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Abstract

Generalized belief propagation (GBP) has
proven to be a promising technique for ap-
proximate inference tasks in AI and machine
learning. However, the choice of a good set
of clusters to be used in GBP has remained
more of an art then a science until this day.
This paper proposes a sequential approach
to adding new clusters of nodes and their
interactions (i.e. “regions”) to the approxi-
mation. We first review and analyze the re-
cently introduced region graphs and find that
three kinds of operations (“split”, “merge”
and “death”) leave the free energy and (un-
der some conditions) the fixed points of GBP
invariant. This leads to the notion of “weakly
irreducible” regions as the natural candidates
to be added to the approximation. Com-
putational complexity of the GBP algorithm
is controlled by restricting attention to re-
gions with small “region-width”. Combining
the above with an efficient (i.e. local in the
graph) measure to predict the improved ac-
curacy of GBP leads to the sequential “re-
gion pursuit” algorithm for adding new re-
gions bottom-up to the region graph. Exper-
iments show that this algorithm can indeed
perform close to optimally.

1 INTRODUCTION

Belief propagation (BP) and a growing family of vari-
ants thereof have established themselves in recent
years as a viable alternative to more traditional ap-
proaches for approximate inference in graphical mod-
els. BP, like other mean field methods, is likely to
exhibit a certain bias in its estimates. However, unlike
most sampling schemes, it does not suffer from high
variance and is often much more efficient. As a result

many exciting applications have emerged in the recent
years ranging from vision, operation research, decision
making, communication and game theory to learning
and error-correcting-decoding.

Despite these favorable properties, BP is no ”sil-
ver bullet”. For highly connected graphs with
strong conflicting interactions BP may not pro-
duce accurate estimates or may even fail to
converge altogether. Convergent alternatives,
searching for the same solutions as BP, have been
developed but are relatively slow to converge
[Yuille, 2002][Welling and Teh, 2001],[Heskes, 2003].
Other shortcomings have resulted in many interesting
improvements over the ”plain vanilla” BP algorithm.
For instance, a convex lower bound for the free energy
[Wainwright et al., 2002], ”expectation propagation”
for continuous valued random variables in the ex-
ponential family [Minka, 2001] and the generalized
BP (GBP) algorithm that improves the accuracy
by including the entropy of larger clusters in the
approximation [Yedidia et al., 2002].

Concerning the latter, it has been noted that the choice
of clusters of nodes and their interactions (named “re-
gions”) in the GBP algorithm is more of ”an art than
a science”. Handpicked regions may form a subop-
timal set, leading to inaccuracies or inefficiencies at
best. In this paper we will try to formulate an answer
to the question: what is a good set of regions to use in
the GBP algorithm? We propose a sequential process
where new regions are selected from a large pool of
candidates and added to the approximation.

2 GBP AND REGION GRAPHS

Let V be the set of all variable nodes i ∈ V of a
factor graph corresponding to the random variables
x

.= {xi} .= [x1, ..., xV ]. Similarly, let A be the set
of all factor nodes a ∈ A corresponding to potential
functions {ψa} .= [ψ1, ..., ψA]. A subset of variables
{xi | i ∈ α} will be denoted by xα. Factor graphs



are bi-partite because the neighbors of a factor, Na,
are precisely all the variables contained in that factor
and the neighbors of a variable node, Ni, are precisely
all factors that contain that variable. In the following
we will often use a shorthand for the variables in the
argument of a factor: xNa

.= xa. The expression for
the probability distribution corresponding to a factor
graph is given by,

PX(X = x) =
1
Z

∏

a∈A
ψa(xa) (1)

where Z is the normalization constant. In the fol-
lowing we will write PX(X = x) = p(x) to simplify
notation.

In [Yedidia et al., 2002] region graphs (RG) were intro-
duced as the natural graphical representation for GBP
algorithms (a similar idea was independently proposed
in [McEliece and Yildirim, 1998]). Define a region rβ

as the set of variables {i | i ∈ β} together with a sub-
set of the factors that contain a subset of the variables
in β, {a | Na ⊆ β}. Thus, although we insist on the
fact that the factors in rβ can only contain variables
in β, we do not necessarily include all such factors
[Yedidia et al., 2002].

