
Deterministic Latent Variable Models and their Pitfalls

Max Welling∗ Chaitanya Chemudugunta Nathan Sutter
Bren School of Information and Computer Science

University of California, Irvine
{welling,chandra,nsutter}@ics.uci.edu

Abstract

We derive a number of well known deterministic latent variable
models such as PCA, ICA, EPCA, NMF and PLSA as variational
EM approximations with point posteriors. We show that the often
practiced heuristic of “folding-in” can lead to overly optimistic
estimates of the test-set log-likelihood and we verify thisresult
experimentally. We trace this problem back to an infinitely negative
entropy term that is ignored in the variational approximation.

1 Introduction

Deterministic latent variable models (DLVM) such as
K-means, PCA, NMF [10], PLSA [1] and EPCA [2] are
popular data-analysis tools in the machine learning and
data-mining communities. The latent variables in these
models become deterministic because they are set to their
MAP (maximum a posteriori) values1. In the context of
PLSA, it has been observed in the literature (see e.g. [5])
that this seriously complicates its interpretation as a valid
probabilistic model over the space of all allowable input
configurations. In fact, one could argue that the resulting
model assigns zero probability to all input configurations
that are not in the training set. To enable PLSA to as-
sign non-zero probability to test-set data configurations,
researchers proposed the heuristic of “folding-in”[1]. The
folding-in procedure first assigns the latent variables of the
test-datato their MAP values before computing the test-set
perplexity. In [5], it is mentioned that this procedure would
give an unfair advantage to PLSA because “parameters are
fit on the test-data”. One of the conclusions of our analysis
is that this characterization does not clarify the real problem.

We approach this issue through the variational-EM
(VEM) framework [7]. This framework has the distinct
advantage of shifting the approximation from the model to
the learning and testing ofalgorithms. Moreover, PLSA can
now be seen to fall in line with a long tradition of similar
approximations underlying algorithms such as K-means,
PCA, NMF, and sparse ICA. In the VEM framework, we

∗At the time of submission M. Welling was on sabbatical at the Radboud
University Nijmegen, Netherlands, Dept. of Biophysics

1For PLSA this fact was recently shown in [3, 4].

bound the training (or testing) log-likelihood by approxi-
mating the posterior distribution of the latent variables by a
parameterized family of tractable distributions over the same
input space. We show that DLVMs withdiscretelatent vari-
ables can be obtained by approximating the true posterior
distribution by a simplistic variational substitute, namely a
delta-peak at its MAP value. In this case, learning DLVMs
becomes an instance of variational EM. However, this
approach also reveals the pitfall for deterministiccontinuous
latent variables: in the continuous case the entropy term of
the variational distribution becomes−∞ and ignoring it
violates the bounding property of the variational objective.
Using this perspective, we show that the standard learning
algorithms for PLSA and EPCA optimize an objective
function that is numerically unrelated to the log-likelihood
or a bound thereof.

Perhaps the most important conclusion is that the
folding-in heuristic for continuous DLVMs, as it is routinely
used in the research community, can lead to hugely opti-
mistic estimates of test-set perplexity. We argue that thisef-
fect worsens in high dimensional spaces and in cases where
the posterior is highly concentrated. This conclusion, how-
ever, isnot valid for discrete latent variables (where the en-
tropy term is actually0) or for mean field approaches (where
the entropy term is finite and taken into account), in fact in
those cases we can show that folding-in will lead to pes-
simistic estimates of test-set perplexity (i.e. an upper bound).
Our explanation is, therefore, intrinsically different tothe
one offered in [5] because one also seemingly fits (varia-
tional) parameters on test-data for the cases above but here
they only pessimistically bias the result.

We thoroughly investigated these issues empirically by
comparing different models (different versions of PLSA,
EPCA and LDA) with different objective measures (perplex-
ity using folding-in based on all and half of the words in the
test document, which we refer to as full folding-in and half
folding-in respectively) on various datasets. As predicted,
full folding-in gives much lower (that is, better) perplexity
results than half folding-in. Moreover, the perplexity results
with full folding-in keep improving as we increase the num-



ber of topics, never showing any sign of overfitting (unlike
half folding-in where we can not “cheat” in any way).

2 Variational EM with Point Estimates

Letx be a collection of observable (visible) random variables
and h be a collection of unobservable (hidden) random
variables2. The joint probability distribution of a two-layer
directed model is defined as follows,

(2.1) pθ(x,h) = pν(x|h) pγ(h).

We have introduced parametersθ = {ν, γ} which could be
vector valued. Estimation of these parameters from the data
can be done conveniently in the expectation maximization
(EM) framework. It can be shown that the following objec-
tive is a lower bound on the log-likelihood [6],

B(θt|θt−1, X) = Q(θt|θt−1) +H(θt−1) =(2.2)
∑

n

∑

hn

pθt−1
(hn|xn) log [pνt

(xn|hn)pγt
(hn)]

−
∑

n

∑

hn

pθt−1
(hn|xn) log

[

pθt−1
(hn|xn)

]

where X indicates the data-matrix. This bound is
iteratively maximized over the parametersθt = {νt, γt},
keepingθt−1 fixed. Since the last term, which is the entropy
of the posterior at timet − 1, does not depend onθt, it can
be ignored in the optimization process. It is not hard to show
that the following identity holds,
(2.3)
L(θt) = B(θt|θt−1) + KL[pθt−1

