
CS206P – Scientific Computing —Project list 

The final project for this class is worth 40% of your grade. Below are your choices. You only need to do one of them. You 
can also visit my student recruitment page: http://www.ics.uci.edu/~wayne/research/students. Any project in the 
Bacterial Tracking, Graph Theory, or Spiral Galaxy projects are allowed, but consult with me first. Note that to do one of 
those projects you must first pass the “challenge” question associated with it, but that’s just the start. An actual project 
would come later and be more substantial, details to be worked out individually. 

Project MC: Monte Carlo vs. Deterministic Volume Integration 

You will want to read Chapter 9 of the Bindel + Goodman textbook before attempting this question. Assume you want to 
estimate the “volume” of a d-dimensional (hyper-)sphere of radius r=1 centered on the origin. (Note that for d=1, 2, and 
3, the common names for d-dimensional volume are length, area, and volume, respectively.) So for d=1, the answer is 2; 
for d=2, the answer is πr2=π, and for d=3 the answer is 4 π r3/3, etc. There are analytical formulae for higher d as well 
but we’re going to pretend we don’t know them. You are welcome to look them up if you want and compare against 
them, but it’s not required. See the Wikipedia page on the volume of the n-ball. 

You are going to do a detailed comparison between two different methods for estimating the answer as a function of d.  
In both cases you want the answer to be correct to 4 digits. The two methods are described below: 

Monte Carlo integration: Surround the hypersphere with a hypercube centered at the origin with sides of length 
2; this is the smallest hypercube that can enclose the hypersphere.  Clearly, the hypercube has volume 2d. Select 
N points uniformly at random inside the hypercube, and count how many of them are within distance 1 of the 
origin (ie., inside the hypersphere). You are allowed to use a different N for each value of d, but for any given 
value of d you should use some constant value Nd.  For each value of d, use multiple runs and error bars to 
assure 4 digits of accuracy with high confidence (for example the 2sigma standard deviation should also 
maintain 4 digits of accuracy). It would be easiest for you if you figured out some way to automatically 
determine when your confidence satisfies the criterion, since you’ll be doing this for many values of d. 

Cube-based integration: Divide each of the d dimensions into K segments, so that the hypercube is dissected 
into Kd “small” hypercubes.  Clearly, each of the small hypercubes h has volume (2/K)d. For each small hypercube 
h, you should be able to classify it into one of three categories: either it is wholly inside the hypersphere, wholly 
outside the hypersphere, or else the surface of the hypersphere passes through h. This should allow you to put 
strict upper and lower bounds on the volume of the hypersphere—you don’t even need statistics or confidence 
levels here, the bounds are strict. For each value of d, determine how large K must be (or equivalently, how 
small the small hypercubes h need to be) for you to guarantee that you have computed the volume of the 
hypersphere to 4 digits of precision.  (Note that I’m suggesting that you simply write a program to dynamically 
determine K given d, I’m not asking for a closed-form solution.)  Note that you are not allowed to use the fact 
that the volume is a hyper-sphere; you should treat the three-class classification question (inside, outside, 
intersects surface) as a black box where the only question you can ask at each point is “what class is this box?” 
However, your bounds must be strict (modulo roundoff error, which you don’t have to account for). The only 
way to do this is for a general volume is to sample every small hypercube h. 

Part 1: push each of your methods as far as you can in terms of d. Which method is more efficient as d becomes large, 
given that we insist on 4 digits of precision in the answer?  How far can you push d for each method? Plot figures 
showing run times and accuracies as a function of d.  How do things change if we demand 8 digits of precision? (In all 
cases, the cube-based method should guarantee the specified accuracy, the confidence only applies to the MC method.) 
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Part 2: A completely different way to look at this is to choose a fixed, relatively large value of N for the number of Monte 
Carlo samples.  Let’s use 1 million (N=106), because it’s going to be the same for every value of d.  Then, for the 
deterministic (cube-based) method, pick K so that the number of small hypercubes h is also about N.  (So, K rounded to 
the nearest integer to N(1/d).) Our goal here is to construct things so that both methods are about the same CPU cost. 
Then, show the difference between the two values as a function of d.  For this part of the question, you can assume that 
the volume of the hypersphere in the deterministic case is the sum of those h’s that are inside the hypersphere plus half 
of those that are bisected by its boundary (is there a more clever way?). Based on Part 1, which do you think is giving the 
more accurate answer? (Feel free to compare to the exact values, which can be found on the Wikipedia page for the 
volume of an n-ball.) 

