
CS206P Assignment #2 - squares and square roots

Those who submit their write-up written in LaTeX will receive a 10% bonus
over those who hand-write their solutions.

In that case please electronically submit in both a PDF and the original LaTeX; otherwise
submit paper only. Everybody must submit paper even if you do it in LaTeX, and everybody
must submit their code both electronically and on paper.

1.a) Analyze the error propagation when computing the square of a number. That is, assume t is a real
number represented as fl(t) = t · (1 + δ0) = x0 in a floating point system. We would like to compute the
square f(t) = t2 in the floating-point system. In practice, we compute f(x0). Find an upper bound for the
absolute value of the relative error in f(x0). Note that the relative error in f(x0) does not include any error
in the representation of f(x0).

1.b) Let δk denote the relative error in squaring t, k times in a floating-point system, ie xk = t(2
k)(1+δk),

where xk = fl(f(xk−1)). Show that |δk| ≤ 2|δk−1| + E where E is the machine epsilon. Then show by
induction that |δk| ≤ 2k|δ0| + (2k − 1)E. Note that the error δk for k > 0 is due to both the computation
and the representation of the result.

2.a) Analyze the error propagation when computing the square root of a number. That is, do the same
as in 1.a) but with f(t) =

√
t.

2.b) Let δk denote the relative error in taking the square root of t, k times in a floating-point system.

That is, xk = t1/2
k

(1 + δk) where xk = fl(f(xk−1)). Show that |δk| ≤ 1
2 |δk−1|+ E where E is the machine

epsilon. Then show by induction that

|δk| ≤
1

2k
|δ0|+ (2− 1

2k−1
)E.

3. Given some value of x0 and some value of y0 we may for some positive integer N define the finite
sequences

(i) xk = x2k−1, k = 1, . . . , N (1)

(ii) yk =
√
yk−1, k = 1, . . . , N (2)

(3)

Consider the following two experiments, where α is assumed to be an arbitrary small positive (real) number
that is larger than the machine epsilon.

Experiment 1: Set x0 = t = 1 + α and compute xN by applying (i) N times. Then set y0 = xN and
compute yN by applying (ii) N times.

Experiment 2: Reverse the order of (i) and (ii): Set y0 = t = 1 + α and compute yN by applying (ii) N
times; then set x0 = yN and compute xN by applying (i) N times.

The mathematical result is expected to be the same in both cases: you should end up back at t = 1 +α,
but the computed results are likely to be different due to machine precision issues.

3.a) Set α = 2.37 × 10−7 and use double-precision in your favourite language. Try both the above
experiments for N ranging all values 1 through 30. For the final values of yN and xN in experiments 1 and 2,
respectively and for every value of N , compute the error yN − t and xN − t. Tabulate the results so that each
line in the table corresponds to a value of N . Comment on how the error behaves during each experiment
as N increases.

3.b) Let δ
(i)
k denote the relative error in xk, and let δ

(ii)
k denote the relative error in yk, and δ0 denote the

relative error in the representation x0 of t = 1 +α. Use the results of question 1. above to obtain bounds for
the errors yN − t and xN − t in the two experiments. Comment on whether these bounds agree with what
was observed in 3.a.

Note: in 3.b), xk and yk are floating point numbers. Errors δ
(i)
k and δ

(ii)
k for k > 0 are due to both the

respective computations and their representations.
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