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Abstract

In this chapter we continue the discussion of diagnostic testing
by considering instruments that are based on continuous outcomes.
We also introduce additional diagnostic information in the form of
covariates and additional tests. Our primary goal is to generalize the
notion of PVP and PVN to a predictive probability of infection/disease
conditional on all available diagnostic information. In addition, we
generalize the concepts of sensitivity and specificity to the receiver
operating characteristic (ROC) curve, which gives information about
all possible sensitivity-specificity pairs over the range of all possible
cutoffs for a continuous test for disease. The material presented here
are mainly taken from work that is discussed in Choi, Johnson, and
Thurmond (2006), Choi et al. (2006), and Mcinturff et. al (2004).
This work and WinBUGS code are also catalogued at the website
www.epi.ucdavis/diagnostictests/.

0



1 Introduction

Some tests, such as commercial pregnancy tests, are clearly dichotomous.

But many tests provide numbers on a continuous scale. One approach to

evaluating the performance of a continuous diagnostic outcome is to turn

it into a dichotomous test. Pick a cutoff value c and decide that the test

is positive if the continuous measurement is larger than c, or negative if

smaller. In this instance, the methods of Chapter 14 apply. The cutoff value

is typically chosen to give either good sensitivity or good specificity, or both,

if possible. Increasing sensitivity generally decreases specificity, and vice

versa. We may still be interested in making inferences about prevalence and

other issues such as costs associated with misclassifying D and D̄ also come

into play.

Dichotomizing continuous test scores is clearly an inefficient use of data

since information is lost in the process i.e., the magnitudes of the individual

test scores are ignored. From dichotomized data the predictive probability of

disease is the same for all T+ (or T−) individuals regardless of their actual

test scores. Subjects with test scores far exceeding the cutoff (or far below the

cutoff) are treated as identical to subjects whose test values are barely above

the cutoff (or barely below the cutoff). In fact, we expect the predictive

probabilities of D and D̄ to become more pronounced as one gets farther

from the cutoff.

We thus proceed to calculate the predictive probability of infection/disease

given the precise diagnostic outcome information, namely without dichotomiza-

tion. In addition, if multiple diagnostic outcomes are available, they are

combined and ultimately a single predictive probability is obtained, thus
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converting information to a simpler and hopefully more familiar, probability

scale. If an individual has a 99% chance of being infected, it may well be

concluded that they are indeed infected, and similarly, if there is only a 1%

chance, they would likely be declared non infected. If their probability is 0.5,

it would likely not be clear which is the case and more information should

be collected for that individual.

The diagram in Figure 1 illustrates this idea. There are four individuals

with test scores y1 = 40, y2 = 64, y3 = 66, and y4 = 110. The cutoff value is

k = 65 so that were the data to be dichotomized using k, individuals 1 and

2 would test negative while individuals 3 and 4 would test positive. Hence

the dichotomized data for these four individuals would be (T1, T2, T3, T4) =

(−,−,+,+). Therefore, based on the dichotomized data, individuals 1 and

2 are treated as identical even though their test scores differ in magnitude by

24 units, and individuals 3 and 4 are treated as identical even though their

test scores differ in magnitude by 44 units. However, individuals 2 and 3

are treated as different in spite of the fact that the magnitudes of their test

scores differ by only 2 units.

The standard approach of dichotomizing the data simplifies the statistical

modeling and data analysis and leads to easily interpretable parameters (such

as sensitivity, specificity, predictive value positive, predictive value negative).

This practice also facilitates the usual goal of testing, which is to classify

individuals as diseased or not. These are key reasons for the longevity of the

common practice of dichotomizing continuous test data.

In addition to diagnosis, we are also interested in ascertaining the quality

of a continuous (or ordered categorical) test for infection or disease. One
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Figure 1: Test results in relation to a cutoff.

way to accomplish this is to estimate its corresponding receiver operating

characteristic (ROC) curve. An ROC curve gives a graphical measure of the

accuracy of a continuous medical test. Let y denote the continuous outcome.

We assume that large values of y are associated with having the disease.

Let η(c) and θ(c) denote the test specificity and sensitivity that would result

from using a dichotomous test with cutoff c. The ROC curve is a plot of the

pairs ((1 − θ(c)), η(c)) for all values of c. In other words, an ROC curve is

a plot of the false positive probability (horizontal axis) versus the sensitivity

(vertical axis) obtained for all c. For example, in the top panel of Figure

2, for every possible diagnostic score c, compute the probability that a non-

diseased individual is above c and the probability that a diseased individual

is above c. The ROC curve, given in the bottom panel, is a plot of these
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Figure 2: Illustration of distributions of continuous test scores (top panel)

and their corresponding ROC curve (bottom panel)

pairs.