(hn|xn)||pθt
(hn|xn)]

where KL is the Kullback-Leibler divergence. This equation
confirms that the log-likelihood is larger than or equal to
the bound,L ≥ B and that the bound saturates when
pθt−1

(hn|xn) = pθt
(hn|xn), i.e. L(θt) = B(θt|θt). The

above analysis is easily repeated in a slightly more general
setting where the posterior at timet − 1 is replaced with
an arbitrary variational distribution over the hidden variables
[7],

(2.4) pθ(hn|xn)→ qα(hn|xn)

The parametersα will be optimized in the variational esti-
mation (VE) step in such a way that the bound is made as
tight as possible. Note that this now also involves the en-
tropy term in Equation 2.2 because it explicitly depends on
qα. Often, the family of distributionsqα does not contain
the actual posterior distribution, in which case the bound is
never tight. Given the updatedqα distributions, we can do

2In the following we will use the words “latent”, “hidden” and“unob-
servable” interchangeably.

a variational maximization (VM) step whereQ(θt|αt−1) is
maximized overθt. In the following we will make a very
special choice of this variational distribution, namely,

(2.5) q
ĥn

(hn|xn) = δ(hn − ĥn) =
∏

j

δ(hjn − ĥjn)

where the variational parameters are given by{ĥin}. Note
that there is a separate parameter for every hidden variable
and for every data-case.

If h takes discrete values then the entropy of the dis-
tribution in Equation 2.5 is zero. This, however, is not true
for continuous variables. In cases where the domain ofh

is unbounded we can, for instance, define the delta func-
tion as the limit of an isotropic Gaussian distribution with
decreasing variance. Since the entropy of a Gaussian dis-
tribution is given byD log(σ

√
2πe), the entropy converges

to −∞ as σ → 0. Similarly, if h is continuous but nor-
malized,

∑

j hj = 1, we can model a delta-function as the
limit of a Dirichlet distributionD(εα) whenε → ∞. Us-
ing Sterling’s approximation one can then determine that the
entropy converges to−∞ as 1−J

2
log ε whenε → ∞ where

J is the number of latent variables (i.e. the dimension of
h). From this we conclude that for continuous latent vari-
ables the MAP approximation leads to an infinitely negative
entropy contribution to the variational objective. Ignoring it
renders the resulting objective numerically unrelated to the
log-likelihood. As we will show in the next sections, well
known learning algorithms for EPCA [2] and PLSA [1] can
precisely be interpreted as maximizing the variational ob-
jective with variational point posteriors andignoring the in-
finitely negative entropy contribution, i.e. maximizing

(2.6) O(θ, ĥ) =
∑

n

log
[

pν(xn|ĥn)
]

+
∑

n

log
[

pγ(ĥn)
]

The VEM algorithm then consists of a VE-step where we
maximizeO over{ĥn} and a VM-step where we maximize
it overθ = {ν, γ}.

In the following we will provide some examples of
algorithms that fall under this umbrella.

3 Examples of Deterministic Latent Variable Models

To appreciate the unifying principle of VEM, we derive
the following well known algorithms in the machine learn-
ing literature as VEM approximations of other algorithms:
K-means, Pricipal Component Analysis (PCA), Indepen-
dent Component Analysis (ICA), Non-negative Maxtrix Fac-
torization (NMF), Probabilistic Latent Semantic Analysis
(PLSA) and Exponential family PCA (EPCA).

3.1 K-Means We start with the mixture of Gaussians
(MoG) model where the discrete hidden variables take val-
ues in1, ..., K with K being the total number of mixture



components,

(3.7) pmog(x, h = k) = Nµ
k
,Σk

(x|h = k)pπk
(h = k)

If we use point posteriors of the form shown in Equation
2.5 then, since the latent variables are discrete, the entropy
contribution of the variational posterior is zero,S = 0.
Hence, we find the following VEMbound on the log-
likelihood,

B =
∑

n

∑

k

δ
ĥn,k

[

−1

2
(xn − µk)T Σ−1

k (xn − µk)

−1

2
log detΣk + log (πk)

]

(3.8)

Alternating optimization over{ĥn} and {µk, Σk, πk}
represents a generalized K-means algorithm where we have
the opportunity to fit full covariance matrices and mixture
weights for each cluster. If we chooseπk = 1/K and
Σk = σI with some fixed value forσ, then the non-constant
terms in the bound are proportional to,

(3.9) B′ = −1

2

∑

n

∑

k

δ
ĥn,k

[

(xn − µk)2
]

which is, of course, the (negative) K-means objective.
VE and VM steps then indeed correspond to K-means. This
shows that K-means is a VEM approximation of MoG.

A related example is given by “Viterbi-HMM”. In this
case, one alternates Viterbi decoding in the E-step with the
usual parameter updating in the M-step. This algorithm also
maximizes a proper lower bound on the log-likelihood.

