model { for(i in 1:n1){low[i] ~ dlnorm(mu1, tau)} for(i in 1:n2){normal[i] ~ dlnorm(mu2, tau)} for(i in 1:n3){high[i] ~ dlnorm(mu3, tau)} mu1 ~ dnorm(4.87, 347.12) mu2 ~ dnorm(5.39, 357.42) mu3 ~ dnorm(6.40, 166.67) tau ~ dgamma(0.001,0.001) lowf ~ dlnorm(mu1, tau) normalf ~ dlnorm(mu2, tau) highf ~ dlnorm(mu3, tau) P <- step(mu3-mu2)*step(mu2-mu1)*step(mu3-mu1) diff21 <- mu2-mu1 diff31 <- mu3-mu1 diff32 <- mu3-mu2 prob21 <- step(diff21) prob31 <- step(diff31) prob32 <- step(diff32) med1 <- exp(mu1) med2 <- exp(mu2) med3 <- exp(mu3) relmed21 <- med2/med1 relmed31 <- med3/med1 relmed32 <- med3/med2 MAD <- (abs(diff21)+abs(diff31)+abs(diff32))/3 prob <- step(MAD-0.75) for(i in 1:11){ aL[i] <- piL*sqrt(tau/(2*3.14159))*(1/x[i])*exp(-(tau/2)*(log(x[i])-mu1)*(log(x[i]) - mu1)) bL[i] <- piN*sqrt(tau/(2*3.14159))*(1/x[i])*exp(-(tau/2)*(log(x[i])-mu2)*(log(x[i])-mu2)) cL[i] <- piH*sqrt(tau/(2*3.14159))*(1/x[i])*exp(-(tau/2)*(log(x[i])-mu3)*(log(x[i])-mu3)) pL[i] <- aL[i]/(aL[i] + bL[i] + cL[i]) pN[i] <- bL[i]/(aL[i] + bL[i] + cL[i]) pH[i] <- cL[i]/(aL[i] + bL[i] + cL[i]) } }