What is Scientific Computing?

- mathematical and informatical basis of numerical simulation
- reconstruction or prediction of phenomena and processes, esp. from science and engineering, on supercomputers
- · third way to obtain knowledge apart from theory and experiment

- transdisciplinary: mathematics + informatics + field of application!!
- Objectives depend on concrete task of simulation:
 - reconstruct and understand known scenarios (natural disasters)
 - optimize known scenarios (technical processes)
 - predict unknown scenarios (weather, new materials)

Introduction to Scientific Computing Lesson 1: Overview

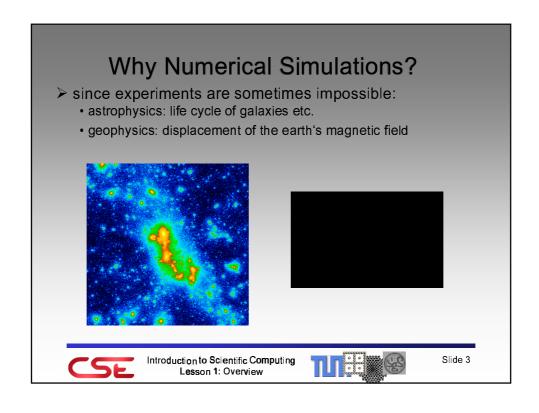
Slide 1

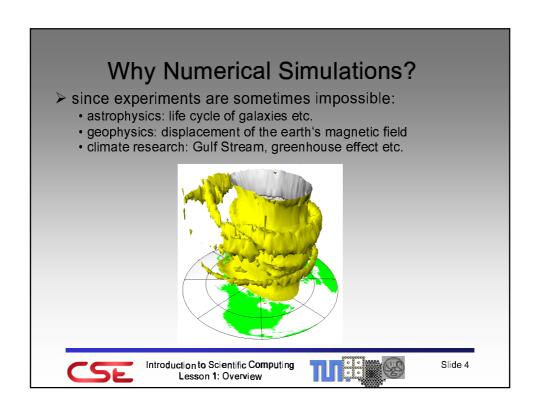
What's in a Name?

- scientific computing?
- scientific and engineering computing?
- computational science and engineering?
- > simulation?

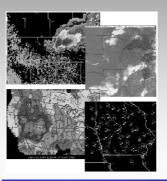
A chemist's provoking question:

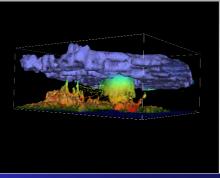
What the hell is nonscientific computing?


The scientific computer's answer:

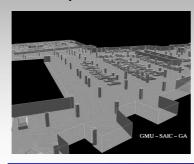

What you do, for example! ©

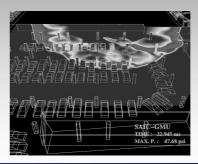
Introduction to Scientific Computing Lesson 1: Overview





- > since experiments are sometimes impossible:
 - astrophysics: life cycle of galaxies etc.
 - geophysics: displacement of the earth's magnetic field
 - climate research: Gulf Stream, greenhouse effect etc.
 - weather forecast: tornadoes where, when, and how strong?

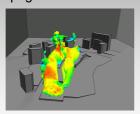

Introduction to Scientific Computing Lesson 1: Overview

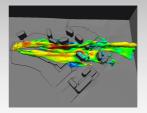


Slide 5

Why Numerical Simulations?

- > since experiments are sometimes impossible:
 - astrophysics: life cacle of galaxies etc.
 - geophysics: displacement of the earth's magnetic field
 - climate research: Gulf Stream, greenhouse effect etc.
 - weather forecast: tornadoes where, when, and how strong?
 - security: 1993 bomb attack in the World Trade Center ®

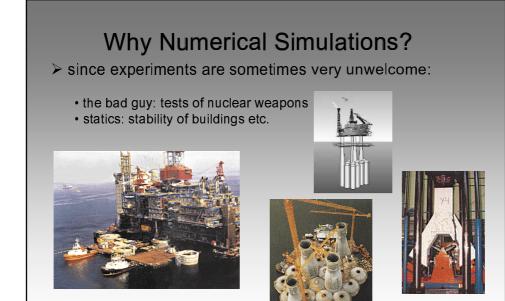



Introduction to Scientific Computing Lesson 1: Overview

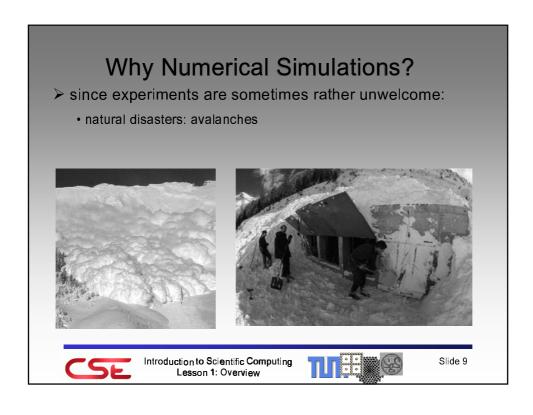
Why Numerical Simulations?