Part 3: If I give you a fixed value of N (number of samples), what is the most accurate value (including minimizing the 
size of the uncertainty interval) that you can compute for π? In other words, which method, and what value (or values) 
of d should you use to compute π as accurately as possible if you have only a specified number of samples at your 
disposal, and you don’t know N in advance? 

NOTE: your answer will be judged at least partly based on how far you can push d, and how accurate your answers are.  
That is, you will be judged at least partly on efficiency. In particular, efficiency will count as 10% of the grade for this 
project, and students will be ranked based on how far they can push d, and those that push d farther will get more 
marks for efficiency. Feel free to compete with each other publicly on Piazza by bragging how far you’ve pushed d and in 
what amount of CPU time (anonymously if you wish).  Same goes for Part 3: for example who can consistently get the 
best value of π if you’re allowed no more than 1 million samples?  Can you, for example, find a tighter d-dimensional 
bounding shape than a hypercube to surround the hypersphere? This would make for fewer “wasted” samples outside 
the hypersphere; your tighter shape would still need a closed-form computable volume. (For this part you are allowed to 
assume the volume is a hypersphere, but the ``enclosing’’ volume can’t also be a hypersphere.) 

 

Project Spring: Numerical simulation of the Ideal Spring using Euler, LF, RK4 

You will want to read Chapter 8 of the Bindel + Goodman textbook to do this project. In this project you’ll learn about 
numerical integration of ordinary differential equations. It helps if you like physics, because this project is pretty physics-
heavy. Also, for all calculations, all floating point variables must use SINGLE precision, not double or long double. Single 
precision (the “float” data type in C or C++) requires 4 bytes of storage and provides about 7 digits (base 10) accuracy.  
Do not use double precision. We want to see the errors here and it’s easier to see the errors if we use single-precision 
floating point. 

Part 1: understanding order of integrators. In class I introduced a simple method of numerical integration, called Euler’s 
Method.  Given an ordinary differential equation x’(t) = f(x), with the initial conditions x(0)=x0, (where x0 is a constant), 
we choose some small time-step Δt and iterate 

x(t+ Δt) =  x(t) + Δtf(x(t))         (1) 

or in code, 

xi+1 = xi + Δt*f(xi)             (1a) 

To define the order of a numerical integration method, assume that we want to perform an integration across a 
relatively small (but not infinitesimal) duration H.  If we divide the interval H into n segments, then the order of the 
integration method is k if the total error of the numerical method across duration H compared to the exact solution 



across the same interval, scales as 1/nk. Put another way, if Δt=H/n, then a kth-order numerical integration method has 
global error that scales as (Δt)k compared to the exact solution. 

Euler is called first-order method because it turns out that, compared to the exact solution, as the timestep  Δt gets 
smaller, the solution you get from equation (1) differs from the exact solution, step-by-step by about (Δt)2, and if you 
sum up all these errors across the interval H then the total is (Δt)1 —the power of Δt is the order of the method.  
(Remember that Δt =H/n, so the total error is the sum of n errors each of size O(1/n2).) 

Now, if we’re to do any physics, then we want to solve F=ma, but a is the acceleration, which is the second derivative of 
location. In other words, if x(t) is location as a function of time, then F=mx’’, where x’’(t) is the second derivative (with 
respect to time) of x(t).  Now, if we let v(t) be the velocity (in the x direction), then v(t)=x’(t), and we can use Euler’s 
method to solve the second-order differential equation using two first-order equations.  (Footnote: don’t confuse the 
order of the numerical integration method with the order of the differential equation. It’s unfortunate that the same 
terms are used, but the order of the differential equation is simply the highest derivative, eg first, second, or third 
derivative, etc; the order of the numerical integration method is the exponent of Δt that measures the global error.) 
Anyway, to solve F=ma, we need to add an initial velocity v(0)=v0 to our initial conditions, and then Euler’s method 
becomes: 

xi+1 = xi + Δt*vi, 

vi+1 = vi + Δt*ai 

where ai is usually computed using F=ma or a=F/m, where the force F is computed using some physics. NOTE: if ai is 
computed using xi, then be sure to pre-compute ai at xi, rather than xi+1. (In other words if you just code x=x+v*dt, then 
you’ve updated x before computing a, which is bad. Compute a first.) 