We require some notation. Denote the pdf for continuous test outcomes

from the population D̄ as f0, and denote the corresponding cdf as F0 and

survival function as S0 = 1−F0. Similarly, denote the pdf for outcomes from

the population D as f1, and denote the corresponding cdf as F1 and survival

function as S1 = 1−F1. The densities f0 and f1 are regarded as “truth.” For

now, we define inferential objects of interest that are based on them. First,

we define the predictive probability of disease/infection as Pr(D|y) where y
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is a realization from either f0 or f1. In general, we don’t know which, but we

do know that y was randomly sampled from a population with prevalence π.

Thus, the marginal pdf for y is simply f(y) = (1−π)f0(y)+πf1(y), using the

law of total probability. Then a simple application of Bayes theorem gives

Pr(D|y, π) = πf1(y)

πf1(y) + (1− π)f0(y)
.

Thus, if the two pdf’s and the prevalence were all known, we could easily

calculate this probability over a range of values for y.

Exercise. Give the formula for Pr(D|y) when f0 corresponds to a N(0, 1) pdf

and f1 corresponds to a N(1, 2) pdf. Furthermore, suppose you decided to

conclude that an individual was D if this probability exceeded 0.95. Then

calculate the log odds of D, simplify algebraically, and find the value yc such

that the rule Pr(D|y) > 0.95 ⇔ logit(Pr(D|y)) > logit(0.95) ⇔ y > yc.

The ROC curve can be computed as

ROC(t) = S1

(
S−1
0 (t)

)
for t ∈ [0, 1]. Pepe (2003, Chapter 4) gives an expanded discussion of ROC

curves.

Exercise. Show this result. Hint: For a given cutoff c, let 1− θ(c) = t. This

implies that 1− θ(c) = S0(c) = t.

A parameter of interest for the ROC function is the area under the curve

(AUC). The AUC is the probability that a randomly selected diseased indi-

vidual has a test score greater than that for a randomly selected non-diseased
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individual. In other words, AUC = Pr(X > Y ), where X ∼ f1 and, inde-

pendently, Y ∼ f0. AUC can also be interpreted as the average sensitivity

across all possible false positive probabilities.

Exercise. Show this result. Hint:

Pr(X > Y ) =

∫ ∞

−∞

∫ ∞

y

f0(y)f1(x)dxdy =

∫
S1(y)f0(y)dy.

then substitute y = S−1
0 (t) and use the previous representation for AUC.

Obtain the AUC if X ∼ N(1, 2) and Y ∼ N(0, 1). Hint: Use the fact that

X − Y also has a known normal distribution.

If the support for diseased outcomes consists of a range of values that

are all higher than the support values for non-diseased outcomes, the test

can perfectly discriminate between the groups. In other words, there exists

a cutoff value c that gives both perfect sensitivity and specificity. However,

even in this case, one can do stupid things. If c is chosen too low, there will

be positive probability of false positive outcomes, and perfect sensitivity. If

c is too high, there will be positive probability of false negative outcomes

and perfect specificity. In such cases, the ROC curve is not really defined

because there are many sensitivities that go along with zero false negatives.

Nonetheless, the ideal ROC curve would be the line ROC(t) = 1 with corre-

sponding AUC = 1. Tests that are completely worthless have measurements

that are unrelated to the disease. In that case, f0 = f1, so for any cutoff, the

probability of a true positive equals the probability of a false positive. The

ROC curve is the line ROC(t) = t with corresponding AUC = 0.5.
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pAUC is a partial area under the curve. For 0 ≤ t0 < t1 ≤ 1

pAUC =

∫ t1

t0

ROC(t)dt.

Often t0 = 0, in which case a relatively small value of t1 emphasizes cutoff

values that yield low false positive probability. These may represent the only

sensitivity and specificity combinations that are of medical interest.

Another measure of accuracy for continuous tests is the likelihood ratio

function, LR(y) = f1(y)/f0(y). Our assumption that large values of y are

indicative of disease is essentially the same as assuming that the likelihood

ratio increases with y.

2 Diagnosis and ROC curves

We consider methods for disease diagnosis and ROC curve estimation based

on a single test outcome. We both evaluate test accuracy and develop predic-

tive models. For parametric extensions based on multiple continuous tests,

see e.g., Choi et al. (2006). For nonparametric ROC analysis see, e.g., Han-

son, Branscum, and Gardner (2008).

As before, we assume densities f1 and f0 for the diagnostic outcome data

from diseased and non-diseased populations, respectively. However, we now

assume that they are members of parametric families f1(·|θ1) and f0(·|θ0).

Appropriate choice of the parametric families is problem-specific but a com-

mon choice has been normal or log normal for each.

If a gold-standard (GS) is available, it may be the case that training

data are available. This means that samples of diseased and non-diseased

individuals are tested and diagnostic outcomes obtained. It is then possible
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to estimate parameters associated with the two parametric families. However,

it is generally our experience that even if training data are available, there

are many instances where outcomes are obtained without the followup of

a GS test. If the GS test were to always be applied, there would be no

need whatsoever to perform additional (imperfect) diagnostic testing. In the

absence of GS testing, test outcome data come from a mixture distribution

where the prevalence, π, is the mixing proportion. As previously mentioned,

we mainly consider the case without a GS test.

