model{ for(i in 1:n){ FEV[i] ~ dnorm(mu[i],tau) mu[i] <- beta[1] + beta[2]*Age[i] + beta[3]*Smoke[i] + beta[4]*Age[i]*Smoke[i] } beta[1:r] ~ dmnorm(beta0[1:r],C0inv[1:r,1:r]) # BCJ prior tau ~ dgamma(a,b) #beta[1] ~ dnorm(0,0.001) # Diffuse prior #beta[2] ~ dnorm(0,0.001) #beta[3] ~ dnorm(0,0.001) #beta[4] ~ dnorm(0,0.001) #tau ~ dgamma(0.001,0.001) ## Estimate mean FEV for smokers and nonsmokers who are 10, ..., 19 years old for(i in 1:10){ meanFEVs[i] <- beta[1] + (beta[2]+beta[4])*(i+9) + beta[3] meanFEVns[i] <- beta[1] + beta[2]*(i+9) } ## Easy to estimate relative means and mean differences as well RM <- meanFEVns[9]/meanFEVs[9] ## RM comparing 18 year old smoker to 18 year old nonsmoker MD <- meanFEVs[9]-meanFEVns[4] ## MD comparing 18 year old smoker to 13 year old nonsmoker ## Predict the FEV for a 20 year old smoker and nonsmoker FEV20s ~ dnorm(mu20s,tau) FEV20ns ~ dnorm(mu20ns,tau) mu20s <- beta[1] + (beta[2]+beta[4])*20 + beta[3] mu20ns <- beta[1] + beta[2]*20 }