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Abstract bound the training (or testing) log-likelihood by approxi-

We derive a number of well known deterministic latent vagabMating the posterior distribution of the latent variablgsab
models such as PCA, ICA, EPCA, NMF and PLSA as variationd@rameterized family of tractable distributions over thme

EM approximations with point posteriors. We show that thief INPUt space. We show that DLVMs witliscretelatent vari-
practiced heuristic of “folding-in” can lead to overly optistic ables can be obtained by approximating the true posterior
estimates of the test-set log-likelihood and we verify trésult distribution by a simplistic variational substitute, néyna
experimentally. We trace this problem back to an infinitagative delta-peak at its MAP value. In this case, learning DLVMs

entropy term that is ignored in the variational approximati becomes an instance of variational EM. However, this
approach also reveals the pitfall for deterministimtinuous
1 Introduction latent variables: in the continuous case the entropy term of

Deterministic latent variable models (DLVM) such aJ'[she variational distribution becomesoc and ignoring it

K-means, PCA, NMF [10], PLSA [1] and EPCA [2] ar Violates the bounding property of the variational objeztiv

onular data-analvsis tools in the machine learnin anlaing this perspective, we show that the standard learning
pop y 9 aforithms for PLSA and EPCA optimize an objective

data-mining communities. The latent variables in the? . . . o
o unction that is numerically unrelated to the log-likeldtb
models become deterministic because they are set to their

MAP (maximum a posteriori) valués In the context of ora bound thereof.
PLSA, it has been observed in the literature (see e.g. [5]) Perhaps the most important conclusion is that the
that this seriously complicates its interpretation as eiadva}

o . ?Iding-in heuristic for continuous DLVMSs, as it is routilye
probabilistic model over the space of all allowable inpu X . .
used in the research community, can lead to hugely opti-

configurations. In fact, one could argue that the resultn%%StiC estimates of test-set perplexity. We argue thatehis

model assigns zero probability to all input configuratioqgct worsens in high dimensional spaces and in cases where
that are not in the training set. To enable PLSA to as- 9 b

sign non-zero probability to test-set data configurations. posterior is highly concentrated. This conclusion, how
9 P Y 9 evVer, isnot valid for discrete latent variables (where the en-

resgarchers proposeq the hgunsth of foldlng—.ln [1]. e-n‘iropy term is actually) or for mean field approaches (where
folding-in procedure first assigns the latent variableshef t o . : .
the entropy term is finite and taken into account), in fact in

test-datato their MAP values before computing the teSt's?I%ose cases we can show that folding-in will lead to pes-

p_erpIeX|ty. In_ [5], itis mentioned that this pro“cedure Vmu'simistic estimates of test-set perplexity (i.e. an uppeiriab).
give an unfair advantage to PLSA because “parameters Uit explanation is, therefore, intrinsically different tioe
fit on the test-data”. One of the conclusions of our analysis P . ' y

is that this characterization does not clarify the real fFob one offered in [5] because one also seemingly fits (varia-
tional) parameters on test-data for the cases above but here

Mey only pessimistically bias the result.
We thoroughly investigated these issues empirically by
omparing different models (different versions of PLSA,

We approach this issue through the variational-E
(VEM) framework [7]. This framework has the distinct

advantage of shifting the approximation from the model s L i
the learning and testing afgorithms Moreover, PLSA can . CA and LI.DA) .W'th different objective measures (perplex
ity using folding-in based on all and half of the words in the

now be seen to fall in line with a long tradition of similar : o
o X . test document, which we refer to as full folding-in and half
approximations underlying algorithms such as K-mea

S . . .
PCA, NMF, and sparse ICA. In the VEM framework, W'%oldlng-_m re_:spgcnvely) on various da_tasets. As preaﬂp_te
ull folding-in gives much lower (that is, better) perplexi
*Atthe time of submission M. Welling was on sabbatical at tlaeliBoud rgsults than.half. foIdlng_-ln. Mo_reover, th? perplexnyuhs
University Nijmegen, Netherlands, Dept. of Biophysics with full folding-in keep improving as we increase the num-
1For PLSA this fact was recently shown in [3, 4].



ber of topics, never showing any sign of overfitting (unlika variational maximization (VM) step whek@(0;|ca;—1) is

half folding-in where we can not “cheat” in any way). maximized ove,. In the following we will make a very
special choice of this variational distribution, namely,