3.2 PCA and ICA We start with the Factor analysis model
with normal variables both in the hidden and in the visible
layer. The visible variables are noisy versions of linear
combinations of fewer hidden factors,x = Wh + ε with
ε an axis aligned Gaussian noise variable with diagonal
covarianceΣ. h is also distributed according to a standard
normal distribution,

(3.10) p(x,h) = GW,Σ(x|h)
∏

j

G(hj)

In this case the latent variables are continuous, hence varia-
tional point posteriors lead to an infinitely negative entropy
contribution. Simply ignoring this term leads to the follow-
ing objective,

O = −1

2

∑

n

[

(xn −W ĥn)T Σ−1(xn −W ĥn)

+ log detΣ + ||ĥn||2L2

]

(3.11)

UsingΣ = λI, definingO′ = λO and taking the limit
λ→ 0, we find,

(3.12) O′ = −1

2

∑

n

[

(xn −W ĥn)T (xn −W ĥn)
]

as our objective. The VE-step is obtained by maximiz-
ing this w.r.t. the variational variablesH = {ĥjn} while the
VM-step optimizes this bound w.r.t.W ,

W ← (XHT )(HHT )−1(3.13)

H ← (WWT )−1(WT X)(3.14)

whereX = {xin} . This is precisely the SPCA algorithm
derived in [12].

Above we have taken the limitλ → 0 which has the
effect of nullifying the prior. For independent component
analysis, the prior is essential. In this case we should use
a non-Gaussian, factorized prior forh with high kurtosis,
p(h) =

∏

j pj(hj). If we choose a Laplace prior we should
simply replace theL2 norm in Equation 3.11 with anL1

norm. In trying to maximize this bound one quickly finds
out thatH = 0 is the optimal solution due to the fact that
a transformation of the formW → WT andH → T−1H
leaves the first term invariant but can be used to set the prior
term onĥ to zero. This phenomenon is a direct consequence
of ignoring the entropy. The entropy term, if included,
would have induced a counteracting “force” that would have
prevented the collapse of̂h.

In this case we can however salvage the algorithm by
requiring that the columns ofW be normalized. This was
indeed the approach taken in [11]. Their approximation
translates to an even simpler VEM approximation, namely
q(h) = δ(h − ĥ) independent ofn. For ICA, the VE and
VM steps can not be solved analytically. However, one can
alternate gradient steps forW andH until convergence.

3.3 Non-negative Matrix Factorization Non-negative
matrix factorization (NMF) [10] is a method where a posi-
tive matrix is factorized into two positive lower rank matri-
ces. To derive it from VEM, we use a conditional Poisson
distribution for the observed variables and write the Poisson
rate as a linear combination of hidden factors,

(3.15) p(x|h) =
∏

i

(
∑

j Wijhj)
xi

xi!
exp[−

∑

j

Wijhj ]

Applying the point-VEM approximation and again ig-
noring the infinitely negative entropy we derive the objec-
tive,
(3.16)

O =
∑

i,n



xin log[
∑

j

Wij ĥjn]−
∑

j

Wij ĥjn − log(xin!)







Since the Poisson rate is positive, the same must be true
for WH which is achieved by separately constraining both
to be positive. We now bound the non-constant part of the
objectiveB ≤ O + log(xi!), with

B =

X

i,n

 

xin

 

X

j

Qin(j) log(Wijĥjn) + S(Qin)

!

−

X

j

Wijĥjn

!

where

(3.17) Qin(j) =
Wij ĥjn

∑

j′ Wij′ ĥj′n

and S(Q) is its entropy. In [10], the authors add the
constraint

∑

i Wij = 1 to reduce the degeneracy associated
with W → WT andH → T−1H . Adding the appropriate
Lagrange multipliers we find the following EM updates3,
which are equal to the NMF update rules of [10],

Wij ← 1

γj

Wij

∑

n

XinHjn

[WH ]in
(3.18)

Hjn ← Hjn

∑

i

XinWij

[WH ]in
(3.19)

whereγj is a constant to normalizeWij overi.
The authors actually relax the constraint on the discrete-

ness ofx by noting that the objectiveB still makes sense in
this more general setting.

3.4 Probabilistic Latent Semantic Analysis The insight
that PLSA can be viewed as a MAP estimate of LDA was
published in [4], while very similar remarks on the relation
between LDA and PLSA were also noted in [3]. Here, we
will re-derive those results in the variational EM framework
and show the striking similarity to NMF.

Let us consider an LDA model ([5]). The conditional
probability in this case is a multinomial distribution while
the prior on the factors is given by a Dirichlet distribution,

(3.20) p(x,h) =





∏

i





∑

j

Wijhj





xi


 Dh[α]

whereWij is the probability of wordi for topic j. xi

is the count of the number of times wordi is sampled and
hj is the prior probability that topicj is used. To make a
connection to PLSA we use the variational approximation
with point posteriors and choose a constant prior,α =

3Note that this EM algorithm does not refer to the same variational EM
argument to derive the objectiveO. So, one could say that this an EM
algorithm within a VEM algorithm.

1. Note that since we have continuous latent variables we
will ignore an infinitely negative entropy contribution in the
variational objective to arrive at the following objective,

(3.21) O =
∑

i,n

xin log





∑

j

Wij ĥjn





plus two Lagrange multiplier terms to enforce
∑

i Wij = 1 and
∑

j ĥjn = 1.
Analogous to the derivation for NMF, we can now

boundO with B ≤ O, and
(3.22)

B =
∑

i,n

xin





∑

j

Qin(j) log(Wij ĥjn) + S(Qin)





whereS(Q) is the entropy ofQ. Again, we should also
include the Lagrange multiplier terms which we left out
for convenience. This bound is valid for any variational
distribution Q, but the expression that maximizes (in fact
saturates) the bound is given by,

(3.23) Qin(j) =
Wij ĥjn

∑

j′ Wij′ ĥj′n

This can be viewed as the E-step of an EM algorithm.
The M-step is then given by fixingQ and maximizing over
W, ĥ. Combining E and M steps, we find the following
update equations that are guaranteed to improveO,

Wij ←
1

γj

Wij

∑

n

XinHjn

[WH ]in
(3.24)

Hjn ←
1

λn

Hjn

∑

i

XinWij

[WH ]in

which are identical to NMF except for an extra normal-
ization ofH . Retaining Dirichlet priors in the derivation for
bothW andH would translate into constant off-sets in the
update equation 3.24.

