Proof for DP argument in Chapter 15

Ronald Christensen

Department of Mathematics and Statistics

University of New Mexico

January 17, 2010

Abstract

KEY WORDS:

We need to know G is almost surely a probability distribution. That amounts to showing that the w_k s are between 0 and 1, which is clear, and that $\sum_{k=1}^{\infty} w_k = 1$ with probability one. Lemma 1 allows us to reformulate the problem.

Lemma 1:

$$\sum_{k=1}^{\infty} w_k \equiv \sum_{k=1}^{\infty} q_k \prod_{j=1}^{k-1} (1 - q_j) = 1 - \prod_{k=1}^{\infty} (1 - q_k)$$

Proof: Take $r_i \equiv (1 - q_k)$,

$$\sum_{k=1}^{\infty} q_k \prod_{j=1}^{k-1} (1 - q_j) = q_1 + q_2(1 - q_1) + q_3(1 - q_1)(1 - q_2) + \cdots$$

$$= (1 - r_1) + (1 - r_2)r_1 + (1 - r_3)r_1r_2 + \cdots$$

$$= 1 - r_1 + r_1 - r_2r_1 + r_1r_2 - r_3r_1r_2 + \cdots$$

$$= 1 - \prod_{k=1}^{\infty} r_k$$

$$= 1 - \prod_{k=1}^{\infty} (1 - q_k)$$

By Lemma 1, $\sum_{k=1}^{\infty} w_k = 1$ with probability 1, if an only if $\prod_{k=1}^{\infty} (1 - q_k) = 0$ with probability 1. By the symmetry of the problem, it is equivalent to show that $\prod_{k=1}^{\infty} q_k = 0$ with probability 1.

Recall that the q_k s have iid Beta distributions. We proceed under the assumption that $E[\log(q_1)]$ is finite. It is certainly no greater than 0, so the only other possibility is that $E[\log(q_1)] = -\infty$. We discuss that possibility at the end.

Clearly the $\log(q_k)$ s are iid with finite mean so by the SLLN

$$\frac{\sum_{k=1}^{n} \log(q_k)}{n} \stackrel{a.s.}{\to} E[\log(q_1)] < 0.$$

It follows that

$$e^{\sum_{k=1}^{n} \log(q_k)/n} \xrightarrow{a.s} e^{\mathrm{E}[\log(q_1)]} < 1$$

and

$$\left(e^{\sum_{k=1}^{n}\log(q_k)}\right)^{1/n} \overset{a.s.}{\to} e^{\mathrm{E}[\log(q_1)]} < 1$$

or

$$\left(\prod_{k=1}^n q_k\right)^{1/n} \stackrel{a.s.}{\to} e^{\mathrm{E}[\log(q_1)]} < 1.$$

Since this occurs with probability one, our result follows from the following lemma about scalar sequences.

Lemma 2: For a scalar sequence x_n defined on [0,1], if $x_n^{1/n} \to p \in [0,1)$ then $x_n \to 0$.

Proof: Since $x_n^{1/n} \to p$, for any δ there exists N_{δ} s.t. $n \geq N_{\delta}$ implies $|x_n^{1/n} - p| < \delta$. For any $\epsilon > 0$, pick $\delta > 0$ such that $(p + \delta)^n < \epsilon$ for $n \geq N_{\delta}$. Since $-\delta < x_n^{1/n} - p < \delta$, $0 \leq x_n^{1/n} and <math>0 \leq x_n < (p + \delta)^n < \epsilon$ for any $n \geq N_{\delta}$, which completes the proof.

If $E[\log(q_1)] = -\infty$, we can create truncated versions of the q_k s, say \tilde{q}_k s that have finite expectation. Then

$$\frac{\sum_{k=1}^{n} \log(q_k)}{n} \le \frac{\sum_{k=1}^{n} \log(\tilde{q}_k)}{n} \stackrel{a.s.}{\to} \mathrm{E}[\log(\tilde{q}_1)] < 0$$

SO

$$0 \le e^{\sum_{k=1}^{n} \log(q_k)/n} \le e^{\sum_{k=1}^{n} \log(\tilde{q}_k)/n} \xrightarrow{a.s} e^{\operatorname{E}[\log(q_1)]} < \epsilon$$

and

$$\left(\prod_{k=1}^n q_k\right)^{1/n} \to 0.$$