A region graph is a directed acyclic graph with vertices
corresponding to regions. Directed edges can only ex-
ist between regions and direct subregions where a di-
rect subregion will be defined as a region that contains
all or a subset of the nodes and factors present in the
parent region (i.e. it could be a copy of itself). A re-
gion rα is a parent of a region rβ if there is a directed
edge from rα to rβ . Conversely, rβ is said to be a child
of rα. Ancestors and descendants are also defined in
the usual way: a region rα is said to be an ancestor
of a region rβ if there exists a directed path from rα

to rβ . Conversely, rβ is said to be a descendant of
rα in that case. “Outer regions” are defined to be
the regions with no parents, i.e. without any incom-
ing edges, while ”inner regions” are all the remaining
regions with one or more parents.

With every region there is associated a counting num-
ber crβ

defined as follows,

crβ
= 1−

∑

rα∈Anc(rβ)

crα (2)

where Anc(rβ) is the set of all ancestor regions of re-
gion rβ . Given the definition of these counting num-
bers we can now define the region graph conditions:
The subgraphs RG(i) and RG(a) consisting of the re-
gions containing a variable i or factor a must be (C1)
connected and (C2) satisfy:

∑

rβ∈RG(i)

crβ
= 1 ∀i;

∑

rβ∈RG(a)

crβ
= 1 ∀a (3)

Condition C1 ensures that the marginal distributions
defined on regions as computed by GBP are all consis-
tent. Condition C2 for variables makes sure that we
do not over-count the degrees of freedom associated
with any random variable and guarantees that in the
case of vanishing interactions we retain the exact re-
sults. Condition C2 for factors ensures that each factor
contributes only once to the approximation.

The edges of the RG are associated with the messages
of the GBP algorithm. One possible way to execute
that algorithm is as follows. Initialize all messages ran-
domly (or equal to a constant, say 1). For a message
update between region rα and a child region rδ we first
compute the marginal distributions bα(xα) and bδ(xδ)
as follows,

bα(xα) =
1

Zα

∏

b∈rα

ψb(xb)
∏

rγ∈Uα

rβ∈rα∪Dec(rα)

mγβ(xβ) (4)

where Uα is the set of regions that consist of the par-
ents of rα and all the parents of the descendants of
rα, except for those parents that are contained in
rα ∪Dec(rα). The same equation is used to compute
bδ(xδ). In terms of these marginals, the message up-
date is then given by the following equation,

mαδ(xδ) ←
∑

xα\xδ
bα(xα)

bδ(xδ)
mαδ(xδ) (5)

After convergence, Eq.4 should be used to compute the
final estimates of the marginal distributions. We have
chosen to present the GBP equations in this particular
form because of its compactness and transparency, not
because it is an efficient way to implement it. For in-
stance, Eq. 5 makes explicit the fact that the messages
enforce the constraint,

∑
xα\xδ

bα(xα) = bδ(xδ) at con-
vergence, but we need not recompute both marginals
bα(xα) and bδ(xδ) at every iteration. Depending on
the specific structure of the graph under consider-
ation more efficient update schemes exists in terms
of messages only [Yedidia et al., 2002] or in terms of
messages and marginals where the latter are stored
[Minka, 2001].

From the equations above it becomes apparent that
messages and potentials fulfill very similar roles. In
fact we may interpret potentials as messages that never
change, or reversely we may interpret messages to be
dynamic potentials. Thus, we could view messages
into subsets of nodes as effective or induced interac-
tions between the variables in this subset.

Finally, we define the “free energy” of the RG,

FRG =
∑

rβ∈RG

crβ
Frβ

(6)



where the free energy of a region rβ can be decomposed
in an energy and an entropy term:

Frβ
= −

∑
xβ

bβ(xβ)
∑
c∈rβ

log ψc(xc)

+
∑
xβ

bβ(xβ) log bβ(xβ) (7)

The RG free energy FRG is an important object since,
as was proven in [Heskes, 2003], it acts as a cost func-
tion for GBP algorithms in that the fixed points of
GBP are local minima of FRG.

