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We need to know G is almost surely a probability distribution. That amounts to showing
that the wys are between 0 and 1, which is clear, and that ) .- w; = 1 with probability

one. Lemma 1 allows us to reformulate the problem.

Lemma 1:
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By Lemma 1, Y 72 wy = 1 with probability 1, if an only if [[;~,(1 — gx) = 0 with
probability 1. By the symmetry of the problem, it is equivalent to show that [[,~, g = 0
with probability 1.

Recall that the ¢s have iid Beta distributions. We proceed under the assumption that
Ellog(q1)] is finite. It is certainly no greater than 0, so the only other possibility is that
Ellog(q1)] = —oo. We discuss that possibility at the end.

Clearly the log(gx)s are iid with finite mean so by the SLLN
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- log(q1)] < 0.

It follows that
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and
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Since this occurs with probability one, our result follows from the following lemma about

scalar sequemnces.

Lemma 2: For a scalar sequence x,, defined on [0, 1], if AL p € [0,1) then z, — 0.

Proof: Since z/™ — p, for any & there exists Nj s.t. n > N implies ’l’}/n —p| < 0.

For any € > 0, pick § > 0 such that (p + )" < e for n > N;s. Since —6 < /" —p <9,

0< zi/m < p+dand 0 <z, < (p+0)" <efor any n > Ny, which completes the proof.

If Ellog(q1)] = —o0, we can create truncated versions of the gs, say s that have finite

expectation. Then
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