2 Variational EM with Point Estimates

Letx be a collection of observable (visible) random variablé€-®) i, (hnlxn) = 6(hn —hy) = H 0(hjn = hjn)
and h be a collection of unobservable (hidden) random J
variabled. The joint probability distribution of a two-layer

directed model is defined as follows, where the variational parameters are given{hy, }. Note

that there is a separate parameter for every hidden variable
_ and for every data-case
@1) Po(x,b) = pu (x[h) p(h). If h takes discrete values then the entropy of the dis-
We have introduced parametérs= {v, v} which could be tribution in Equation 2.5 is zero. This, however, is not true
vector valued. Estimation of these parameters from the dégtacontinuous variables. In cases where the domaih of
can be done conveniently in the expectation maximizatithunbounded we can, for instance, define the delta func-
(EM) framework. It can be shown that the following objedion as the limit of an isotropic Gaussian distribution with
tive is a lower bound on the log-likelihood [6], decreasing variance. Since the entropy of a Gaussian dis-
tribution is given byD log(ov/2me), the entropy converges
to —oo aso — 0. Similarly, if h is continuous but nor-
(2.2) B(0i]01—1,X) = Q(0c|0r—1) + H(0r—1) = malized,)". h; = 1, we can model a delta-function as the
ZZW (%) 108 [Py, (30 [ )y ()] limit of a Dirichlet distributionD(ea) whene — oco. Us-
— - e ‘ v ing Sterling’s approximation one can then determine that th
" entropy converges te-co as% log e whene — oo where
=3 po,, (halxn) log [po, _, (hy|x,)] J is the number of latent variables (i.e. the dimension of
n h, h). From this we conclude that for continuous latent vari-
iglbles the MAP approximation leads to an infinitely negative
entropy contribution to the variational objective. Igmuayiit
nders the resulting objective numerically unrelatech t
og-likelihood. As we will show in the next sections, well
be ignored in the optimization process. Itis not hard to shéﬂK}O"Y” Iearn|r]g algorithms for EECA .[2] and PLSA. [1] can
that the following identity holds, _pre_C|ser_ be m_terpreted as maximizing _the v_ar|at|on_al ob-
(2.3) jective with variational point posteriors amghoring the in-

L(0;) = B(0:0:—1) + K L[ps,_, (h,|x5)||pe, (hy|x5)] finitely negative entropy contributiphe. maximizing

where X indicates the data-matrix. This bound
iteratively maximized over the parametets = {vs,v:},
keepingd;_ fixed. Since the last term, which is the entrop,
of the posterior at timeé — 1, does not depend af, it can

where KL is the Kullback-Leibler divergence. This equatiof?-6) O(6,1h) = " log {pu(xnﬁln)} +> log [pv(fln)}
confirms that the log-likelihood is larger than or equal to n n

the bound,£ > B and that the bound saturates Whefhe VEM algorithm then consists of a VE-step where we
Po, . (Bn[xn) = po, (hn[xn), 1.€. L(6:) = B(6:]6:). The maximize© over{h,} and a VM-step where we maximize
above analysis is easily repeated in a slightly more gen&tglvery = {1, v}.

setting where the posterior at tinte— 1 is replaced with In the following we will provide some examples of
an arbitrary variational distribution over the hidden whies 5gorithms that fall under this umbrella.

[71,

3 Examplesof Deterministic Latent Variable Models
(24) pe(hn|xn) - Q(y(hnlxn) . I . .

To appreciate the unifying principle of VEM, we derive
The parameters will be optimized in the variational esti-the following well known algorithms in the machine learn-
mation (VE) step in such a way that the bound is made ig literature as VEM approximations Qf other algorithms:
tight as possible. Note that this now also involves the ef=means, Pricipal Component Analysis (PCA), Indepen-
tropy term in Equation 2.2 because it explicitly depends gignt Component Analysis (ICA), Non-negative Maxtrix Fac-
¢o. Often, the family of distributiong,, does not contain torization (NMF), Probabilistic Latent Semantic Analysis
the actual posterior distribution, in which case the bound(PLSA) and Exponential family PCA (EPCA).

never tight. Given the updateg, distributions, we can do
3.1 K-Means We start with the mixture of Gaussians

ZIn the following we will use the words “latent”, “hidden” aridinob- (MOQ) model Where the <_jiscrete hidden variables t?ke val-
servable” interchangeably. ues inl,..., K with K being the total number of mixture



components, UsingX = \I, defining®’ = \O and taking the limit
A — 0, we find,
(37) pmog(xa h = k) = Nllqwzk (th = k)pﬂ'k (h = k)

If we use point posteriors of the form shown in Equatiof8.12) ©' = 1 Z [(xn _ Wﬁn)T(xn _ Wﬁn)}
2.5 then, since the latent variables are discrete, the gntro 24
contribution of the variational posterior is zer§, = 0.

