CompSci 171: Intro AI

Homework 2

Uninformed search
Breadth-first search

Level:
L=0 (root)
L=1
L=2
L=3
L=4

Number of nodes generated:
L0: 1
L1: 2
L2: 4
L3: 8
L4: 16

Every state has b=2 successors:
- At root level search tree generates 2 nodes (each of which generates 2 more nodes, so...)
- At 1st level search tree generates 4 nodes (...)
- At 2nd level search tree generates 8 nodes (...)
- At 3rd level search tree generates 16 - 2 nodes (GOAL node is at this level)

Time/space complexity:
\[b + b^2 + b^3 + (b^4 - b) = O(b^{L+1}) \]
Breadth-first search

Level:

L=0 (root)

L=1

L=2

L=3

L=4

Explore node(s) first, than add successor nodes in the fringe:
Every state has $b=2$ successors:
- After examining root level: generates 2 nodes
- After examining 1st level: generates 4 nodes
- After examining 2nd level: generates 8 nodes
- Examining 3rd level – GOAL node found!!!!!

Number of nodes generated:

L0: 1

L1: 2

L2: 4

L3: 8

L4: 16

Time/space complexity:

$$b + b^2 + b^3 = O(b^1)$$
Depth-First Search

Order: 1, 2, 5, 11, 12, 6, 13, 3, 7, 8, 4, 9, 14, 15, 10, 16, 17
Depth-First Iterative-Deepening Search

Depth = 1

Order: 1
Depth-First Iterative-Deepening Search

Depth = 2

Order: 1, 2, 3, 4
Depth-First Iterative-Deepening Search

Order: 1, 2, 5, 6, 3, 7, 8, 4, 9, 10

Depth = 3
Depth-First Iterative-Deepening Search

Order: 1, 2, 5, 11, 12, 6, 13, 3, 7, 8, 4, 9, 14, 15, 10, 16, 17
Breath-First Search

Order: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
Traveling Salesman Problem

• Formulation:
 – States: cities
 – Initial state: A
 – Successor function: Travel from one city to another connected by a road
 – Goal test: the trip visits each city only once that starts and ends at A.
 – Path cost: traveling time
Traveling Salesman Problem

Can be represented as a graph
Nodes – states
Arcs – actions

States: A, B, C, D, E
Traveling Salesman Problem

Complete state space:

- Initial state (state A)
- All possible states and actions:

State A:
- go right to B, cost 4
- go down-right to E, cost 3
- go down to C, cost 1

State B:
- go left to A, cost 4
- go down to D, cost 5
- go down-left to E, cost 2

State C:
- go up to A, cost 1
- go right to D, cost 3
- go up-right to E, cost 2

State D:
- go up to B, cost 5
- go left to C, cost 3
- go up-left to E, cost 1

State E:
- go up-left to A, cost 3
- go up-right to B, cost 2
- go down left to C, cost 2
- go down-right to D, cost 1
Traveling Salesman Problem

Breath-first search – the shortest trip from A, that visits all cities

- Shortest path
 - A → E → C → 3: 1 + 3 + 5 + 2 + 3 = 14
 - A → B → E → C → 2: 1 + 3 + 1 + 2 + 4 = 11

- Shortest path
 - A → B → D → C → A: 1 + 2 + 1 + 5 + 4 = 13
 - A → B → D → C → A: 3 + 2 + 5 + 3 + 1 = 14
 - A → B → D → C → A: 3 + 2 + 3 + 5 + 4 = 17
Traveling Salesman Problem

Time and Space complexity: DFS vs. BFS

\[\text{depth}_{\text{goal}} = \text{depth}_{\text{max}} \]

<table>
<thead>
<tr>
<th></th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFS</td>
<td>$O(b^d)$</td>
<td>$O(b^d)$</td>
</tr>
<tr>
<td>DFS</td>
<td>$O(b^d)$</td>
<td>$O(bd)$</td>
</tr>
</tbody>
</table>
Traveling Salesman Problem

Uniform-cost search?

Uniform-cost search algorithm is optimal with positive cost function. It will find the path with the lowest path cost.

Therefore, if cost = traveling time, uniform-cost search will work well with this problem.