Now, finally, we can talk about a second-order method, called Leapfrog.  It’s very simple, and only works for solving 
second-order differential equations.  All we do is compute the new positions at timesteps i as above, but the velocities 
are computed at half timesteps. So given an initial position x0 and initial velocity v0, you solve F=ma to find the 
acceleration at time 0, and then perform a one-time half-step of v as follows: 

V0.5 = v0 + ½ Δt*a0 

Now, you effectively have position at time 0, and velocity at time ½ Δt. Now you just update the position and velocities 
as previously in full (not half) Δt incements, computing the acceleration at new position: 

Update xi+1 = xi + Δt*v0.5+i 

Compute ai+1 from xi+1 

Update vi+1.5 = vi+0.5 + Δt*ai+1 

Conceptually, the position and velocities are “leapfrogging” each other, with each being computed halfway between the 
other, being careful to compute the velocities from the acceleration caused by the position half-way between the old 
and new velocities. It turns out that if you cut the timestep in half with leapfrog, then the local error goes down by a 
factor of 4—in other words, the Leapfrog integrator is a second order numerical integrator—much better than first-
order, even though it looks exactly like the Euler method, and costs exactly the same amount of computation.  The only 
difference between Euler and Leapfrog is the initial section that moves the velocities half a step ahead of the positions, 
and then you need to be careful to compute the accelerations in the right place. 



Finally, there is a very popular 4th-order integrator called the Runge-Kutta method.  It’s too long to explain here; look it 
up on Wikipedia, or else go find a canned RK4 integrator in whatever language you want to use.  It’s also used to 
integrate first-order differential equations, so you’ll need to update the positions and velocities separately, just like with 
Euler. 

YOUR TASK in Part 1: finally, we can define your task in Part 1.  Your task is to demonstrate the orders of the above 
numerical integration methods.  That is, for Euler, Leapfrog, and RK4, show that they are 1st, 2nd, and 4th order, 
respectively, solving the Spring Equation, F=-kx.  That is, the spring equation is x’’(t)=-k * x(t). Use k=x0=1, and v0=0, and 
integrate from 0 to H=1.  Show that if Δt=H/n where n is the number of steps taken to get from t=0 to t=1, then the total 
error goes as Δtk, for k=1, 2, and 4, respectively.  (Note that the spring equation has an exact solution; go look it up.  
Alternately, use the RK4 solution with a very small timestep to estimate the “exact” solution and compare all the others 
to that one.) Include plots of the errors as a function of timestep, on a log scale, to demonstrate the exponent k. 

PART 2: Perform an integration of duration 1,000 (ie., t=0 to t=103). Try all three integrators and various timesteps.  Plot 
all three of them as a function of time using the timestep that appears best for all three, regardless of CPU time taken. 
Which one provides the most accurate solution in the least amount of CPU time? 

PART 3: At this point you should have convinced yourself that the RK4 integrator is the most accurate since its error goes 
down as (Δt)4, which is pretty cool. Now we’re going to show you that’s not always the most important thing. Now, using 
all 3 integrators, try performing integrations of increasing durations 10j, for j going from 1 to 9 (yes, that’s an integration 
of duration 109)—although you may not need to go that far, as follows.  You know that the total energy of the system is 
kinetic + potential, and that it should remain constant. Kinetic is always ½ mv2 (use m=1), and potential for the ideal 
spring is ½ kx2. Since our simulations have numerical error, they will actually violate the conservation of energy, and the 
amount by which we violate it is a measure of error even in the absence of knowing the exact solution. Plot the total 
energy of the system as a function of time for all three integrators for various timesteps. Which one provides the best 
long-term conservation of energy?  Why is this surprising?  (You can stop once at least two of the integrators violate 
conservation of energy by at least 100%.) Use timesteps at least as small as 0.01, or even smaller if you wish. 

 