; ; as our objective. The VE-step is obtained by maximiz-
Hence, we find the following VEMbound on the log-

ing this w.r.t. the variational variablg$ = {,,, } while the

likelihood, VM-step optimizes this bound w.r.t,
(3.13) W — (XH")Y(HHT)™!
B=22 i H(xn = )T (k= ) (3.14) H — (Wwh=(w'Xx)
1 whereX_ = {x;,} . This is precisely the SPCA algorithm
(3.8) ~3 log det X, + log (7) derived in [12].

Above we have taken the lim — 0 which has the
Alternating optimization over{fl } and {jp, Sp, e} effect of nullifying the prior. For independent component

nalysis, the prior is essential. In this case we should use
represents a generalized K-means algorithm where we hava
&Yfon- -Gaussian, factorized prior farwith high kurtosis,
the opportunity to fit full covariance matrices and mixture

. - p(h) = []; pj(h;). If we choose a Laplace prior we should
weights for each cluster. If we choosg = 1/K and simply replace thdg norm in Equation 3.11 with ad,;

Y. = ol with some fixed value fos, then the non-constant
terms in the bound are proportional to, norm. In trylng.to maxmyze this b.ound one quickly finds
out thatH = 0 is the optimal solution due to the fact that
a transformation of the forfV — WT andH — T—'H
B — 1 Z Z A )2} leaves the first term invariant but can be used to set the prior
b sk ol term onh to zero. This phenomenon is a direct consequence
of ignoring the entropy. The entropy term, if included,
which is, of course, the (negative) K-means objectiveould have induced a counteracting “force” that would have
VE and VM steps then indeed correspond to K-means. Thievented the collapse bf
shows that K-means is a VEM approximation of MoG. In this case we can however salvage the algorithm by
A related example is given by “Viterbi-HMM”. In this requiring that the columns df be normalized. This was
case, one alternates Viterbi decoding in the E-step with fheeed the approach taken in [11]. Their approximation
usual parameter updating in the M-step. This algorithm alsenslates to an even simpler VEM approximation, namely
maximizes a proper lower bound on the log-likelihood.  ¢(h) = §(h — h) independent of.. For ICA, the VE and
VM steps can not be solved analytically. However, one can
3.2 PCAandICA We start with the Factor analysis modetlternate gradient steps fér and H until convergence.
with normal variables both in the hidden and in the visible
layer. The visible variables are noisy versions of line&3 Non-negative Matrix Factorization Non-negative
combinations of fewer hidden factorg, = Wh + ¢ with matrix factorization (NMF) [10] is a method where a posi-
e an axis aligned Gaussian noise variable with diagoride matrix is factorized into two positive lower rank matri
covarianceX. h is also distributed according to a standarces. To derive it from VEM, we use a conditional Poisson
normal distribution, distribution for the observed variables and write the Rmiss
rate as a linear combination of hidden factors,

(3.9)

(3.10) p(xh) = Gw(xh) [[6(0))
’ 15) p(xih) = ] @# Z Wish]

i

. . . 3.
In this case the latent variables are continuous, henca-va%

tional point posteriors lead to an infinitely negative eptro _ _ _
contribution. Simply ignoring this term leads to the follow  Applying the point-VEM approximation and again ig-

ing objective, noring the infinitely negative entropy we derive the objec-
tive,
_ 1 S Tt - (3.16)
0=-3 Xn: [(xn Wh,) TS (x, — Why) A A
(3.11) +logdet X + ||hn||2L2} ; ; 7' XJ: 31



Since the Poisson rate is positive, the same must be ttueNote that since we have continuous latent variables we
for W H which is achieved by separately constraining botill ignore an infinitely negative entropy contribution inet

to be positive. We now bound the non-constant part of thgriational objective to arrive at the following objectjve
objectiveB < O + log(z;!), with

B=

N A oWk NN ) 321 O=> minlog [ > Wihjn
Z < in <; Qin(j) log(Wijhin) +S(an)> ;Wmh]n> i ; I

,n

where plus two Lagrange multiplier terms to enforce
W, fAL 21 Wij =1 andzj hjn = 1.. .
(3.17) Qin(j) = ——L92 Analogous to the derivation for NMF, we can now
> Wijrhijrm bound® with B < ©, and

3.22
and S(Q) is its entropy. In [10], the authors add thé )

constrainty _, W;; = 1 to reduce the degeneracy associated g — §~ ;. Qin (i) log(Wiihin) + S(Qirn
with W — WT andH — T~ 'H. Adding the appropriate ; ZJ: () oa(Wishjn) (Qin)

