Methods of Proof

Chapter 7, Part II
Proof methods

- Proof methods divide into (roughly) two kinds:

 Application of inference rules:
 Legitimate (sound) generation of new sentences from old.
 - Resolution
 - Forward & Backward chaining

 Model checking
 Searching through truth assignments.
 - Improved backtracking: Davis--Putnam-Logemann-Loveland (DPLL)
 - Heuristic search in model space: Walksat.
We like to prove: $KB \models \alpha$

equivalent to: $KB \land \neg \alpha$ unsatisfiable

We first rewrite $KB \land \neg \alpha$ into conjunctive normal form (CNF).

A “conjunction of disjunctions”

(\(A \lor \neg B\) \land (\(B \lor \neg C \lor \neg D\))

Clause

Clause

• Any KB can be converted into CNF.
• In fact, any KB can be converted into CNF-3 using clauses with at most 3 literals.
Example: Conversion to CNF

$B_{1,1} \leftrightarrow (P_{1,2} \lor P_{2,1})$

1. Eliminate \leftrightarrow, replacing $\alpha \leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$.
 $$(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$$

2. Eliminate \Rightarrow, replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$.
 $$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$$

3. Move \neg inwards using de Morgan's rules and double-negation:
 $$(\neg (\alpha \lor \beta) = \neg \alpha \land \neg \beta$$
 $$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$$

4. Apply distributive law (\land over \lor) and flatten:
 $$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$$
Resolution

- Resolution: inference rule for CNF: sound and complete!

\[(A \lor B \lor C)\]
\[(-A)\]
\[\therefore (B \lor C)\]

“\text{If } A \text{ or } B \text{ or } C \text{ is true, but not } A, \text{ then } B \text{ or } C \text{ must be true.}”

\[(A \lor B \lor C)\]
\[(-A \lor D \lor E)\]
\[\therefore (B \lor C \lor D \lor E)\]

“\text{If } A \text{ is false then } B \text{ or } C \text{ must be true, or if } A \text{ is true then } D \text{ or } E \text{ must be true, hence since } A \text{ is either true or false, } B \text{ or } C \text{ or } D \text{ or } E \text{ must be true.}”

\[(A \lor B)\]
\[(-A \lor B)\]
\[\therefore (B \lor B) \equiv B\]

Simplification
Resolution Algorithm

- The resolution algorithm tries to prove: $\vdash \alpha$ equivalent to $KB \land \neg \alpha$ unsatisfiable

- Generate all new sentences from KB and the query.
- One of two things can happen:
 1. We find $P \land \neg P$ which is unsatisfiable. I.e. we can entail the query.
 2. We find no contradiction: there is a model that satisfies the sentence $KB \land \neg \alpha$ (non-trivial) and hence we cannot entail the query.
Resolution example

- $KB = (B_{1,1} \iff (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1}$
- $\alpha = \neg P_{1,2}$

$KB \land \neg \alpha$

![Diagram showing resolution process]

True!

False in all worlds
Horn Clauses

• Resolution can be exponential in space and time.

• If we can reduce all clauses to “Horn clauses” resolution is linear in space and time.

A clause with at most 1 positive literal.

e.g. \(A \lor \neg B \lor \neg C \)

• Every Horn clause can be rewritten as an implication with a conjunction of positive literals in the premises and a single positive literal as a conclusion.

\(B \land C \Rightarrow A \)

• 1 positive literal: definite clause
• 0 positive literals: Fact or integrity constraint:

\((\neg A \lor \neg B) \equiv (A \land B \Rightarrow False) \)

• Forward Chaining and Backward chaining are sound and complete with Horn clauses and run linear in space and time.
Try it Yourselves

• 7.9 page 238: (Adapted from Barwise and Etchemendy (1993).) If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned.

• Derive the KB in normal form.
• Prove: Horned, Prove: Magical.
Forward chaining

- Idea: fire any rule whose premises are satisfied in the KB, add its conclusion to the KB, until query is found.

