods l. Since ∑i ∑j xij = n, it follows that
∑i xij ≥ 1 − 3n3δ for all goods j.
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4. From part (2), ∑j pjxij ≤ 1 + 2n2δ for all agents i, hence ∑i ∑j pjxij = ∑j pj ∑i xij ≤ n(1 +

2n2δ). From part (3), ∑i xij ≥ 1 − 3n3δ for all j. Therefore, ∑j pj ≤ n(1+2n2δ)
1−3n3δ

< 2n.

In the case of approximate fixed points, it is possible that multiple steps of F′
i modify the allo-

cation. However, as we will see, because of Lemma 24, none of the steps can change the value
or the cost by a large amount, because then the other steps cannot reverse the change. Note that
if two bundles of an agent differ by at most δ in every coordinate, then their values differ by at
most nδ (because all utilities are in [0, 1]), and their costs differ by at most 2nδ (because the sum
of the prices is less than 2n). This holds in particular for the values and the costs of the input
and the output allocation of each function F′

i when the input is a weak δ-fixed point.

All the steps of F′
i weakly increase the value of the allocation, except possibly for step 2. Since

r in step 1 is (cost(i) − 1)+ ≤ 2n2δ, the changes in each coordinate xij in step 2 are “small”:
From the update formula in step 2, xij can increase at most by r ≤ 2n2δ. Thus, the value can
increase in step 1 at most by 2n3δ. On the other hand, coordinate xij may decrease at most by
xij(1 − 1

1+r ∑k(1−pk)+
) ≤ xijrn ≤ xij2n3δ. Therefore the value can decrease in step 1 also at most by

2n3δ. As we observed above, the value of the output allocation of F′
i cannot differ from that of

the input allocation by more than nδ. Thus, we conclude:

Corollary 34. If (p, x) is a weak δ-fixed point, then no step of F′
i changes the value of the allocation by

more than 2n3δ + nδ.

All steps of F′
i weakly decrease the cost, except possibly for step 4. We show that step 4 does not

change the allocation significantly, and thus does not increase the cost very much.

Lemma 35. Suppose that (p, x) is a weak δ-fixed point of F′. If t in Step 3 of F′
i satisfies t > 3n5δ22m

then the value of xi is within ε of the value v∗(i) of the optimal bundle for agent i under prices p, and the
cost of xi is within ε of the minimum cost of an optimal bundle.

Proof. Steps 1, 2 can decrease the cost at most by 1+ r − 1+r+r ∑j pj(1−pj)+
1+r ∑j(1−pj)+

≤ r(1+ r)∑j(1− pj)+ ≤
r(1 + r)n ≤ 3n3δ. Since t in step 3 exceeds 3n3δ, it follows that the cost of the input allocation xi
is not greater than 1. Therefore, steps 1, 2 do not modify xi.

Let B′
i = {j|xij > 3n3δ22m}. Suppose that there is a good k ∈ B′

i − G∗
i . Then d in step 4 for good

k satisfies d ≥ 3n3δ22m. The change of the allocation in step 4 increases the value by at least
d(uii∗ − uik) ≥ d/22m ≥ 3n3δ, contradicting Corollary 34.

Therefore, B′
i ⊆ G∗

i . Let u be the utility for agent i of the goods in G∗
i (the maximum utility).

The goods j /∈ G∗
i have xij ≤ 3n3δ22m. Therefore the value of xi is at least u − 3n4δ22m > u − ε ≥

v∗(i)− ε.

We show now the claim about the cost. If the min-cost optimal bundle has cost 1, then the claim
follows from Lemma 33. So assume it has cost < 1, i.e. it is of type A and consists of goods in
G∗

i . Let k be a good in G∗
i with minimum price. The minimum cost of an optimal bundle is pk.
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Step 4 may move some probability mass from goods that are not in G∗
i , hence not in B′

i , to i∗.
Since xij ≤ 3n3δ22m for all j /∈ B′

i , the total mass moved is at most 3n4δ22m, and the cost is
increased at most by 3n5δ22m. Since the cost of the output allocation of F′

i is within 2nδ of the
cost of the input allocation, and all other steps of F′

i weakly decrease the cost, it follows that no
step of F′

i can decrease the cost by more than 3n5δ22m + 2nδ.