3 INVARIANT OPERATIONS

The family of all RGs exhibit a certain redundancy in
the sense that different RGs, corresponding to different
message passing algorithms, support the same set of
solutions (or fixed points) of GBP. One simple example
of such redundancy is given below:

Link-Birth: Adding directed edges between regions
and descendants (other than children) will not change
the RG free energy and the fixed points of GBP.

The reason for this invariance is that the addition of
links to distant descendants will not change any ances-
tor sets and thus, by Eq.2 none of the counting num-
bers. This implies that (C1) and (C2) still hold and
that the free energy remains invariant (Eq. 6). The re-
sults in [Heskes, 2003] then show that the fixed points
of GBP will not alter. In the following we present a
number of more elaborate operations on the RG that
leave the free energy invariant, which will later be re-
lated to the fixed points of GBP.

Proposition 1: Split
Consider an outer region rα and define a partitioning
of the variables and factors in the region rα into three
sub-sets: {rα1 , rα2 , rβ} s.t. the variables in rβ sepa-
rate α1 from α2 in rα (i.e. conditioning on β makes
α1 independent of α2). Assume furthermore that we
choose rβ large enough so that the variable and factor
nodes of all child regions {rγ} are contained in either
rα1∪β or rα2∪β. Then, the RG free energy does not
change under the following operation on the RG:
Split the region rα into two subregions rα1∪β and rα2∪β

and a new child region rβ and remove all edges ema-
nating from rα. Connect rβ to all its direct subregions
in Dec(rα) (including copies of itself). Connect the
new regions rα1∪β and rα2∪β to the remaining child-
nodes {rγ} that did not receive connections from rβ.
If the new regions rα1∪β, rα2∪β and/or rβ become sub-
regions of other existing regions, they will not become
their children (i.e. we will not draw new directed edges
between them).

Proof: Condition C1 still holds since the only way it

could be violated is if a node or factor in rα would
be present in both of the new outer regions rα1∪β

and rα2∪β , but not in rβ . Since rα1 ∩ rα2 = ∅ this
is not possible. Next we show that the free energy
of the outer region rα remains unchanged after the
split. Key is the fact that β separates the clusters α1

and α2. This implies that we can decompose the be-
lief in α as: pα = pα1∪β pα2∪β / pβ This results in:
Frα

= Frα1∪β
+ Frα2∪β

− Frβ
which is the expression

for the free energy of the new regions. Finally we need
to show that the counting numbers for all other regions
remain unchanged. First we note that the ancestor set
for non-descendants of region rα do not change (re-
call that rα1∪β and rα2∪β are connected to a subset of
the children of rα while rβ is only connected to direct
sub-regions in Dec(rα)). For the regions in Dec(rα)
we observe that they become descendant of rα1∪β or
of rα2∪β or of {rα1∪β , rα2∪β , rβ}. This is true since
(I) all children of rα are connected to at least one
of the three new regions, (II) being a descendant of
rβ implies being a descendant of rα1∪β and rα2∪β as
well, since they are the are the parents of rβ , and (III)
regions that become descendants of both rα1∪β and
rα2∪β must be contained in rβ and must also be de-
scendants of rβ , since rβ was connected to all direct
sub-regions in Dec(rα). These facts and the fact that
counting numbers depend only on the total counting
number of a region’s ancestors (Eq.2) proves the claim.
¤
The reason that the region rβ is potentially larger than
the smallest ”conditioning-set” rδ is because of the
possibility that some child regions rγ of rα may cease
to be subregions of either rα1∪δ or rα2∪δ, resulting in
a change of the expression for the entropy. We thus
need to choose rβ large enough to ensure this fact.

We cannot expect regions with incoming arrows (inner
regions) to be reducible because there will always be
a message that is a joint function of the nodes in that
region.