- This proves that $KB \Rightarrow Q$ is true in all possible worlds (i.e. trivial), and hence it proves entailment.

- Forward chaining is sound and complete for Horn KB
Forward chaining example

“OR” Gate

“AND” gate
Forward chaining example
Backward chaining

Idea: work backwards from the query q

- check if q is known already, or
- prove by BC all premises of some rule concluding q
- Hence BC maintains a stack of sub-goals that need to be proved to get to q.

Avoid loops: check if new sub-goal is already on the goal stack

Avoid repeated work: check if new sub-goal

1. has already been proved true, or
2. has already failed
Backward chaining example
Backward chaining example
Backward chaining example
Backward chaining example

we need P to prove L and L to prove P.
Backward chaining example

As soon as you can move forward, do so.
Backward chaining example
Forward vs. backward chaining

- FC is data-driven, automatic, unconscious processing,
 - e.g., object recognition, routine decisions

- May do lots of work that is irrelevant to the goal

- BC is goal-driven, appropriate for problem-solving,
 - e.g., Where are my keys? How do I get into a PhD program?

- Complexity of BC can be much less than linear in size of KB
Model Checking

Two families of efficient algorithms:

• Complete backtracking search algorithms: DPLL algorithm

• Incomplete local search algorithms
 – WalkSAT algorithm
The DPLL algorithm

Determine if an input propositional logic sentence (in CNF) is satisfiable. This is just backtracking search for a CSP.

Improvements:

1. Early termination
 A clause is true if any literal is true.
 A sentence is false if any clause is false.

2. Pure symbol heuristic
 Pure symbol: always appears with the same "sign" in all clauses.
 e.g., In the three clauses \((A \lor \neg B), (\neg B \lor \neg C), (C \lor A)\), A and B are pure, C is impure.
 Make a pure symbol literal true. (if there is a model for S, then making a pure symbol true is also a model).

3. Unit clause heuristic
 Unit clause: only one literal in the clause
 The only literal in a unit clause must be true.

Note: literals can become a pure symbol or a unit clause when other literals obtain truth values. e.g.
\[
(A \lor \text{True}) \land (\neg A \lor B)
\]

\[
A = \text{pure}
\]
The WalkSAT algorithm

- Incomplete, local search algorithm

- Evaluation function: The min-conflict heuristic of minimizing the number of unsatisfied clauses

- Balance between greediness and randomness

Walksat Procedure

Start with random initial assignment.
Pick a random unsatisfied clause.
Select and flip a variable from that clause:
 - With probability p, pick a random variable.
 - With probability $1-p$, pick greedily
 a variable that minimizes the number of unsatisfied clauses
Repeat to predefined maximum number flips;
If no solution found, restart.
Hard satisfiability problems

• Consider random 3-CNF sentences. e.g.,

$$(\neg D \lor \neg B \lor C) \land (B \lor \neg A \lor \neg C) \land (\neg C \lor \neg B \lor E) \land (E \lor \neg D \lor B) \land (B \lor E \lor \neg C)$$

$m = \text{number of clauses (5)}$

$n = \text{number of symbols (5)}$

– Hard problems seem to cluster near $m/n = 4.3$ (critical point)
Hard satisfiability problems
Hard satisfiability problems

- Median runtime for 100 satisfiable random 3-CNF sentences, \(n = 50 \)
Summary

• Logical agents apply inference to a knowledge base to derive new information and make decisions.

• Basic concepts of logic:
 – syntax: formal structure of sentences
 – semantics: truth of sentences wrt models
 – entailment: necessary truth of one sentence given another
 – inference: deriving sentences from other sentences
 – soundness: derivations produce only entailed sentences
 – completeness: derivations can produce all entailed sentences

• Resolution is complete for propositional logic. Forward, backward chaining are linear-time, complete for Horn clauses.

• Propositional logic lacks expressive power.