Let s = 4n3
√

δ2m, and let B̂i = {j|xij > s}. Clearly, s > 3n3δ22m, and thus B̂i ⊆ B′
i ⊆ G∗

i . We
claim that every good j ∈ B̂i has price pj ≤ pk + s. If not, then step 5 for the pair j, k will have
d ≥ s/3, and it will decrease the cost by d

n (pj − pk) > s2

3n > 3n5δ22m + 2nδ, a contradiction.
Therefore, pj ≤ pk + s for all j ∈ B̂i. The allocation xi has probability mass at most ns in the
goods that are not in B̂i, and thus their cost is at most n2s. Therefore the cost of xi is at most
pk + s + n2s < pk + ε.

We assume henceforth that t in step 3 is at most t0 = 3n5δ22m. Step 4 increases the cost at most
by t and the other steps of F′

i weakly decrease the cost. Since the difference between the final and
the initial cost is at most 2nδ, we have:

Corollary 36. No step of F′
i decreases the cost of the allocation by more than t0 + 2nδ < 4n5δ22m.

We show now the approximate optimality of the agents’ bundles in an approximate fixed point.

Lemma 37. If (p, x) is a weak δ-fixed point of F′, then the value of xi is within ε of the optimal value of a
bundle for agent i at prices p, and the cost of xi is within ε of the minimum cost among optimal bundles.

Proof. Lemma 35 showed the result in the case that t in step 3 satisfies t > t0 = 3n5δ22m. So
assume henceforth that t ≤ t0. Thus, the cost of the allocation after step 2 is ≥ 1 − t0. The cost
of the input allocation xi is at least as great, and is at most 1 + 2n2δ by Lemma 33. It follows that
the cost of the input allocation xi, as well as the allocations after step 2 and after step 4 are all in
the interval [1 − t0, 1 + 2n2δ] (i.e., they are close to 1).

Let x′i be the allocation after step 4. Let value′(i) be the value of x′i and value(i) the value of xi.
As we observed earlier, steps 1, 2 change the value of the allocation at most by 2n3δ, and step
3, 4 change each xij at most by t0/n2, hence they increase the value at most by t0/n. Therefore,
value(i) ≥ value′(i)− 2n3δ − (t0/n) ≥ value′(i)− ε/2.

Let B′
i = {j|x′ij > s}, where s = 4n3

√
δ2m. We start with some useful properties of the goods in

B′
i .

Claim 38. For every good j ∈ B′
i and every good k with uik ≥ uij, it holds that pj ≤ pk + s.

Proof. Suppose the claim is not true and consider step 5 for the pair j, k. We have d ≥ s/3, and
step 5 decreases the cost by d

n (pj − pk) >
s2

3n > 4n5δ22m, in contradiction to Corollary 36.

Thus, every good in B′
i has price that is close to the minimum price among goods with the same

or higher utility. On the other hand, goods with strictly higher utility must have distinctly higher
price:
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Claim 39. If j ∈ B′
i and pj ≥ 1/2, then every good l with higher utility uil > uij has price pl >

pj + 2−2m−2. The same holds also for all goods j in an optimal bundle.

Proof. Let j be a good in B′
i and let l be another good such that uil > uij. Let z be a good with

minimum price. By Lemma 33, pz ≤ δ, hence uiz < uij. Consider step 6 for the triple z, j, l.
We have d = min{ xij

3n2 , ∆}, where ∆ = (uil − uij)(pj − pz) − (uij − uiz)(pl − pj). We know that
uil − uij ≥ 2−2m, pj − pz ≥ (1/2)− δ. If pl − pj ≤ 2−2m−2 then ∆ ≥ 2−2m−3 > 3n2s. Thus, d ≥ s

3n2 ,
step 6 will modify the allocation and decrease the cost by d∆

ul−uz
> s2 > 4n6δ22m, contradicting

Corollary 36. Therefore, pl > pj + 2−2m−2.

