Support Vector Machines

Instructor Max Welling
ICS273A
UCIrvine
Philosophy

• First formulate a classification problem as finding a separating hyper-plane that maximizes “the margin”.

• Allow for errors in classification using “slack-variables”.

• Convert problem to the “dual problem”.

• This problem only depends on inner products between feature vectors which can be replaced with kernels.

• A kernel is like using an *infinite* number of features.
The Margin

- Large margins are good for generalization performance (on future data).
- Note: this is very similar to logistic regression (but not identical).
• We would like to find an expression for the margin (a distance).

• Points on the decision line satisfy: $w^T x - b = 0$

• First imagine the line goes through the origin: $w^T x = 0$
 Then shift origin: $w^T (x - a) = 0$
 Choose $a \parallel w \Rightarrow b = w^T a = \| a \| \times \| w \| \Rightarrow \| a \| = \frac{b}{\| w \|}$
Points on support vector lines (dashed) are given by:

\[w^T x = b + \delta \]
\[w^T x = b - \delta \]

If I change: \(w \to \lambda w, b \to \lambda b, \delta \to \lambda \delta \) the equations are still valid. Thus we can choose \(\delta = 1 \) without loss of generality.
Primal Problem

• We can express the margin as:
 \[2 \left(\frac{b + 1}{||w||} - \frac{b}{||w||} \right) = \frac{2}{||w||} \]
 2/||w|| is always true. Check this also for b in (-1,0).

• Recall: we want to maximize the margin, such that all data-cases end up on the correct side of the support vector lines.

\[
\min_{w,b} ||w||^2 \text{ subject to } \begin{cases}
 w^T x_n \geq b + 1 & \text{if } y_n = +1 \\
 w^T x_n \leq b - 1 & \text{if } y_n = -1
\end{cases} \quad \forall n
\]
Primal problem (QP)

\[
\begin{align*}
\min_{w,b} & \quad \frac{1}{2} \| w \|^2 \\
\text{s.t.} & \quad y_n (w^T x_n - b) - 1 \geq 0 \quad \forall n
\end{align*}
\]
Slack Variables

• It is not very realistic to assume that the data are perfectly separable.

• Solution: add slack variables to allow violations of constraints:

\[
\begin{align*}
\begin{cases}
 w^T x_n \geq b + 1 - \xi_n & \text{if } y_n = +1 \\
 w^T x_n \leq b - 1 + \xi_n & \text{if } y_n = -1
\end{cases} \quad \forall n
\end{align*}
\]

• However, we should try to minimize the number of violations. We do this by adding a term to the objective:

\[
\min_{w, b, \xi} \frac{1}{2} ||w||^2 + C \sum_{n=1}^{N} \xi_n
\]

s.t. \(y_n (w^T x_n - b) - 1 + \xi_n \geq 0 \quad \forall n \)

s.t. \(\xi_n \geq 0 \quad \forall n \)
Let’s say we wanted to define new features: $\phi(x) = [x, y, x^2, y^2, xy, ...]$

The problem would then transform to:

$$
\min_{w, b, \xi} \frac{1}{2} ||w||^2 + C \sum_{n=1}^{N} \xi_n \\
\text{s.t. } y_n (w^T \phi(x_n) - b) - 1 + \xi_n \geq 0 \quad \forall n \\
\text{s.t. } \xi_n \geq 0 \quad \forall n
$$

Rationale: data that is linearly non-separable in low dimensions may become linearly separable in high dimensions (provided sensible features are chosen).
• Let’s say we wanted very many features (F>>N), or perhaps \textit{infinitely many features}.

• In this case we have very many parameters w to fit.

• By converting to the \textit{dual problem}, we have to deal with exactly N parameters.

• This is a change of basis, where we recognize that we only need dimensions inside the space spanned by the data-cases.

• The transformation to the dual is rooted in the theory of \textit{constrained convex optimization}.
 For a convex problem (no local minima) the dual problem is equivalent to the primal problem (i.e. we can switch between them).
Dual Problem (QP)

\[
\max_{\alpha} \sum_n \alpha_n - \frac{1}{2} \sum_{n,m} \alpha_n \alpha_m y_n y_m \phi_n^T \phi_m
\]

s.t. \[\sum_n \alpha_n y_n = 0, \quad \alpha_n \in [0, C] \quad \forall n \]

- The \(\alpha_n \) should be interpreted as forces acting on the data-items. Think of a ball running down a hill (optimizing \(w \) over \(||w||^2 \)). When it hits a wall, the wall start pushing back, i.e. the force is active.

If data-item is on the correct side of the margin: no force active: \(\alpha_n = 0 \)

If data-item is on the support-vector line (i.e. it is a support vector!) The force becomes active: \(\alpha_n \in [0, C] \)

If data-item is on the wrong side of the support vector line, the force is fully engaged: \(\alpha_n = C \)
Complementary Slackness

- The complementary slackness conditions come from the KKT conditions in convex optimization theory.

\[\alpha_n (y_n (w^T \phi_n - b) - 1 + \xi_n) = 0 \]

- From these conditions you can derive the conditions on alpha (previous slide)

- The fact that many alpha’s are 0 is important for reasons of efficiency.
Kernel Trick

• Note that the dual problem only depends on $\phi_n^T \phi_m$

• We can now move to infinite number of features by replacing:

$$\phi(x_n)^T \phi(x_m) \rightarrow K(x_n, x_m)$$

• As long as the kernel satisfies 2 important conditions you can forget about the features

$$v^T K v \geq 0 \forall v \ (\text{positive semi definite, positive eigenvalues})$$

$$K = K^T \ (\text{symmetric})$$

• Examples:

$$K_{pol}(x, y) = (r + x^T y)^d$$

$$K_{rbf}(x, y) = c \exp(-\beta \| x - y \|^2)$$
Prediction

• If we work in high dimensional feature spaces or with kernels, b has almost no impact on the final solution. In the following we set \(b=0 \) for convenience.

• One can derive a relation between the primal and dual variables (like the primal dual transformation, it requires Lagrange multipliers which we will avoid here. But see notes for background reading).

• Using this we can derive the prediction equation:

\[
\hat{y}_{test} = \text{sign} \left[w^T x_{test} \right] = \text{sign} \left[\sum_{n \in SV} \alpha_n y_n K(x_{test}, x_n) \right]
\]

• Note that it depends on the features only through their inner product (or kernel).

• Note: prediction only involves support vectors (i.e. those vectors close to or on wrong side of the boundary). This is also efficient.
Conclusions

• kernel-SVMs are non-parametric classifiers: It keeps all the data around in the kernel-matrix.

• Still we often have parameters to tune (C, kernel parameters). This is done using X-validation or by minimizing a bound on the generalization error.

• SVMs are state-of-the-art (given a good kernel).

• SVMs are also slow (at least $O(N^2)$). However approximations are available to elevate that problem (i.e. $O(N)$).