Lagrange multipliers we find the following EM updates

which are equal to the NMF update rules of [10], where S(Q) is the entropy ofQ. Again, we should also
include the Lagrange multiplier terms which we left out
1 X Hin for convenience. This bound is valid for any variational
(3.18) Wij TWU Z [WH]J, distribution Q, but the expression that maximizes (in fact
! n " saturates) the bound is given by,
(319)  Hy — H, Y oml
n n - [WH]zn Wij}ALjn

(3.23) Qin(j) = =————F—
wherev; is a constant to normalizé’;; overs. 2y Wigthjm

The authors actually relax the constraint on the discrete-
ness ofx by noting that the objectiv8 still makes sense in

this more general setting.

This can be viewed as the E-step of an EM algorithm.
The M-step is then given by fixin@ and maximizing over
W,h. Combining E and M steps, we find the following

3.4 Probabilistic Latent Semantic Analysis The insight update equations that are guaranteed to impéve
that PLSA can be viewed as a MAP estimate of LDA was
published in [4], while very similar remarks on the relation 1
between LDA and PLSA were also noted in [3]. Here, wd-24) Wij — 7Wij Z
will re-derive those results in the variational EM framewor ! n
and show the strjking similarity to NMF. N H, — iHjn Z XinWij
Let us consider an LDA model ([5]). The conditional ' An — [WH]in
probability in this case is a multinomial distribution wnil
the prior on the factors is given by a Dirichlet distributjon which are identical to NMF except for an extra normal-
ization of H. Retaining Dirichlet priors in the derivation for
z; both W and H would translate into constant off-sets in the
B update equation 3.24.
(3200 p(x,h) = H ZWijhj Dae] To connect this to the PLSA updates derived in [1]
toNA we note that this model contains three factonsw|z),
whereV;; is the probability of word; for topic j. z; P(dl2) andp(z). We can absorlp(z) into p(d|z) and re-
is the count of the number of times woids sampled and Parameterize ag(z|d) o« p(d|2)p(z). The factorp(d) that
h; is the prior probability that topig is used. To make aemains in this parametrization is chosen constant (each do
connection to PLSA we use the variational approximatisfnént has the same weight). If we make the identification

with point posteriors and choose a constant priar,= Vij < P(w|2) andHj,, < p(z|d), then the model and the
learning updates become identical to those in [1]. In figures
3Note that this EM algorithm does not refer to the same variati EM 1,2 a”‘?' 3 we have Ve”ﬂ_ed that the .Stand_ard PLSA |mple-
argument to derive the objecti®. So, one could say that this an EMMeNtation of [1] indeed gives almost identical results ® th

algorithm within a VEM algorithm. updates derived above.

XinHjn
(WH];n




Cranfield 3.5 Exponential Family PCA (EPCA) A general class of

700 PCA algorithms is given by exponential family PCA (EPCA)

IE@Q;CQ& [2]. To derive this class of algorithms from VEM, we
60 —<4—PLSA-TEM|| start with a conditional distributiop(x|h) parameterized in

the canonical representation, i.éog p(x/h) = x70 + c.
The canonical parametes are in turn written as linear
combinations of hidden variable®; = Zj Wi;h;. lgnoring
the prior term we have the following model,
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(3.25)  p(x,h) =exp[>_x;Wi;h; — F(Wh)]
]
5 o o ~ oo 1000 .Whe.reE is t_he log-partition functipn for the exponential
Number of topics family distribution under consideration. By applying the
point-VEM approximation (ignoring the infinitely negative
Figure 1: Comparison of test set perplexity of PLSA-HOENtropy) we derive the following objective,
PLSA-VEM and PLSA-TEM on the Cranfield dataset
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Medline (326) 0= Z Z IinWijiLjn — F, (WH)
‘ ‘ in Jj

—e— PLSA-HOF
—e— PLSA-VEM . -
200 —<—PLSA-TEMI] which should be optimized ové?” = {W;,;} andH =

{ﬁjn}. The two-phase algorithm proposed in [2] precisely
corresponds to the VE-step and VM-steps. Here, we will

250

2 1500 ) . )
3 1509 simply follow gradients alternatingly folW and H. The
= gradients ofD are given by,
o 1000
00
I 3.27 — =XH" - FF(WH)H"
500 (3.27) FTiG (WH)
‘ ‘ ‘ ‘ 90 _yry WTF (WH)
0 OH
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whereF” is the gradient off. We note that the VEM

) ] ) algorithm for PCA in section 3.2 is a special case of EPCA
Figure 2: Comparison of test set perplexity of PLSA-HOGheareF is quadratic and hende' is linear.