The argument for the case that j is a good in an optimal bundle is similar. If pl ≤ pj + 2−2m−2,
then applying step 6 for the triple z, j, l to the optimal bundle will reduce its cost while keeping
the same value, and then its value can be increased by further transferring some probability mass
from good j to l, contradicting the optimality of the bundle.

We will prove now the approximate optimality of the allocations x′i and xi. We distinguish cases
depending on the type of an optimal bundle for the prices p.

Case 1. The optimal bundle is of type A or B, i.e., there is a good k ∈ G∗
i with price pk ≤ 1.

Let pk be the smallest price of a good in G∗
i ; this is also the minimum cost of an optimal bundle.

The value v∗(i) of the optimal bundle is u, the maximum utility of a good. We argue that most
of the probability mass of x′i is allocated to goods in G∗

i . The goods not in B′
i have total size at

most ns and cost at most n2s. The goods in B′
i have price at most pk + s by Claim 38. Since the

cost of x′i is close to 1, B′
i must contain goods with price close to 1, therefore pk must be close to

1. Specifically, the cost of x′i is at least 1− t0 and at most pk + s + n2s, hence pk ≥ 1− t0 − n2s − s.
The goods in B′

i \ G∗
i have price at most pk − 2−2m−2 by Claim 39. If the total size of the goods in

B′
i \ G∗

i is y, then the cost of x′i is at most n2s + y(pk − 2−2m−2) + (1 − y − ns)(pk + s). Since the
cost is at least 1 − t0, it follows that y ≤ 22m+2(n2s + t0) ≤ 22m+3n2s. Therefore, the value of x′i is
at least (1 − ns − y)u ≥ u − ε/2. Hence the value of xi is at least v∗(i)− ε. The cost of x′i is at
most pk + s + n2s < pk + ε/2, hence the cost of xi is less than pk + ε.

We assume henceforth that the minimum price of a good in G∗
i is > 1, thus the optimal bundle is of type

C or D and has cost=1. The claim of the lemma about the cost thus holds by Lemma 33, and we
only need to prove the claim about the value.

Case 2. The optimal bundle is of type C.

Thus the optimal bundle has cost 1, and contains goods with the same utility, v∗(i), and price
1. Let k be an optimal good. All the goods of B′

i with utility strictly smaller than uik have price
≤ 1− 2−2m−2 (by Claim 39). Let y be the total size of these goods. The goods of B′

i with utility uik
have price at most 1+ s (by Claim 38). Suppose that B′

i does not have any goods with utility > uik.
Then the cost of x′i is at most n2s + y(1 − 2−2m−2) + (1 − y − ns)(1 + s). Since the cost is at least
1− t0, it follows that y ≤ 22m+3n2s. Therefore, the value of x′i is at least (1− ns− y)uik ≥ uik − ε/2,
from which it follows that value(i) ≥ v∗(i)− ε.

We assume thus that y > 22m+3n2s, which means that there are goods in B′
i with utility > uik,

and there are also goods in B′
i with utility < uik (since y > 0). Let L = {j ∈ B′

i |uij < uik},
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R = {l ∈ B′
i |uil > uik}. By Claim 39, every good j ∈ L has price pj < pk − 2−2m−2 = 1 − 2−2m−2,

and every good l ∈ R has price pl > 1 − 2−2m−2.

For any good j ∈ L and any good l ∈ R, consider Step 7 of F′
i for the triple of goods j, k, l. Let αi,

µi be the optimal dual values. We have:

ai pj = gj + uij − µi, ai pk = αi = uik − µi, ai pl = gl + uil − µi

where gj, gl ≥ 0. We have αi(1 − pj) = uik − uij − gj ≤ 1 and 1 − pj ≥ 2−2m−2 (by Claim
39), hence αi ≤ 22m+2. The quantity ∆ = (uik − uij)(pl − pk) − (uil − uik)(pk − pj) is equal to
gl(pk − pj) + gj(pl − pk). If there is a l ∈ R such that gl ≥ n2s22m+2, and we let j be any element
of L, then the quantity ∆ for the triple j, k, l is at least n2s, thus d ≥ s