To connect this to the PLSA updates derived in [1]
we note that this model contains three factors:p(w|z),
p(d|z) andp(z). We can absorbp(z) into p(d|z) and re-
parameterize asp(z|d) ∝ p(d|z)p(z). The factorp(d) that
remains in this parametrization is chosen constant (each doc-
ument has the same weight). If we make the identification
Wij ↔ p(w|z) andHjn ↔ p(z|d), then the model and the
learning updates become identical to those in [1]. In figures
1,2 and 3 we have verified that the standard PLSA imple-
mentation of [1] indeed gives almost identical results to the
updates derived above.



0 200 400 600 800 1000
100

200

300

400

500

600

700

Number of topics

P
er

pl
ex

ity

Cranfield

PLSA−HOF
PLSA−VEM
PLSA−TEM

Figure 1: Comparison of test set perplexity of PLSA-HOF,
PLSA-VEM and PLSA-TEM on the Cranfield dataset

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

Number of topics

P
er

pl
ex

ity

Medline

PLSA−HOF
PLSA−VEM
PLSA−TEM

Figure 2: Comparison of test set perplexity of PLSA-HOF,
PLSA-VEM and PLSA-TEM on the Medline dataset

0 200 400 600 800 1000
2000

2200

2400

2600

2800

3000

3200

3400

Number of topics

P
er

pl
ex

ity

NIPS

PLSA−HOF
PLSA−VEM
PLSA−TEM

Figure 3: Comparison of test set perplexity of PLSA-HOF,
PLSA-VEM and PLSA-TEM on the NIPS dataset

3.5 Exponential Family PCA (EPCA) A general class of
PCA algorithms is given by exponential family PCA (EPCA)
[2]. To derive this class of algorithms from VEM, we
start with a conditional distributionp(x|h) parameterized in
the canonical representation, i.e.log p(x|h) = xT θ + c.
The canonical parametersθ are in turn written as linear
combinations of hidden variables:θi =

∑

j Wijhj . Ignoring
the prior term we have the following model,

(3.25) p(x,h) = exp[
∑

i,j

xiWijhj − F (Wh)]

whereF is the log-partition function for the exponential
family distribution under consideration. By applying the
point-VEM approximation (ignoring the infinitely negative
entropy) we derive the following objective,

(3.26) O =
∑

i,n





∑

j

xinWij ĥjn − Fn(WH)





which should be optimized overW = {Wij} andH =

{ĥjn}. The two-phase algorithm proposed in [2] precisely
corresponds to the VE-step and VM-steps. Here, we will
simply follow gradients alternatingly forW and H . The
gradients ofO are given by,

∂O
∂W

= XHT − F ′(WH)HT(3.27)

∂O
∂H

= WT X −WT F ′(WH)

whereF ′ is the gradient ofF . We note that the VEM
algorithm for PCA in section 3.2 is a special case of EPCA
whereF is quadratic and henceF ′ is linear.

In the experiments we will compare EPCA and PLSA
on text. For this purposex represents a word from a finite
vocabulary and is given as an indicator variable consistingof
zeros and a single1 at the vocabulary index for that word. In
this case we find that,

(3.28) Fn = log
∑

i

exp





∑

j

Wij ĥjn





Another example for which the above derivation could
be helpful is in formulating a simple learning algorithm for
the “multiple multiplicative factor model” proposed in [13],
but we do not pursue this any further here.

4 Pitfalls For Deterministic Latent Variable Models

In the previous section, we gave examples of Deterministic
Latent Variable models that are derived as VEM approxima-
tions of other models. We will now discuss two perspec-
tives that will prove the central thesis of this paper, namely



that estimates of the test-data log-likelihood (or equivalently
test-data perplexity) based on “folding-in” can be hugely op-
timistic for continuous latent variables, especially in high di-
mensions.

4.1 Estimating Test-Set Log-Likelihood Assume we
wish to approximate the log-likelihood of the original prob-
abilistic modelp(x) =

∑

h
p(x,h). Analogous to the vari-

ational bound on training data we can also lower bound the
log-likelihood of atestdata casey using,
(4.29)

B1 = max
q

[

∑

h

q(h) log p(y,h) + S(q)

]

≤ log p(y)

whereS(q) is the entropy ofq(h). Note that we computeq
by maximizingB1 for the test-data case under consideration
which is what we will also call “folding-in”.

This equation tells us that mean-field/variational bounds
based on folding-in will provide apessimisticestimate of the
true log-likelihood of the modelp. Moreover, the closerq is
in KL-divergence to the true posterior, the smaller the error.
Note that we separate model evaluation and model learning,
sop could have been obtained using any method other than
VEM, although this approximation is particularly convenient
in the context of VEM.