PLSA-VEM and PLSA-TEM on the Medline dataset In the experiments we will compare EPCA and PLSA

on text. For this purpose represents a word from a finite
vocabulary and is given as an indicator variable consigifng
[ —e— PLSA-HOF zeros and a singleat the vocabulary index for that word. In

320 —&—PLSA-VEM | this case we find that,
—4— PLSA-TEM

NIPS
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(328)  F,=log) exp|Y Wishjn
i J
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Another example for which the above derivation could
be helpful is in formulating a simple learning algorithm for
the “multiple multiplicative factor model” proposed in [[L3
220 ] but we do not pursue this any further here.
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0 200 400 600 800 1000 4 Pitfalls For Deterministic Latent Variable Models
Number of topics . . L
In the previous section, we gave examples of Deterministic

Figure 3: Comparison of test set perplexity of PLSA-HO atent Variable models that are derived as VEM approxima-

ions of other models. We will now discuss two perspec-
PLSA-VEM and PLSA-TEM on the NIPS dataset tives that will prove the central thesis of this paper, ngmel



that estimates of the test-data log-likelihood (or eq@mdly For high dimensional spaces these values can be extremely
test-data perplexity) based on “folding-in” can be huggly olarge, particularly for cases where the posterior is concen
timistic for continuous latent variables, especially igihdi- trated. In such cases we can thus conclude Baatan in

mensions. fact be much larger than the true log-likelihood resulting i
unfounded optimism.
4.1 Estimating Test-Set Log-Likelihood Assume we These observations are in particular true for the popular

wish to approximate the log-likelihood of the original probPLSA model [1] for whichh = p(z|d). This fact is not
abilistic modelp(x) = >, p(x, h). Analogous to the vari- much appreciated by the research community and has led
ational bound on training data we can also lower bound tb@me researchers to compute test-set perplexity in thegvron

log-likelihood of atestdata casg using, way probably leading to overly optimistic estimates. Other
(4.29) than the original PLSA paper [1] where folding-in was first
introduced, a number of publications can be found in the
By = max > q(h)logp(y, h) + S(q)| < logp(y) literature that use folding-in to compute test-set peripfex
h

(e.g. some recent publications like [15] and [16] follow the

whereS(q) is the entropy of;(h). Note that we compute folding-in procedure to compute test-set perplexity). .

by maximizingl3; for the test-data case under consideration !t Should be noted that [8] discusses some inconsisten-

which is what we will also call “folding-in”. cies in the PLSA framework (namely, that PLSA as de-
This equation tells us that mean-field/variational boungsibed in [1] assumes zero probability for test documents)

based on folding-in will provide pessimisti@stimate of the Put the solution offered is again based on folding-in and it

true log-likelihood of the modet. Moreover, the closey is therefore suffers from the same problem as described above.

in KL-divergence to the true posterior, the smaller the erro )
Note that we separate model evaluation and model learnifig, An Energy-Based Model The approach until now has
sop could have been obtained using any method other tH¥#" to assume that we are interested in the modeh),

VEM, although this approximation is particularly convertie but that we need a variational approximation of the posterio
in the context of VEM. p(h|x) to make learning and prediction tractable. In this

If we restrict the family of variational distributionsto  S€ction, we will take a slightly different perspective. teed
point-posteriors , i.e. to be of the form shown in Equatid® changing the algorithm, we will change the model so that
2.5, then in the case of discrete latent variables the eptrdgnatches well with the folding-in procedure.
is zero. Therefore, the following expression also contgtitu W first notice that folding-in can be defined as the
a proper lower bound in this case, following optimization for a data-case

(4.32) fly) = maxp(y, h)

Note that this is donéor every data-case separate®uring
whereh is now obtained by maximizintpe p(y, ﬁ) overh. learning we wish to adjust parameters such that this goednes

We will also call this a form of proper folding-in in the sensgum:t'on f(x) is large for every data-case. However, as we

that although we “fit” something on test-data it still proegl will _ShOW n an example n the_ next section, th's can be
apessimistiestimate of the test-log-likelihood achieved without learning anything. We need to first define a

Finally, let us look at what happens whénis con- proper probability distribution over the entire input spand

tinuous. As argued in the previous section, for this Ca%aximize it; Iog-IikeIihopd._ Thisis ach.ieved by normaigi
the entropy is no longer positive, and in fact converges ¢ expressiorf (x) over its input domain,

S — —oo. Hence, ignoring it will no longer guarantee th 4.33) (x) = maxp, p(x, h)

bound. In fact, it is not hard to show that the objective " g\x) = S maxp, p(x', h)