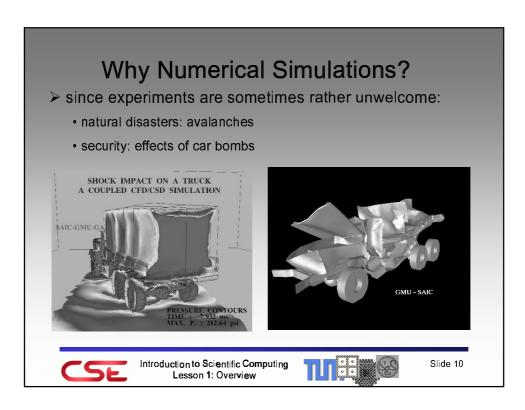
- > since experiments are sometimes impossible:
 - astrophysics: life cycle of galaxies etc.
 - geophysics: displacement of the earth's magnetic field
 - climate research: Gulf Stream, greenhouse effect etc.
 - weather forecast: tornadoes where, when, and how strong?
 - security: 1993 bomb attack in the World Trade Center 🕾
 - propagation of harmful substances

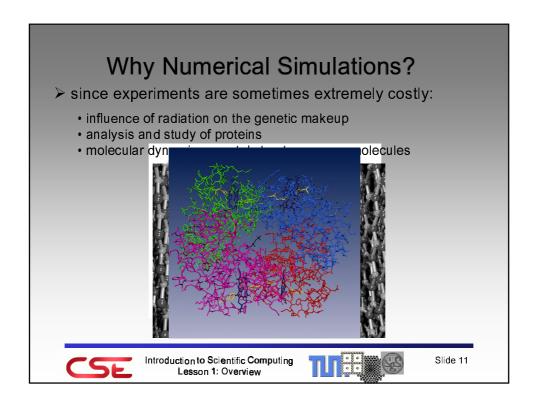
- economics: development of the stock market etc.
- · medicine: adaptive materials in implants

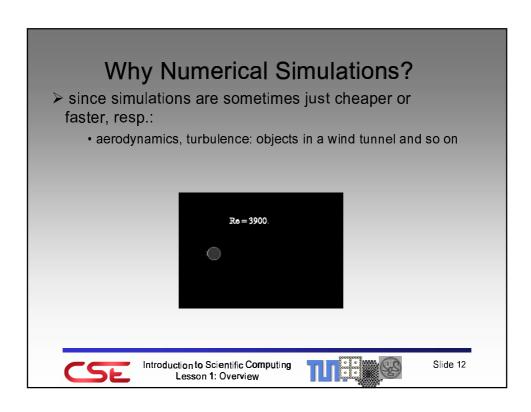


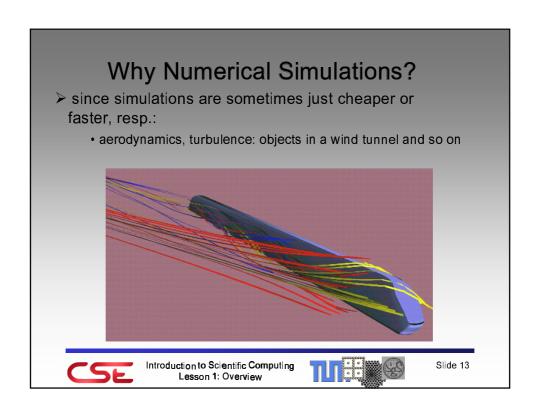
Introduction to Scientific Computing Lesson 1: Overview