If we restrict the family of variational distributionsq to
point-posteriors , i.e. to be of the form shown in Equation
2.5, then in the case of discrete latent variables the entropy
is zero. Therefore, the following expression also constitutes
a proper lower bound in this case,

(4.30) B2 = max
ĥ

[

log p(y, ĥ)
]

≤ log p(y)

whereĥ is now obtained by maximizinglog p(y, ĥ) overĥ.
We will also call this a form of proper folding-in in the sense
that although we “fit” something on test-data it still provides
apessimisticestimate of the test-log-likelihood.

Finally, let us look at what happens whenh is con-
tinuous. As argued in the previous section, for this case
the entropy is no longer positive, and in fact converges to
S → −∞. Hence, ignoring it will no longer guarantee the
bound. In fact, it is not hard to show that the objective in
Equation 4.30 can be much larger than the test data log like-
lihood and hence can beoptimistic. To see that let us rewrite
Equation 4.30 as,

(4.31) B2 = log p(y) +

[

max
ĥ

log p(ĥ|y)

]

For discrete latent variables we havep(ĥ|y) ≤ 1 and hence
the logarithm is negative which confirms the claim thatB2

is a lower bound oflog p(y) in this case. However, when
p(ĥ|y) is adensityit is highly likely thatmax

ĥ
p(ĥ|y)≫ 1.

For high dimensional spaces these values can be extremely
large, particularly for cases where the posterior is concen-
trated. In such cases we can thus conclude thatB2 can in
fact be much larger than the true log-likelihood resulting in
unfounded optimism.

These observations are in particular true for the popular
PLSA model [1] for whichĥ = p(z|d). This fact is not
much appreciated by the research community and has led
some researchers to compute test-set perplexity in the wrong
way probably leading to overly optimistic estimates. Other
than the original PLSA paper [1] where folding-in was first
introduced, a number of publications can be found in the
literature that use folding-in to compute test-set perplexity
(e.g. some recent publications like [15] and [16] follow the
folding-in procedure to compute test-set perplexity).

It should be noted that [8] discusses some inconsisten-
cies in the PLSA framework (namely, that PLSA as de-
scribed in [1] assumes zero probability for test documents)
but the solution offered is again based on folding-in and it
therefore suffers from the same problem as described above.

4.2 An Energy-Based Model The approach until now has
been to assume that we are interested in the modelp(x,h),
but that we need a variational approximation of the posterior
p(h|x) to make learning and prediction tractable. In this
section, we will take a slightly different perspective. Instead
of changing the algorithm, we will change the model so that
it matches well with the folding-in procedure.

We first notice that folding-in can be defined as the
following optimization for a data-casey

(4.32) f(y) = max
h

p(y,h)

Note that this is donefor every data-case separately. During
learning we wish to adjust parameters such that this goodness
functionf(x) is large for every data-case. However, as we
will show in an example in the next section, this can be
achieved without learning anything. We need to first define a
proper probability distribution over the entire input space and
maximize its log-likelihood. This is achieved by normalizing
the expressionf(x) over its input domain,

(4.33) g(x) =
maxh p(x,h)

∑

x′ maxh p(x′,h)

If we rewrite this in the formg = e−E/Z, the negative
energy is exactly given by the expression shown in Equation
4.30. This type of a model is called an “energy-based model”
and has been studied in [9].

The normalization constantZ =
∑

x
maxh p(x,h) is

unfortunately intractable for all but the simplest of models.
For instance, for documents, we would have to sum over all
possible valid documents. We also note that the “folding-in”
heuristic is precisely equivalent toignoring the normaliza-
tion constant in the log-likelihood for the modelg(x). We



can now ask the central question: What will the effect of
ignoring the normalization term be on the test-set log likeli-
hood of the modified modelg(x)?

To study that, first rewrite,

(4.34) log Z = log
∑

x

[

max
h

p(h|x)

]

p(x)

For discrete latent variables, we can show thatα(x)
.
=

maxh p(h|x) ≤ 1 which implies that
∑

x
α(x)p(x) ≤ 1

(since
∑

x
p(x) = 1) and therefore we havelog Z ≤ 0. In

other words, by reporting Equation 4.30 we report a lower
bound on the test log-likelihood of the modelg. However,
for continuous latent variables,α(x) can take arbitrary large
values resulting in test log-likelihood estimates which may
be highly optimistic. Again, this behavior is much more pro-
nounced for concentrated distributions in high dimensional
spaces. Therefore, even in this interpretation the conclusion
remains unchanged: for continuous latent variables, folding-
in to compute an estimate of test set log-likelihood may re-
sult in values that are highly optimistic.

4.3 An Example Let us look at a very simple PLSA
example given by,

(4.35) p(x,h) = p(x|h) p(h) =





∑

j

pj(x) hj



 Dh(1)

whereDh(1) is a Dirichlet distribution with prior strengths
equal to 1. In this example the conditional distribution
p(x|h) is a mixture model withdata-dependentmixture
weightshj (similar top(z|d) in PLSA) and where

∑

j hj =
1. Also, pj(x) is some probability distribution for compo-
nentj (similar top(w|z) for PLSA). In this example we will
assume thatx = 1, .., V and that there are exactlyV mixture
components such thatpj(x) = δx,j, i.e. a delta-peak at one
of the possible values.