Example: Assume that an outer region is the union
of 2 disjoint sub-regions, i.e. the intersection is empty:
rβ = ∅. In that case we can simply split the region in
two pieces without changing the fixed points of GBP.
For example, it is pointless to put 2 variables in an
outer region if there is no factor accompanying them.

Proposition 2: Merge
Consider two identical regions (or copies) rβ1 and rβ2

with rβ1 a parent of rβ2 . Assume that the descendants
of rβ1 other than rβ2 are contained in the descendants
of rβ2 : Dec(rβ1)\rβ2 ⊆ Dec(rβ2). Then, the region
based free energy does not change under the following
operation on the RG:
Merge the two regions rβ1 and rβ2 into one region rβ



and redirect all incoming and outgoing edges from rβ1

and rβ2 to rβ.

Proof: We first note that condition C1 cannot be vio-
lated because regions are merged. Next we check con-
dition C2. Define Anc′(rβ2) to be the ancestors of
region rβ2 , excluding rβ1 ∪ Anc(rβ1). The free energy
contributions of Anc(rβ1) and Anc′(rβ2) do not change
because the rule Eq.2 to assign counting numbers to
regions does not depend on regions downstream. The
free energy of the regions rβ1 and rβ2 before the merge
is given by:

crβ1
Frβ1

+ crβ2
Frβ2

= (crβ1
+ (1− crβ1

− cAnc(rβ1 )∪Anc′(rβ2 )))Frβ

= (1− cAnc(rβ1 )∪Anc′(rβ2 ))Frβ

where we defined cAnc(rα) to be the total counting
number for the ancestors of a region rα and Frβ

to be
equal to Frβ1

and Frβ2
. The above expression is clearly

equal to the free energy of the new merged region. Fi-
nally, we need to show that the same is true for the de-
scendants rβ2 (recall that Dec(rβ1)\rβ2 ⊆ Dec(rβ2)).
Using Eq.2 we note that the counting numbers only de-
pend on the total counting number upstream of that
region. Above we have shown that the total count-
ing number of the regions rβ1 and rβ2 is the same as
the total counting number of the merged region (and
the counting numbers of the ancestors don’t change as
well). This together with the fact that the ancestor
set doesn’t change proves the claim. ¤
This merge operation allows us to simplify the graph
that results from a split operation described above.
For instance, if the new child region (say rβ1) al-
ready exists as a child region of rα (say rβ2), and if
Dec(rβ1)\rβ2 ⊆ Dec(rβ2) then we can merge the two
regions.

Proposition 3: Death [Yedidia et al., 2002]
Consider a region rβ with counting number crβ

= 0.
Then, the RG free energy does not change under the
following operation on the RG:
Remove rβ and all its incoming and outgoing edges
from the RG. Connect all parents of rβ to all children
of rβ.

Proof: Condition C1 is not violated since all ancestors
and descendants of region rβ remain connected after
the removal of rβ . Counting numbers of the ancestors
of rβ will not change because of Eq.2. The free energy
of rβ itself does not change because crβ

= 0 before the
removal. The counting numbers of the descendants
only depend on the total counting number of their an-
cestors. However, the only change to the ancestors of
Dec(rβ) is that region rβ has been removed which had
counting number crβ

= 0, implying that all counting
numbers of Dec(rβ) remain unchanged and thus that

the free energy remains unchanged. ¤
Corollary: Invariance of GBP
Consider RG1 and a sequence of Split, Merge and/or
Death operations resulting in RG2. If both RG1 and
RG2 do not contain copies of regions or regions with
counting number c = 0, the fixed points of the GBP
algorithm corresponding to those regions graphs will
have the same fixed points.

Proof: The proof is a simple result of the claim in
[Yedidia et al., 2002] that the fixed points of a GBP
algorithm corresponding to a RG are the stationary
points of the corresponding RG free energy.