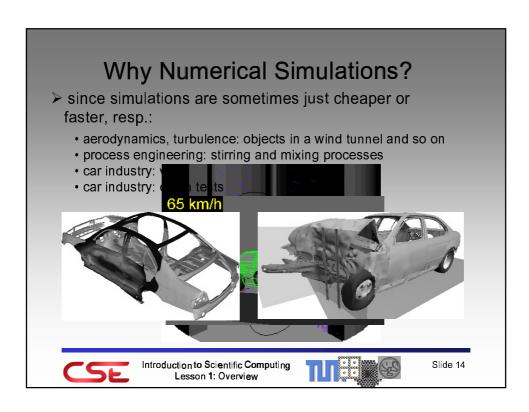

Slide 7

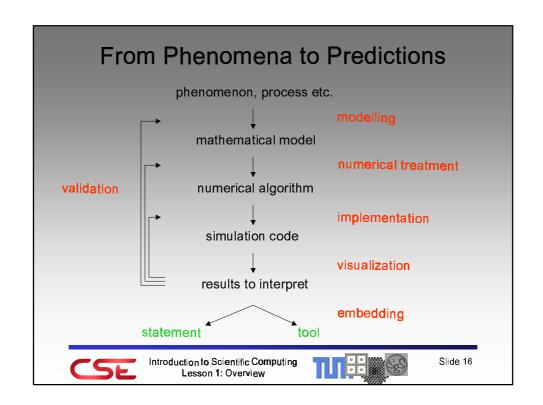

Slide 8




Introduction to Scientific Computing


Lesson 1: Overview




US Government: Grand Challenges

- > climate research
- > combustion
- > automobile development
- > aircraft design
- > electronic design automation
- biology and medicine
- > chemistry and physics
- > material science
- > financial engineering

Introduction to Scientific Computing Lesson 1: Overview

Mathematical Modelling

- model as a (simplifying) formal abstraction of reality
- > issues when *deriving* a mathematical model:
 - · Which quantities have some influence, and how important is it?
 - What relations exist between them? "Which type of mathematics?"
 - What is the given task (solve, optimize, etc.)?
- > issues when analyzing a mathematical model:
 - What can be said about existence and uniqueness of solutions?
 - Do the results depend continuously on the input data?
 - How accurate is the model, what can be represented?
 - Is the model well-suited for a numerical treatment?
- > There is not one correct model, but several possible!
- > model hierarchy: accuracy vs. complexity
- > example: simulations concerning man

Introduction to Scientific Computing Lesson 1: Overview

Slide 17

Simulating Men: Levels of Point of View

 issue	level of resolution	model basis (e.g.!)
global increase in population local increase in population	countries, regions villages, individuals	population dynamics
man	circulations, organs	system simulator
blood circulation	pump/channels/valves	network simulator
heart	blood cells	continuum
cell	macro molecules	continuum
macro molecules	atoms	molecular dynamics
atoms	electrons or finer	quantum mechanics

Introduction to Scientific Computing Lesson 1: Overview

What else has to be done?

- in practice, models can typically not be solved analytically
- > numerical (approximate and computer-based) methods!
- > the numerical part is non-trivial:
 - often complicated geometries (seeping processes in soil)
 - often changing geometries (a sail in the wind)
 - · accuracy requirements force a high resolution of the domain
 - also higher dimensional problems: quantum mechanics: d=6,9,12,..., finance: d=365
 - time dependence (unsteady phenomena)
 - · high memory requirements
 - often poor convergence of standard methods (long run times)
 - · multiscale phenomena (turbulent flows)

Introduction to Scientific Computing Lesson 1: Overview

Slide 19

Numerical Treatment of Models

- many approximations and compromises:
 - numbers: fixed number of digits instead of real numbers
 - functions: approximating polynomials instead of series
 - domains: polygonally bounded, restriction to grid points
 - operators: difference quotients instead of derivatives
 - function spaces: only finite-dimensional
- requirements to be fulfilled by numerical algorithms:
 - · efficient high accuracy with moderate storage investment
 - · fast the approximate solution is computed in short time
 - stable: no significant/qualitative errors in the results
 - · robust can be applied for a large class of problems
- > main tasks:
 - derive the discretized equations
 - · solve the resulting discrete system of equations

Introduction to Scientific Computing Lesson 1: Overview

What else has to be done?

- > a numerical algorithm is not yet an efficient code
- > the implementation is crucial:
 - platform microprocessor: pipelining, cache memory
 - platform supercomputer: vector/parallel/vector-parallel/cluster, distributed/shared/virtually shared memory
 - suitable data structures and organization principles (hierarchy, recurrences)
 - potential of (automated) parallelization, communication
 - · today: software engineering important in simulation context, too
- > "MATLAB-numerics" is not sufficient for doing relevant numerical simulations!
- > we need "plug-and-play tools": embedding
- > interpretation of tons of data requires visualization

Introduction to Scientific Computing Lesson 1: Overview

Slide 21

Literature

- ➤ Gander, Hrebicek: Solving Problems in Scientific Computing Using Maple and MATLAB, Springer, `97
- > Krabs: Mathematische Modellierung, Teubner, `97
- Golub, Ortega: Scientific Computing, Academic Press, `93
- Dongarra et al.: Numerical Linear Algebra for High Performance Computers, SIAM, `98
- ➤ Hwang: Advanced Computer Architecture, Mc Graw-Hill, `93
- Griebel et al.: Numerical Simulation in Fluid Dynamics, SIAM, `98

Introduction to Scientific Computing Lesson 1: Overview