It is not hard to compute the true log-likelihood of this
model for any data-case. For that we compute,

(4.36) log p(y) = log

∫

dh p(y,h) = log 1/V

If we instead compute the folding-in expression in Equation
4.30 we observe that we can shift all the weight{hj} to the
component which has the delta-peak located at the data-case,
hj∗ = 1, hj = 0, j 6= j∗ with j∗ = y. This results in
an expressionlog p(y) = log 1 which confirms that it over-
estimates the true log-likelihood.

In the other view, we should include a normalization fac-
tor (Eqn.4.34) which equalslog Z = log 1/V and confirms
again that we would report overly optimistic results using the
folding-in heuristic.

Note that neither the true log-likelihood ofp nor the nor-
malization factor ofg are tractable for real world problems.

4.4 Implications For Learning The observations in this
section also have implications for learning. The standard
learning algorithms for EPCA and PLSA maximize the
approximate objective function for modelp that ignores the
entropy term, i.e. Equation 2.6. We have seen above that this
is equivalent to minimizing the energy function for another
modelg while ignoring its normalization constant. Learning
based on folding-in assumes and benefits from the fact that
the “quality” of a model is evaluated using the folding-in
recipe, both during training and during testing. Therefore,
it is possible to misinterpret these results and think that
we have learned a great model (since both training and
testing are done using folding-in) when in reality what we
have learned could be very poor. Consider the toy example
above: every data-point is assigned the maximal possible
value of 1, so according to the objective there is nothing
left to learn. However, after including the normalization
constant for modelg we find that every data-point really has
a probability of1/V (uniform) which means that the model
has not learned anything whatsoever. The same conclusion
was reached by computing the correct test log-likelihood for
modelp.

The fact that learning algorithms for PLSA and EPCA
still seem to produce reasonable results in many cases may
be explained by two factors. 1) The toy example above
was designed to exaggerate the effect. With fewer data-
dependent adjustable parameters the influence of the nor-
malization constant is less pronounced and the effect may
be more subtle. This leads to the prediction that the effect is
stronger for PLSA models with many topics (and indeed this
is what we observe in our experiments in the next section).
2) If one trains a model to optimize the wrong objective and
evaluates the model using the same wrong objective the re-
sults may look very good whereas in reality they might be
very poor.

5 Experiments

Dataset D train D test Vocab Avg doc
size length

Cranfield 979 419 3763 84.3
Medline 724 309 7014 79.6

NIPS 150 50 10780 1381.1

Table 1: General characteristics of datasets used in experi-
ments.

We report results on 3 datasets: Cranfield, Medline and
NIPS. Details of these datasets are shown in table 1.

We trained LDA, EPCA and PLSA models on all three
datasets. We computed perplexity in two different ways:
(i) folding-in using the full test documents (simlar to [1])
(full folding-in); and (ii) folding-in using 50% of words of



0 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

3500

4000

1E−1

1E−2

1E−3

1E−4 to 1E−10

Number of topics

P
er

pl
ex

ity

Cranfield

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

3500

4000

1E−1

1E−2

1E−3

1E−4

1E−5

1E−6
1E−7

1E−8

1E−9

1E−10

Number of topics

P
er

pl
ex

ity

Cranfield

Figure 4: Test set perplexity of PLSA on the Cranfield datasetwith various regularization values using full folding-in (left)
and half folding-in (right)

0 200 400 600 800 1000
0

2000

4000

6000

8000

10000

1E−1

1E−2

1E−3

1E−4 to 1E−6

1E−7
1E−8

1E−9 1E−10

Number of topics

P
er

pl
ex

ity

Medline

0 200 400 600 800 1000
0

2000

4000

6000

8000

10000

1E−1

1E−2

1E−3

1E−4
1E−5

1E−6

1E−71E−8
1E−9

1E−10

Number of topics

P
er

pl
ex

ity

Medline

Figure 5: Test set perplexity of PLSA on the Medline dataset with various regularization values using full folding-in (left)
and half folding-in (right)



0 200 400 600 800 1000
0

2000

4000

6000

8000

10000

12000

1E−1

1E−2

1E−3

1E−4 to 1E−7
1E−81E−9 1E−10

Number of topics

P
er

pl
ex

ity

NIPS

0 200 400 600 800 1000
0

2000

4000

6000

8000

10000

12000

1E−1
1E−2

1E−3

1E−4 to 1E−7
1E−81E−9 1E−10

Number of topics

P
er

pl
ex

ity

NIPS

Figure 6: Test set perplexity of PLSA on the NIPS dataset withvarious regularization values using full folding-in (left) and
half folding-in (right)

0 200 400 600 800 1000
100

200

300

400

500

600

700

800

900

Number of topics

P
er

pl
ex

ity

Cranfield

best PLSA
best EPCA
LDA AL=0.1 BT=0.0001
LDA AL=0.1 BT=0.01

0 200 400 600 800 1000
100

200

300

400

500

600

700

800

900

Number of topics

P
er

pl
ex

ity

Cranfield

best smoothed mult
best PLSA
best EPCA
LDA AL=0.1 BT=0.0001
LDA AL=0.1 BT=0.01

Figure 7: Comparison of test set perplexity of PLSA, EPCA andLDA on the Cranfield dataset using full folding-in (left)
and half folding-in (right)