The proof in [Yedidia et al., 2002] connecting fixed
points of GBP with stationary points of FRG is
only valid for RGs with no copies and without
regions with c = 0. However, it was also noted
in [Yedidia et al., 2002] that the GBP algorithm
is well defined in the presence of c = 0 regions.
The same is true for RGs with copies, but we
avoid making claims for these cases because of the
lack of proof. There are however alternative algo-
rithms that directly minimize the RG free energy
[Yuille, 2002][Welling and Teh, 2001][Heskes, 2003].
For these algorithms we can clearly claim that the
solution space (set of local minima) is unaltered by
any split, merge and death moves introduced above.

Definition: An outer region of a RG is defined to be
“weakly irreducible” if it cannot be split into smaller
regions by a sequence of split, merge and death moves
without introducing new child regions. When a region
cannot be split into smaller pieces, even if the intro-
duction of new child regions is allowed, we will call it
“strongly irreducible”.

Example: Consider an outer region consisting of 4
nodes and 4 edges that form a cycle, where the edges
denote pairwise interactions. It’s children are 4 re-
gions containing pairs of nodes and one interaction (or
factor) each. This region is clearly weakly irreducible.
However, we may split the cycle into two triangles and
add the intersection (a chord) as their child. Thus,
this cycle is reducible in the strong sense.

By applying the 3 operations repeatedly to outer re-
gions we may be able to simplify the original RG and
improve computational efficiency. As an extreme case
of this, we may define one region that contains all fac-
tors and variables. Any RG resulting from a sequence
of split, merge and death operations (with no copies
and c = 0 regions) will correspond to an exact GBP
algorithm. For example, decomposable models can be
reduced to two layer RGs corresponding to junction
trees with cliques as outer regions and separators in
the second layer. As a special case we have that trees



can be decomposed into two layer regions graphs with
edges as outer regions and variables as their child re-
gions.

4 COMPLEXITY ISSUES

The conclusion from the previous section is that dif-
ferent outer regions in a RG may nevertheless result in
exactly the same fixed points for GBP. This allows us
to somewhat organize our search for promising candi-
date regions to be added to the RG, and limit consid-
eration to simple building blocks, which we will take
to be the weakly irreducible regions. Although we ac-
knowledge that this is not the only choice there are a
number of reasons we have chosen it. Allowing a fur-
ther reduction of weakly irreducible (but strongly re-
ducible regions) into smaller building blocks may cause
certain difficulties. For instance, we may introduce
copies for which we have no guarantees for an accom-
panying GBP algorithm (note that c = 0 regions can
easily be cleaned up using death operations). Also, if
we decompose a region into subregions we have to tri-
angulate it in such as way that the children remain
sub-regions of some region. There are many ways
to triangulate which would result in a messy proto-
col. Unfortunately, even the set of weakly irreducible
building blocks leaves us with a very large number of
candidates to consider and there is a need to further
organize this search. This will be achieved by taking
the complexity of the corresponding GBP algorithm
into consideration.

From Eq.5 we see that the bottleneck calculation in
GBP is the marginalization operation:

∑
xα\xδ

bα(xα).
Thus, the resulting messages are joint functions over
the variables in the child regions which implies that
the corresponding GBP algorithm scales exponentially
in this number. However, also note that often we can
exploit some structure in the outer regions to compute
the new messages and we don’t necessarily have to
represent the full joint distributions over the variables
in the outer regions. This leads us to define the width
of a region:

Definition: The region-width ω of a region rα is the
tree-width of the induced graph where every variable in
α is a vertex and where the variables in the arguments
of factors and the variables in the arguments of child
regions form cliques (i.e. the variables in factors and
child-regions are fully connected).

Corollary: The complexity of sending messages from
a region rα to all its child regions scales as Dω+1 where
D the number of states per variable.

