Boosting

• Main idea:

 – train classifiers (e.g. decision trees) in a sequence.

 – a new classifier should focus on those cases which were incorrectly classified in the last round.

 – combine the classifiers by letting them vote on the final prediction (like bagging).

 – each classifier could be (should be) very “weak”, e.g. a decision stump.
Example

this line is one simple classifier saying that everything to the left + and everything to the right is -
Boosting Intuition

• We adaptively weigh each data case.

• Data cases which are wrongly classified get high weight (the algorithm will focus on them)

• Each boosting round learns a new (simple) classifier on the weighed dataset.

• These classifiers are weighed to combine them into a single powerful classifier.

• Classifiers that obtain low training error rate have high weight.

• We stop by using monitoring a hold out set (cross-validation).
Boosting in a Picture

- Training cases
- Boosting rounds

Correctly classified
Training case has large weight in this round

This DT has a strong vote.
And in animation

Original Training set: Equal Weights to all training samples

Taken from “A Tutorial on Boosting” by Yoav Freund and Rob Schapire
AdaBoost(Example)

ROUND 1

\(h_1 \)

\[\varepsilon_1 = 0.30 \]
\[\alpha_1 = 0.42 \]

\(D_2 \)
AdaBoost (Example)

ROUND 2

$\epsilon_2 = 0.21$

$\alpha_2 = 0.65$

D_3
AdaBoost (Example)

ROUND 3

\[h_3 \]

\[\varepsilon_3 = 0.14 \]
\[\alpha_3 = 0.92 \]
H_{final} = \text{sign}(0.42 + 0.65 + 0.92)
Given: \((x_1, y_1), \ldots, (x_m, y_m)\) where \(x_i \in X, y_i \in Y = \{-1, +1\}\)

Initialise \(D_1(i) = \frac{1}{m}\).

For \(t = 1, \ldots, T\):

• Find the classifier \(h_t : X \rightarrow \{-1, +1\}\) that minimizes the error with respect to the distribution \(D_t\):

\[
h_t = \arg \min_{h_j \in H_t} \epsilon_j = \sum_{i=1}^{m} D_t(i) \left[y(i) \neq h_j(x_i) \right]
\]

• Prerequisite: \(\epsilon_t < 0.5\), otherwise stop.

• Choose \(\alpha_t \in \mathbb{R}\), typically \(\alpha_t = \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}\) where \(\epsilon_t\) is the weighted error rate of classifier \(h_t\).

• Update:

\[
D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
\]

where \(Z_t\) is a normalisation factor (chosen so that \(D_{t+1}\) will be a distribution).

Output the final classifier:

\[
H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right)
\]

The equation to update the distribution \(D_t\) is constructed so that:

\[
\exp(-\alpha_t y_i h_t(x_i)) \begin{cases}
< 1, & y(i) = h_t(x_i) \\
> 1, & y(i) \neq h_t(x_i)
\end{cases}
\]

Thus, after selecting an optimal classifier \(h_t\) for the distribution \(D_t\), the examples \(x_i\) that the classifier \(h_t\) identified correctly are weighted less and those that it identified incorrectly are weighted more.

Therefore, when the algorithm is testing the classifiers on the distribution \(D_{t+1}\), it will select a classifier that better identifies those examples that the previous classifier missed.