0 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

Number of topics

P
er

pl
ex

ity

Medline

best PLSA
best EPCA
LDA AL=0.1 BT=0.0001
LDA AL=0.1 BT=0.01

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

Number of topics

P
er

pl
ex

ity

Medline

best smoothed mult
best PLSA
best EPCA
LDA AL=0.1 BT=0.0001
LDA AL=0.1 BT=0.01

Figure 8: Comparison of test set perplexity of PLSA, EPCA andLDA on the Medline dataset using full folding-in (left) and
half folding-in (right)

0 200 400 600 800 1000
1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

Number of topics

P
er

pl
ex

ity

NIPS

best PLSA
best EPCA
LDA al=0.1 bt=0.01

0 200 400 600 800 1000
1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

Number of topics

P
er

pl
ex

ity

NIPS

best smoothed mult
best PLSA
best EPCA
LDA AL=0.1 BT=0.01

Figure 9: Comparison of test set perplexity of PLSA, EPCA andLDA on the NIPS dataset using full folding-in (left) and
half folding-in (right)



a test document, and computing perplexity on the remaining
words (half folding-in). We argue that the half folding-in
approach used in our experiments to measure perplexity is a
fair measure because unlike the full folding-in approach, the
half folding-in approach does not see the part of the data on
which we measure the test likelihood. It, therefore, cannot
overfit on the test data and lead to incorrect and optimistic
perplexity values.

Perplexity for PLSA is computed by first folding-in:
computingĥjn (or p(z|d)) by iterating only the E-step of
EM. After that we compute the log-probability of the test-
data and transform it to perplexity as follows:

(5.37) Perplexity= exp

[

−
∑

i,d log
∑

k Wxtest
id

,kHkd
∑

d Nd

]

A similar procedure was followed for EPCA.
For LDA we implemented the collapsed Gibbs sampler

described in [14]. Test-set perplexity was computed by
averaging over10 independent Gibbs samplers. After the
Markov chains converged on the training set we fixed the
assignments to the last iteration on the training data and
sampled the assignments on the test data until convergence
(this is analogous to folding-in). For the last sample on the
training set we then compute,

(5.38) φs
wk =

Ns
wk + β

Ns
k + V β

whereNs
wk =

∑

i,j I[xij = w]I[zs
ij = k], Ns

k =
∑

i Ns
ik

andV is the vocabulary size. Using the last sample from the
Gibbs sampling chain on the test-set we compute,

(5.39) θs
kd =

Ns
kd + α

Ns
d + Kα

whereNs
kd =

∑

i I[zs
id = k] andK is the number of topics.

These are then used to compute the test-set perplexity. In the
case of half folding-in the topic assignments for only 50%
of the words of the test data were sampled and perplexity is
measured on the rest of the words of the test documents (this
is analogous to half folding-in of PLSA described earlier).

We experimented with three different versions of PLSA:
1) PLSA-HOF: the standard approach described in [1]; 2)
PLSA-VEM using Equation 3.25 as described in Section 3.4;
and 3) PLSA-TEM: “tempered EM” as described in [1] but
searching for the annealing parameter,β, between[0.5, 1]
in increments of0.02 on the test set directly (hence, this
represents an upper bound on performance). We compared
perplexity of PLSA-HOF, PLSA-VEM and PLSA-TEM on
Cranfield, Medline and NIPS datasets for both full folding-
in and half folding-in. From Figures 1, 2 and 3, it can be
observed that all three approaches give similar results on
Cranfield, Medline and NIPS. Unlike in [1], we did not find

any advantage of “tempering”. A similar result was also
found in [8]. As the performance is similar for all three
version of PLSA, in the subsequent experimental results we
only show the results for PLSA-HOF.

To avoid overfitting both PLSA and EPCA were regu-
larized by adding a constantα to p(w|z) and renormalized.
We triedα = [1E-10, 1E-9, ..., 1E-1] and show results for all
values in the PLSA plots and best values when comparing
with other models.

We now compare the perplexity results of PLSA-HOF
using full folding-in and half folding-in for a range of
regularization parameters,α. Figures 4, 5, and 6 show the
perplexity results using full folding-in and half folding-in for
Cranfield, Medline and NIPS respectively. For the smaller
datasets (Cranfield and Medline), it can be seen that the
perplexity values are significantly higher for half folding-in
compared to full folding-in. Additionally, it can also be seen
that in both these datasets perplexity results for half folding-
in are very sensitive to the regularization parameter,α.

Since full folding-in is given more information to base
its predictive probabilities on, we expect full folding-into
produce somewhat better perplexity than half folding-in.
This in itself does therefore not prove the claim that full
folding-in is overly optimistic. Observe however that for
full folding-in perplexity always improves with increasing
number of topics, irrespective of the regularization value
applied. In fact, in some of our experiments we increased the
number of topics,T , to a value greater than the vocabulary
size and the perplexity value still kept decreasing. Hence,
we see no sign of overfitting with full folding-in. This
is not, however, true for half folding-in where for small
regularization parameters one can clearly observe overfitting
as the model complexity grows. These results support
our claim about the overly optimistic perplexity estimates
of full folding-in, especially for largeT . These effects
are alleviated in NIPS as NIPS documents are significantly
longer (by more than a factor of 10, see Table 1) and hence
folding-in on 50% of words (half folding-in case) gives a
better estimate ofH resulting in a relatively lower perplexity.

Additionally, we compare LDA with the best perplexity
(best is defined as the curve with the lowest perplexity value)
results for PLSA and EPCA using both full folding-in and
half folding-in approaches. We show EPCA results only until
200 topics as EPCA was extremely slow to run and prone to
numerical instabilities.