3n2 , and step 7 will decrease
the cost by d∆

uil−uij
≥ s2

3 > 4n6δ22m, contradicting Corollary 36. Similarly, if there is a j ∈ L such

that gj ≥ n2s22m+2, and we take l to be any element of R, the quantity ∆ for the triple j, k, l
will be at least n2s, leading to the same contradiction. We conclude that gj < n2s22m+2 for all
j ∈ L ∪ R. Note that for all j ∈ S = {j ∈ B′

i |uij = uik}, we have pj ≤ pk + s = 1 + s, hence
αi pj ≤ uij − µi + αis ≤ uij − µi + s22m+2, i.e. gj ≤ s22m+2.

Thus, for all j ∈ B′
i , we have αi pj ≤ uij − µi + n2s22m+2. Multiplying each equation by xij and

summing over all j ∈ B′
i we get that αi ∑j∈B′

i
xij pj ≤ ∑j∈B′

i
xijuij − µi ∑j∈B′

i
xij + n2s22m+2 ∑j∈B′

i
xij.

The left hand side is αi times the cost of x′i , except for the goods that are not in B′
i , hence it is at

least αi(1 − t0 − n2s). We have also ∑j∈B′
i
xij ≥ 1 − ns. The value of x′i is at least ∑j∈B′

i
xijuij and

the optimal value v∗(i) is equal to αi + µi. Thus the difference between v∗(i) and the value of x′i
is v∗(i)− value′(i) ≤ αi(t0 + n2s) + n2s22m+2 + µins ≤ 22m+2(t0 + n2s) + n2s22m+2 + ns < ε/2. It
follows then as before that the initial value(i) > v∗(i)− ε.

Case 3. The optimal bundle is of type D.

The optimal bundle has cost 1 and contains some good l with price > 1 and some good j with
price < 1. Clearly uij < uil . Let αi, µi be again the optimal dual values. We have

αi pj = uij − µi, αi pl = uil − µi, αi = v∗(i)− µi

Note that αi =
uil−uij
pl−pj

< 22m+2, since pl − pj > 2−2m−2 by Claim 39. For every other good k, we

have αi pk = uik − µi + gk, where gk ≥ 0. We say that k is a near-optimal good if gk ≤ n2s22m+2,
and k is very suboptimal if gk > n2s22m+2. Note that if a good k ∈ B′

i has equal utility to uij or uil
then its price is within s of pj or pl respectively (by Claim 38), hence gk ≤ αis ≤ s22m+2, i.e. k is
near-optimal.

Claim 40. Let y be the total size of the very suboptimal goods in B′
i . If y ≤ 22m+3n2s, then value′(i) ≥

v∗(i)− ε/2 and value(i) ≥ v∗(i)− ε.

Proof. Let Ni be the set of near-optimal goods of B′
i . For every k ∈ Ni we have αi pk ≤ uik − µi + g,

where g = n2s22m+2. Multiplying each equation by xik and summing up over all k ∈ Ni, we get

αi ∑
k∈Ni

pkxik ≤ ∑
k∈Ni

uikxik − µi ∑
k∈Ni

xik + g ∑
k∈Ni

xik
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The total size of the goods in Ni is ∑k∈Ni
xik ≥ 1 − ns − y. Their cost, ∑k∈Ni

pkxik is at least
1 − t0 − n2s − ny. Since value′(i) ≥ ∑k∈Ni

uikxik and v∗(i) = αi + µi, we have:

v∗(i)− value′(i) ≤ αi(t0 + n2s + ny) + µi(ns + y) + g

Since αi ≤ 22m+2, µi ≤ 1, and from the assumed upper bounds on y and g, we conclude that
v∗(i)− value′(i) ≤ ε/2. This implies as before that value(i) ≥ v∗(i)− ε.

Thus, assume that y > 22m+3n2s. This means in particular that B′
i contains some very suboptimal

goods. We distinguish cases depending on how their utility compares to the utilities uij, uil of the
goods j, l in the optimal bundle. We will derive in each case a contradiction.