Equation 4.30 can be much larger than the test data log like-

. s . i i i — i
linood and hence can lestimistic To see that let us rewrite!f We rewrite this in the formg = e~~/Z, the negative
Equation 4.30 as, energy is exactly given by the expression shown in Equation

4.30. This type of a model is called an “energy-based model”
and has been studied in [9].

The normalization constatf = > _maxy p(x,h) is
unfortunately intractable for all but the simplest of madel
For discrete latent variables we hawh|y) < 1 and hence For instance, for documents, we would have to sum over all
the logarithm is negative which confirms the claim tifat possible valid documents. We also note that the “foldirig-in
is a lower bound ofog p(y) in this case. However, whenheuristic is precisely equivalent ignoring the normaliza-
p(hly) is adensityit is highly likely thatmaxg, p(hly) > 1. tion constant in the log-likelihood for the modegfx). We

(4.30) By = mlelx [logp(y, ﬁ)} <logp(y)

(4.31) By = log p(y) + {ml::lx logp(flly)]



can now ask the central question: What will the effect df4 Implications For Learning The observations in this
ignoring the normalization term be on the test-set log likekection also have implications for learning. The standard

hood of the modified modei(x)? learning algorithms for EPCA and PLSA maximize the
To study that, first rewrite, approximate objective function for modelhat ignores the
entropy term, i.e. Equation 2.6. We have seen above that this
(4.34) log Z = logz [maxp(h|x)} p(x) is equivalent to minimizing the energy function for another
x h modelg while ignoring its normalization constant. Learning

based on folding-in assumes and benefits from the fact that
the “quality” of a model is evaluated using the folding-in

(since>". p(x) — 1) and therefore we haveg Z < 0. In recipe, both during training and during testing. Therefore

other words, by reporting Equation 4.30 we report a |0W'gris possible to misinterpret these _results and t_hi_nk that
bound on the test log-likelihood of the modgl However, we _have learned a great _model (smce_ both _tra|n|ng and
for continuous latent variables(x) can take arbitrary Iargetes'{'nfJ are ((jjone }st'kr:g folding-in) él:vhen_olln rtehall'iy what wel

values resulting in test log-likelihood estimates whicl‘lymg'a“/e earned could be very poor. Lonsider the toy examp'e

be highly optimistic. Again, this behavior is much more pr&bove: every data—pqint s assign(_ad t.he maXimal pos;ible
vdéllue of 1, so according to the objective there is nothing

nounced for concentrated distributions in high dimenéior' X | H fter includi h lizati
spaces. Therefore, even in this interpretation the coinglug €'t f0 1earn. However, after including the normalization

remains unchanged: for continuous latent variables, rigldi constant for modej we find that every data-point really has

in to compute an estimate of test set log-likelihood may rgprobability ofl/V (uniform) which means that the model_
sult in values that are highly optimistic has not learned anything whatsoever. The same conclusion

was reached by computing the correct test log-likelihoad fo
Amodelp.

The fact that learning algorithms for PLSA and EPCA
still seem to produce reasonable results in many cases may
be explained by two factors. 1) The toy example above

(4.35) p(x,h) = p(x|h) p(h) = ij (x) h; | Dn(l) was designed to exaggerate the effect. With fewer data-
J dependent adjustable parameters the influence of the nor-
malization constant is less pronounced and the effect may
be more subtle. This leads to the prediction that the effect i
rlstronger for PLSA models with many topics (and indeed this

. - ; is what we observe in our experiments in the next section).
weightsh; (S|m.|lar top(z|d) in P.ITSA). an.d W.he"{:j hy = 2) If one trains a model to optimize the wrong objective and
1. Also, p;(z) is some probability distribution for compo-

A . .~ evaluates the model using the same wrong objective the re-
nent;j (similar top(w|z) for PLSA). In this example we will g g o)

. sults may look very good whereas in reality they might be
assume that = 1, .., V and that there are exactly mixture y y9 y they mig

components such that(x) = d,;, i.e. a delta-peak at one’ oY PO

of the .possuble values. o 5 Experiments
It is not hard to compute the true log-likelihood of this
model for any data-case. For that we compute,

For discrete latent variables, we can show thék) =
maxy, p(h|x) < 1 which implies that) " a(x)p(x) < 1

4.3 An Example Let us look at a very simple PLS
example given by,

whereDy, (1) is a Dirichlet distribution with prior strengths
equal tol. In this example the conditional distributio
p(x/h) is a mixture model withdata-dependenimixture