Figures 7, 8, and 9 show the results of these experiments
for Cranfield, Medline and NIPS respectively. It can be noted
that the perplexity results of LDA are generally better than
those of the best perplexity results of PLSA and EPCA, more
so for the half folding-in case. The perplexity results of
PLSA and EPCA are similar to each other but we found that
PLSA is easier to train than EPCA.



6 Discussion

In this paper we discuss a class of deterministic latent vari-
able models and their learning algorithms under a unifying
framework. We classify these models into two categories
based on the type of latent variables used, namely, (i) discrete
variables (e.g. K-means and Viterbi on HMM) or (ii) contin-
uous variables (e.g. NMF, PLSA, PCA, ICA and EPCA).
Hence NMF, PLSA, PCA, ICA and EPCA fall under the
same umbrella within this framework and are different only
in the way they mix the latent variables: NMF and PLSA
mix latent variables in the probability domain while EPCA,
PCA and ICA mix latent variables in the log-probability do-
main. In our experiments, we found that EPCA and PLSA
produce models with similar performance and that learning
for EPCA is relatively difficult. We also found that LDA
produced better models than PLSA or EPCA.

Our main contribution, however, is the observation that
the standard learning algorithms for the category (ii) models
optimize a questionable objective. To derive the objective
from the variational objective one has to dismiss an entropy
term with a value of−∞ which renders the resulting objec-
tive numerically unrelated (and certainly not a bound) to the
log-probability. While these models, in general, can learn
reasonable parameters in training, the test data probability
using folding-in can be highly optimistic, especially when
there are a large number of latent variables. Models with
discrete latent variables do not suffer from these issues as
their entropy contribution is0 in the MAP approximation.

One can try to fix this problem, in theory, by switch-
ing to a mean field approach which incorporates an approx-
imation to the dismissed entropy, or by changing the model
and incorporating a normalization factor. The latter approach
naturally leads to the view of an “energy-based” model. We
note, however, that computing the normalization factor is
usually intractable.

We have also experimentally verified that computing
test-set perplexity using the “folding-in” recipe can easily
lead to overly optimistic results.

Acknowledgments

We thank Geoff Hinton for his deep insights that helped
shape this paper.

Max Welling was supported by NSF grants IIS-0535278
and IIS-0447903.

The research reported here is part of the Interactive Col-
laborative Information Systems (ICIS) project, supportedby
the Dutch Ministry of Economic Affairs, grant BSIK03024.

We acknowledge use of the computer clusters supported
by NIH grant LM-07443-01 and NSF grant EIA-0321390 to
Pierre Baldi and the Institute of Genomics and Bioinformat-
ics.

References

[1] Thomas Hofmann. Probabilistic latent semantic analysis.
In Proc. of Uncertainty in Artificial Intelligence, UAI’99,
Stockholm, 1999.

[2] M. Collins, S. Dasgupta, and R. E. Schapire. A generalization
of principal components analysis to the exponential family.
In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors,
Neural Information Processing Systems 14. MIT Press, 2002.

[3] Wray Buntine. Variational Extensions to EM and Multino-
mial PCA Volume 2430 ofLecture Notes in Computer Sci-
ence, Helsinki, Finland, 2002. Springer.

[4] M. Girolami and A. Kaban. On an equivalence between PLSI
and LDA. InProceedings of SIGIR 2003, 2003.

[5] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet
allocation. Journal of Machine Learning Research, 3:993–
1022, 2003.

[6] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood
from incomplete data via the EM algorithm.Journal of the
Royal Statistical SocietyB, 39:1–38, 1977.

[7] R.M. Neal and G.E. Hinton. A view of the EM algorithm that
justifies incremental, sparse and other variants. 1999.

[8] T. Brants. Test data likelihood for plsa models.Inf. Retr.,
8(2):181–196, 2005.

[9] Y.W. Teh, M. Welling, S. Osindero, and G.E. Hinton. Energy-
based models for sparse overcomplete representations.Jour-
nal of Machine Learning Research - Special Issue on ICA,
4:1235–1260, 2003.

[10] D.D. Lee and H.S. Seung. Learning the parts of objects
by non-negative matrix factorization.Nature, 401:788–791,
1999.

[11] A. Olshausen and D. Field. Sparse coding with over-complete
basis set: A strategy employed by V1?Vision Research,
37:3311–3325, 1997.

[12] S.T. Roweis. EM algorithms for PCA and SPCA. InNeural
Information Processing Systems, volume 10, pages 626–632,
1997.

[13] B. Marlin and R. Zemel. The multiple multiplicative factor
model for collaborative filtering. InProceedings of the 21st
International Conference on Machine Learning, volume 21,
2004.

[14] T.L. Griffiths and M. Steyvers. A probabilistic approach to
semantic representation. InProceedings of the 24th Annual
Conference of the Cognitive Science Society, 2002.

[15] D. Downey, S. Dumais and E. Horvitz Head and tails:
Studies of Web Search with Common and Rare Queries In
Proceedings of the 30th Annual International ACM SIGIR
Conference, 847-848, 2007

[16] Y. Akita and T. Kawahara. Language Model Adaptation
Based on PLSA of Topics and Speakers for Automatic Tran-
scription of Panel Discussions. InJournal of IEICE Transac-
tions, 3:439–445, 2005.