Subcase 1. There is a very suboptimal good k ∈ B′
i such that uij < uik < uil . Consider step 6 for the

triple j, k, l. The quantity ∆ = (uil − uik)(pk − pj)− (uik − uij)(pl − pk) is equal to gk(pl − pj). We
have gk ≥ n2s22m+2 and pl − pj ≥ 2−2m−2 (by Claim 39), thus ∆ ≥ n2s. Therefore the parameter
d in step 6 is d ≥ s/3n2, and step 6 decreases the cost by d∆

uil−uij
≥ s2/3 > 4n6δ22m, contradicting

Corollary 36.

Subcase 2. There is a very suboptimal good h ∈ B′
i such that uih > uil . If all the goods in B′

i have
utility ≥ uil , then the value of x′i is value′(i) ≥ (1−ns)uil ≥ uil − ε/2 ≥ v∗(i)− ε/2, and the result
follows. Thus, assume that B′

i has a good k with uik < uil . Consider step 7 for the triple k, l, h. The
quantity ∆ = (uil − uik)(ph − pl)− (uih − uil)(pl − pk) is equal to gh(pl − pk) + gk(ph − pl). Since
gh ≥ n2s22m+2 and pl − pk ≥ 2−2m−2 (by Claim 39), it follows that ∆ ≥ n2s. Thus, d ≥ s/3n2, and
step 7 will decrease the cost again by d∆

uil−uij
≥ s2/3, contradicting Corollary 36.

Subcase 3. All very suboptimal goods k of B′
i have uik < uij. Note that then all very suboptimal

goods k have price pk ≤ uij − 2−2m−2 < 1 − 2−2m−2 by Claim 39. We claim that B′
i must contain

a good h with utility > uij. For, if all goods in B′
i have utility ≤ uij, then they all have price

≤ pj + s < 1 + s, and then we can argue as in Case 2 that the total size of the goods of B′
i with

price ≤ 1 − 2−2m−2 must be at most 22m+3n2s, contradicting the fact that the size y of the very
suboptimal goods of B′

i is more than 22m+3n2s.

Thus, let h be a good of Bi with utility uih > uij, and consider Step 7 for the triple k, j, h. The
quantity ∆ = (uij − uik)(ph − pj)− (uih − uij)(pj − pk) is equal to gh(pj − pk) + gk(ph − pj). Since
gk ≥ n2s22m+2 and ph − pj ≥ 2−2m−2, it follows that ∆ ≥ n2s. Thus, d ≥ s/3n2, and step 7 will
decrease the cost again by d∆

uil−uij
≥ s2/3, contradicting Corollary 36.

9 Discussion

As stated in the Introduction, a conclusive proof of intractability of the HZ scheme, via either
a proof of FIXP-hardness for exact equilibrium or PPAD-hardness for approximate equilibrium,
has eluded us. One of the difficulties is the following: Optimal bundles of agents in an HZ
equilibrium may include zero-utility zero-priced goods as “fillers” to satisfy the size constraint,
e.g., observe their use in Algorithm 12, for the case of dichotomous utilities. In this easy setting,
we knew which were the “filler” goods. However, when faced with a complex instance of HZ,
we don’t a priori know which zero-utility goods will be used as “fillers”. Therefore, even though
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an agent may have very few positive utility goods, other goods are also in play, thereby giving
no “control” on the equilibrium outcome.

We propose exploring the following avenue, in addition to the usual ones, for arriving at evidence
of intractability: Relax the notion of polynomial time reducibility suitably and obtain a weaker
result than FIXP-hardness or PPAD-hardness.

Other open problems related to our work are: obtain efficient algorithms for computing approx-
imate equilibria, suitably defined, and identify other special cases, besides the bi-valued case,
for which equilibrium is easy to compute. Additionally, generalizations and variants of the HZ
scheme deserve attention, most importantly to two-sided matching markets [EMZ19a].

Encouraged by success on the bi-valued utilities case, we considered its generalization to the tri-
valued utilities case, in particular, {0, 1

2 , 1} utilities. We believe even this case has instances with
only irrational equilibria. Finding such an example or proving rationality is non-trivial and we
leave it as an open problem. Furthermore, it will not be surprising if even this case is intractable;
resolving this is a challenging open problem.
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