Proof: In the proof we assume that a child region rδ

has at least two parents since otherwise its counting

number vanishes (c = 0) implying that it can be re-
moved using a death move. From Eq.5 we see that
the computational complexity of sending a message is
dominated by marginalizing bα(xα) to bδ(xδ). From
Eq.4 we see that this problem is equivalent to an in-
ference problem where factors and incoming messages
form cliques in the induced graph. Incoming messages
are joint functions of the variables in the child regions
rδ and subsets thereof (corresponding to other descen-
dants). The computational complexity of this infer-
ence problem is precisely governed by the tree-width
of the induced graph as defined above. ¤
These observations suggest that we should specify the
computational complexity that we are willing to spend
in terms of the maximal allowed region-width before
hand. A general procedure for determining all weakly
irreducible regions with region-width smaller or equal
to a pre-specified value is probably intractable. In-
stead one could use a heuristic to select promising
weakly irreducible candidate regions and remove all
regions from consideration that have too large region-
width1.

5 ADDING OUTER REGIONS

In this paper we propose to build RGs sequen-
tially and “bottom-up’ instead of the usual “top-
down” strategies described in [Yedidia et al., 2002],
[McEliece and Yildirim, 1998]. Since incorporating
new regions will change the approximation we need
to make sure that the resulting RG is still valid. The
following lemma will set the conditions for that to be
true:

Lemma: Consider a valid RG and its sub-graphs
RG(a) ∀a that consist of all regions containing factor
a and RG(i) ∀i that consist of all regions containing
variable i. If for all factors a and all variables i the
sub-graphs RG(a) and RG(i) contain exactly one leaf
node, then adding a new outer region to RG by con-
necting it to all its direct sub-regions and recomputing
the counting numbers according to Eq.2 will result in
a new valid RG.

Proof: Since a child must be a sub-region of a parent,
the sub-graph RG(a)\rleaf(a) must be the ancestor set
of rleaf(a). The counting number for rleaf(a) is exactly
equal to crleaf(a) = 1 −∑

rα∈Anc(rleaf(a))
crα which im-

plies that the total counting number is precisely 1. The
same reasoning is valid for RG(i). The above implies
that C2 still holds true and it is trivial to check that
C1 is also still true. ¤
RGs that remain valid if we add new outer regions

1There are efficient algorithms to check the tree-width
of a given graph [Bodlaender, 1997].



will be called “extendable” hereafter. The RG corre-
sponding to the Bethe approximation is the simplest
extendable RG. This fact suggests to use the Bethe
approximation as our base approximation on which to
build more complex RGs by adding new outer regions.

Next we assume that using the considerations of the
previous sections we have a list of candidate regions to
be evaluated for their inclusion into the RG. Since we
don’t have access to the exact marginal distributions
we need to find an approximate measure that predicts
the improvement in our approximation after including
the new candidate. Moreover, this measure should be
“cheap” to evaluate since we need to compute it for
every candidate region. To make progress we will first
make the following assumption:

Assumption 1: The approximation will improve if
we add a new region to the RG.

This assumption is in accord with our intuition that
treating larger clusters of nodes jointly in the ap-
proximation will improve our the accuracy at a cost
of increased computational complexity. However, it
is by no means true under all circumstances. For
instance, in the regime of very strong interactions
adding larger clusters may deteriorate the approxima-
tion rather then improve it. Also, when the count-
ing numbers become large, as may happen in densely
connected graphs, the approximation is typically poor
and there are no guarantees that adding regions will
be helpful. Thus, the assumption that we make here
is that we operate in a regime where GBP is expected
to give good results, which can be further improved by
adding more and larger regions.

Under the above assumption we want to add the region
which induces the maximal change in the marginal
distributions or the RG free energy which we assume
are closely correlated. In figure 1 we compare absolute
changes in marginals, free energy and entropy for a
loop of size 5 with varying strengths of interactions and
incoming messages. In order to evaluate the proposed
measure, we still require to iterate GBP to convergence
for each candidate region that we wish to consider.
This is clearly quite expensive computationally which
leads us to the following further assumption:

Assumption 2: The change in the free energy contri-
bution after adding a new region to the RG is relatively
small for all non-descendants of the new region.