Dataset | D_train | D_test| Vocab | Avg doc
(4.36) logp(y) = log/dh p(y,h) =log1/V size | length
Cranfield| 979 419 | 3763 84.3
If we instead compute the folding-in expression in Equation | Medline 724 309 | 7014 79.6
4.30 we observe that we can shift all the weight } to the NIPS 150 50 | 10780| 1381.1
componentwhich has the delta-peak located at the data-case
hj. = 1, hj = 0,j # j* with j* = y. This results in Table 1: General characteristics of datasets used in experi
an expressioitbg p(y) = log 1 which confirms that it over- ments.
estimates the true log-likelihood.
In the other view, we should include a normalizationfac- We report results on 3 datasets: Cranfield, Medline and
tor (Eqn.4.34) which equalsg Z = log 1/V and confirms NIPS. Details of these datasets are shown in table 1.
again that we would report overly optimistic results usime t We trained LDA, EPCA and PLSA models on all three
folding-in heuristic. datasets. We computed perplexity in two different ways:
Note that neither the true log-likelihood phor the nor- (i) folding-in using the full test documents (simlar to [1])
malization factor ofy are tractable for real world problems. (full folding-in); and (ii) folding-in using 50% of words of
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a test document, and computing perplexity on the remainiaigy advantage of “tempering”. A similar result was also
words (half folding-in). We argue that the half folding-ifound in [8]. As the performance is similar for all three
approach used in our experiments to measure perplexity ieasion of PLSA, in the subsequent experimental results we
fair measure because unlike the full folding-in approalet, tonly show the results for PLSA-HOF.
half folding-in approach does not see the part of the data on To avoid overfitting both PLSA and EPCA were regu-
which we measure the test likelihood. It, therefore, canratized by adding a constantto p(w|z) and renormalized.
overfit on the test data and lead to incorrect and optimistée trieda = [1E-10, 1E-9, ..., 1E-1] and show results for all
perplexity values. values in the PLSA plots and best values when comparing
Perplexity for PLSA is computed by first folding-in:.with other models.
computingf}jn (or p(z|d)) by iterating only the E-step of We now compare the perplexity results of PLSA-HOF
EM. After that we compute the log-probability of the testising full folding-in and half folding-in for a range of
data and transform it to perplexity as follows: regularization parameters, Figures 4, 5, and 6 show the
perplexity results using full folding-in and half folding-for
Cranfield, Medline and NIPS respectively. For the smaller
datasets (Cranfield and Medline), it can be seen that the
>_aNa perplexity values are significantly higher for half foldiry
compared to full folding-in. Additionally, it can also beese

A similar procedl_Jre was followed for EPCA. : that in both these datasets perplexity results for halfifigid
For LDA we implemented the collapsed Gibbs sampler . S
re very sensitive to the regularization parameter,

described in [14]. Test-set perplexity was computed By 'S, R . .
averaging ove[ﬂo]independenFGi%bs syamplers :fter th y Since full folding-in is given more information to base
) ﬁg predictive probabilities on, we expect full folding-in

Markov chains converged on the training set we fixed t E duce somewhat better perolexity than half folding-in
assignments to the last iteration on the training data uce W perplexity ; Ng-in.
in itself does therefore not prove the claim that full

: : I

sampled the assignments on the test data unti converge%gf(ﬁng_m is overly optimistic. Observe however that for
this is analogous to folding-in). For the last sample on t S . C o .

( g g-in) P ?&II folding-in perplexity always improves with increagin

training set we then compute, number of topics, irrespective of the regularization value
. N, + applied. In fact, in some of our experiments we increased the
(5.38) wk = Ne V3 number of topics]’, to a value greater than the vocabulary
size and the perplexity value still kept decreasing. Hence,
whereNg, = >, Iz = wllz]; = k], Ny = >, N, we see no sign of overfitting with full folding-in. This

(5.37) Perplexity=exp |—

Zi,d 10g Zk Wz‘ie;t,kad]

andV is the vocabulary size. Using the last sample from the not, however, true for half folding-in where for small
Gibbs sampling chain on the test-set we compute, regularization parameters one can clearly observe ovegfitt
as the model complexity grows. These results support
(5.39) 05, = our claim about the overly optimistic perplexity estimates
Nj+ Ka of full folding-in, especially for largel’. These effects

whereNs, — 3. 1[z%, — k] andK is the number of topics. are alleviated in NIPS as NIPS documents are significantly

i ! nger (by more than a factor of 10, see Table 1) and hence
These are then used to compute the test-set perplexityeInth 7~ % S .

T . . Jolding-in on 50% of words (half folding-in case) gives a
case of half folding-in the topic assignments for only 506%

I
0 . . . . .
of the words of the test data were sampled and perplexity IStteresUmate aff resulting in a relatively lower perplexity.