The intuition behind this assumption is that the count-
ing numbers of the descendants of the new region will
change, while the counting numbers of the remaining
nodes remain fixed. Their free energy contribution is
only affected by the change in their marginal distribu-
tion. Another way of seeing this is to assume for a mo-
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Figure 1: Impact of changing the interaction strength (a)
and the strength of external messages (b) on the error in
the free energy & entropy (left axes) and marginal distri-
butions (in L1 norm - right axes). The region is a loop
of size 5 with binary states and with interactions on the
edges sampled in the log-domain from a Gaussian with
std. between [0, 5] in (a) and std. 1 in (b). Messages into
nodes were also randomly sampled in the log-domain from
a Gaussian with std. 1 in (a) and std. between [0, 3] in
(b). Results are averaged over 100 random instantiations.
The error in the entropy and in the free energy correlates
well with that in the marginals except in (b) at the origin.
This vanishing error is “accidental” due to the symmetry
that flipping all states has equal free energy implying that
pi(xi) = 0.5 ∀i.

ment that the all messages in GBP have converged. By
entering the new region we need to compute new mes-
sages from this new region into its children which send
new messages to their children etc. until all leafs of
the RG have been reached. At that point the marginal
distributions of the descendants have become consis-
tent with that of the new region. In the next stage of
GBP we now propagate these changes into the rest of
the graph which will then have a “back-reaction” to
the new region and its descendants etc. What we pro-
pose is thus to ignore this “back-reaction” and keep all
messages that flow into the new region and its descen-
dants frozen when we compute the change in the free
energy. This has the important effect that this change
can be computed locally in the graph and will thus
save us computation. In the following, we will denote
this local change in the free energy by ∆`F . In the
experiments we will verify that this approximation is
reasonable.

5.1 A REGION PURSUIT ALGORITHM

We now combine our considerations from the previous
sections into a region pursuit algorithm (see table be-
low). As an example we will consider a factor graph
with only pairwise interactions and take the Bethe free
energy as our base approximation. Thus, our starting
point is a RG with factors and pairs of variables in
the top layer and single variables in the bottom layer.
For new candidate regions we can use the results from
section 3 to conclude that we can strip away any tree-
like structures that are attached with a single node



Region Pursuit

1 Choose:
1a W : the maximal allowed region-width.
1b K: the maximal number of regions to be added.
1c k: the number of regions to be added per itera-

tion.
2 Preprocessing:

2a Run GBP on an extendable base approximation
(typically Bethe approximation).

2b Using some suitable heuristic, generate a large
number of candidate regions. Remove all can-
didate regions with a region-width larger than
W .

3 Repeat until K regions have been added:
3a For all remaining candidate regions do:
3a-i Decompose the candidate region into weakly

irreducible components and consider these
components separately.

3a-ii Check if the region-width is still smaller
than or equal to W (it may have changed).

3a-iii Add the candidate region as a new outer
region and connect it to the all its direct sub-
regions. Compute the local change in the re-
gion free energy ∆`F (using fixed messages
from GBP).

3b Add the k regions with largest ∆`F to the RG.
3c Re-run GBP to convergence on the enlarged RG.

to some region under consideration. This implies that
the simplest candidate outer regions must be weakly
irreducible with region-width 2. It may still be too
difficult to find all weakly irreducible width-2 regions
and so we start with the ones which have only 3 vari-
ables and interactions among each pair of variables,
i.e. a loop of size 3. Next we consider loops of size
4 without chords (otherwise it would be weakly re-
ducible) etc. Adding loops as new regions is in ac-
cordance with our intuition that they are the primary
cause of inaccuracies in the Bethe approximation since
evidence can travel around and may be double counted
as a result. Hence, adding loops to the approximation
seems a natural first step towards improving the Bethe
approximation.

6 EXPERIMENTS

The following experiments were designed to test the
two assumptions presented in section 5 for evaluating
new candidate regions. We used factor graph mod-
els with pairwise interactions and binary states. In
the following SGn×m will denote a square grid model
of size n × m while FCn will denote a fully con-
nected model with n nodes. Node and edge potentials
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Figure 2: SG8×8: Square grid with 64 binary nodes and
Wmax = 1 and αmax = 0.5.

were generated as “weights” {Wij} and {αi} in the
log-domain2 between [0, αmax] (nodes) and [0,Wmax]
(edges) in such a way that some clusters of nodes
have strong interactions while others have weak inter-
actions. In all experiments we sequentially add squares
(SG models) or triangles (FC models) and compare the
change in accuracy of the approximation (measured as
the average L1 error of the node marginals) for the fol-
lowing methods:
OPT: At each iteration and for each graph contain-
ing a different candidate region we compute the single
variable marginal distributions bi(xi) ∀i by running
GBP. These are compared with ground truth and the
region with the smallest average L1 error is chosen.
RP: At each iteration we use the region pursuit algo-
rithm of section 5.1 to choose a new region.
RP+: At each iteration and for each graph contain-
ing a different candidate region we run GBP to conver-
gence and use the change in free energy to evaluate its
merit. This is like RP but without the approximation
to compute the change in the free energy.
RP-: The same procedure as region pursuit, but
now we choose the region which induces the smallest
change in the free energy.
RAND: We pick a new region at random with equal
probability. Results are averaged over 10 random
draws.

The results for SG8×8 and FC7 are reported in fig-
ures 2 and 3 respectively. For the square grid GBP
is expected to improve the approximation and hence
assumption 1 is expected to hold. In this case we see
from figure 2 that OPT, RP+ and RP always pick
the same regions implying that RP is performing op-
timally (given the sequential constraint) and that as-
sumption 2 holds. Moreover, we see that for any given
number of added regions RP significantly outperforms

2More precisely, ψij(xi, xj) ∝ exp(Wijxixj) and
ψi(xi) ∝ exp(αixi) with xi = ±1.
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Figure 3: FC7: Fully connected network with 7 nodes,
binary states, Wmax = 0.3 and αmax = 0.5.

random choices which in turn performs better than
RP-. For fully connected graphs we do not expect
GBP to necessarily improve the accuracy of the ap-
proximation and assumption 1 may break down as a
result. This phenomenon is indeed observed in figure
3, where around iteration 12 the performance of OPT
on the one hand and RP and RP+ on the other start
to diverge. Note however that at all times the perfor-
mance of RP and RP+ is indistinguishable implying
that assumption 2 is still valid. The fact that RAND
and even RP− perform superior to OPT around iter-
ation 30 reveals that in this regime its better to add re-
gions with weak interactions while OPT is stuck with
strongly interacting regions added earlier in the pro-
cess. The fact that we can gain about an order of
magnitude in accuracy for fully connected graphs is
somewhat surprising, but in the absence of a reliable
stopping criterium this result is of little practical value.

7 DISCUSSION

In this paper we have dealt with the choice of re-
gions in GBP. While in highly structured graphi-
cal models a good choice of regions may sometimes
present itself naturally, most often this is not the case
and an automated procedure becomes desirable. We
have advocated a sequential approach where new re-
gions are added “bottom-up” to the RG. The only
related work we are aware of is on a graph par-
titioning strategy for the mean field approximation
[Xing and Jordan, 2003].

The experiments presented in this paper have been
limited to testing the assumptions underlying a novel
measure to choose new clusters from a pool of candi-
dates. Future experiments should implement a fully
automated procedure to produce promising candidate
clusters and evaluate them for their merit. We predict
that this will have practical value for problems such as

improving the performance of decoders in the field of
error-correcting-decoding.

We have observed that convergence of GBP can be
somewhat problematic especially in RGs with many
generations. Convergent alternatives can replace GBP
but they are known to exhibit slow convergence. Im-
proved damping schemes may help elevate this prob-
lem.

There are interesting extensions of the region pursuit
algorithm which are worth considering. In particular,
regions with very high region-widths are currently ex-
cluded for computational regions, but a method may
be conceivable that can treat these regions in some
approximation allowing their inclusion.
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