. _Additionally, we compare LDA with the best perplexity
measured on the rest of the words of the test documents (this _, . , . .
is analogous to half folding-in of PLSA described earlier).t estis defined as the curve with the lowest perplexity yalue

We experimented with three different versions of PLSAeSUItS for PLSA and EPCA using both full folding-in and

1) PLSA-HOF: the standard approach described in [1]; zglffoldmg—m approaches. We show EPCA results only until

PLSA-VEM using Equation 3.25 as described in Section 3nu(r)nteor?(;§ii2t§bpiﬁ:tggvas extremely slow to run and prone to
and 3) PLSA-TEM: “tempered EM” as described in [1] but i
searching for the annealing parametér,between[0.5, 1]

in increments 0f0.02 on the test set directly (hence, thi
represents an upper bound on performance). We compg

perplexity of PLSA-HOF, PLSA-VEM and PLSA-TEM on

Np, +a

Figures 7, 8, and 9 show the results of these experiments
for Cranfield, Medline and NIPS respectively. It can be noted
é':lé the perplexity results of LDA are generally better than
hose of the best perplexity results of PLSA and EPCA, more

so for the half folding-in case. The perplexity results of

Cranfield, Medline and NIPS datasets for both full foldinqsLSA and EPCA are similar to each other but we found that
in and half folding-in. From Figures 1, 2 and 3, it can bﬁLSA is easier to train than EPCA

observed that all three approaches give similar results on
Cranfield, Medline and NIPS. Unlike in [1], we did not find



6 Discussion

[1] Thomas Hofmann. Probabilistic latent semantic analysi

In this paper we discuss a class of deterministic latent vari
able models and their learning algorithms under a unifyin
framework. We classify these models into two categorie
based on the type of latent variables used, namely, (i)eliscr
variables (e.g. K-means and Viterbi on HMM) or (ii) contin-

In Proc. of Uncertainty in Artificial Intelligence, UAI'99
Stockholm, 1999.

M. Collins, S. Dasgupta, and R. E. Schapire. A genertibra

of principal components analysis to the exponential family
In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors,
Neural Information Processing Systems W4T Press, 2002.

uous variables (e.g. NMF, PLSA, PCA, ICA and EPCA).[3] Wray Buntine. Variational Extensions to EM and Multino-

Hence NMF, PLSA, PCA, ICA and EPCA fall under the
same umbrella within this framework and are different only
in the way they mix the latent variables: NMF and PLSA[4]
mix latent variables in the probability domain while EPCA,
PCA and ICA mix latent variables in the log-probability do- 5]
main. In our experiments, we found that EPCA and PLSA
produce models with similar performance and that learnin
for EPCA is relatively difficult. We also found that LDA

produced better models than PLSA or EPCA.

Our main contribution, however, is the observation thaz
the standard learning algorithms for the category (i) Miede

mial PCA Volume 2430 of_ecture Notes in Computer Sci-
ence Helsinki, Finland, 2002. Springer.

M. Girolami and A. Kaban. On an equivalence between PLSI
and LDA. InProceedings of SIGIR 2002003.

D. M. Blei, A. Y. Ng, and M. |. Jordan. Latent Dirichlet
allocation. Journal of Machine Learning ResearcB:993—
1022, 2003.

RS] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood

from incomplete data via the EM algorithmlournal of the
Royal Statistical Societ$, 39:1-38, 1977.

R.M. Neal and G.E. Hinton. A view of the EM algorithm that
justifies incremental, sparse and other variants. 1999.

optimize a questionable objective. To derive the objectivgg] T. Brants. Test data likelihood for plsa modeltnf. Retr,

from the variational objective one has to dismiss an entropy
term with a value of-oco which renders the resulting objec- [9]
tive numerically unrelated (and certainly not a bound) ® th
log-probability. While these models, in general, can learn
reasonable parameters in training, the test data probtyabili
using folding-in can be highly optimistic, especially wheft0l
there are a large number of latent variables. Models with
discrete latent variables do not suffer from these issues[fﬁ

their entropy contribution i8 in the MAP approximation.

One can try to fix this problem, in theory, by switch-
ing to a mean field approach which incorporates an apprxz]
imation to the dismissed entropy, or by changing the model
and incorporating a normalization factor. The latter appto
naturally leads to the view of an “energy-based” model. W&3]
note, however, that computing the normalization factor is

usually intractable.

We have also experimentally verified that computi
test-set perplexity using the “folding-in” recipe can éasi

lead to overly optimistic results.
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