We assume independent prior densities for θ1, θ0, π, say p1(θ1), p0(θ0),

p∗(π). If we were lucky enough to have training data, they would be modeled

(independently) as:

y01, . . . , y0n0 |θ0
iid∼ f0(·|θ0), θ0 ∼ p0(θ0),

y11, . . . , y1n1 |θ1
iid∼ f1(·|θ1), θ1 ∼ p1(θ1).

For data without a gold-standard, a random sample is modeled according

the mixture

y1, . . . , yn|π, θ1, θ0
iid∼ πf1(·|θ1) + (1− π)f0(·|θ0)

p(θ0, θ1, π) = p0(θ0)p1(θ1)p∗(π).

Constraints are placed on θ0 and θ1 and an informative prior placed on π to

alleviate issues related to nonidentifiability.

Probably the most common parametric model has been the binormal

model where f0(·|θ0) = N(·|µ0, σ
2
0) and f1(·|θ1) = N(·|µ1, σ

2
1), either based

on the original outcome data, or some transformation of it (like the log for
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example). We note that the binormal model in the frequentist ROC setting

refers to a semiparametric model in which the data are assumed to be normal

after transformation by an unspecified monotone function.

Clinical diagnosis proceeds by calculating the predictive probability of

disease conditional on an individuals (possibly transformed) diagnostic data

y. This is given by

Pr(D|y, data ) =

∫
Pr(D|y, θ0, θ1, π)p(θ0, θ1, π| data )dθ0dθ1dπ

=

∫
f1(y|θ1)π

f1(y|θ1)π + f0(y|θ0)(1− π)
p(θ0, θ1, π| data )dθ0dθ1dπ

where data denotes the combined data for non-diseased and diseased indi-

viduals. A decision about whether or not an individual is diseased can be

based on the magnitude of this predictive probability. However, it is also

possible to monitor Pr(D|y, θ0, θ1, π) in a Gibbs sampler and to obtain a

probability interval for this object, which is the proportion of infected indi-

viduals in the population with serology value y. The posterior mean of this

object thus serves two inferential purposes: (i) it’s the predictive probability

of disease for a particular individual with test outcome y and (ii) it’s an

estimate of the proportion of diseased individuals in the population having

test outcome y.

Let Φ(·) denote the standard normal cdf. Here, the ROC curve is given

by

ROC(t) = Φ

(
µ1 − µ0

σ1

+
σ0

σ1

Φ−1(t)

)
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with corresponding AUC given by

AUC = Φ

(
µ1 − µ0√
σ2
1 + σ2

0

)
.

Bayes estimates of these are their corresponding posterior means.

Exercise. Derive both of these results.

Example 2.1. Pancreatic cancer.

Pepe (2003) illustrates methods for frequentist ROC data analysis using

case-control cancer data from Wieand et al. (1989). These are individuals

seen at the Mayo Clinic in Rochester, USA. Ninety cases have pancreatic

cancer, and 51 controls were patients without cancer but who had chronic

pancreatitis. Thus these data are training data and we perform a GS analysis

based on them.

One goal was to determine which of two biomarkers, cancer antigen CA-

125 and carbohydrate antigen CA-19-9, better discriminates cases from con-

trols. The data were log transformed for analysis so that normal distributions

could be used for modeling. The binormal model was used with diffuse in-

dependent N(0, 100) priors for means and Γ(0.01, 0.01) priors for precisions.

The WinBUGS code below illustrates how to make inferences for the predic-

tive probability of disease and ROC curve estimation.

Estimated ROC curves and 95% pointwise posterior bands from a binor-

mal analysis are presented in Figure 3. Over a range of cutoff values with suf-

ficiently high specificity (e.g. t ≤ 0.2), the ROC curve for CA-19-9 dominates

the curve for cancer antigen 125, suggesting CA-19-9 has superior classifica-

tion accuracy relative to CA-125. The posterior median and 95% interval for
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Figure 3: ROC curves (solid lines) with 95% pointwise probability bands for

two pancreatic cancer biomarkers.

the AUC of CA-19-9 is 0.879 (0.818, 0.925) and is 0.680 (0.590, 0.760) for the

CA-125 serum biomarker.

The WinBUGS code below generates output based on the two tests using

the pancreatic data. The two tests are modeled in a way that output would

be the same regardless of whether data for each test were analyzed separately.

It is simply efficient to get output from a single code. In addition, if the test

outcomes could be regarded as independent, conditional on disease status,

then the same code could be modified to compare ROC values for the two
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tests, for example by simply monitoring ROC199(t)− ROC125(t), for any or

all given values of t. If the test outcomes from the two tests were dependent,

we would model outcomes as bivariate normal in each of the two populations

as in Choi et al (2006). Of course this assumption would require scrutiny.

In the following code, the vector x used in the formulas for the ROC

curves contains the values of Φ−1(t) across the grid t ∈ {0, 0.01, 0.02, . . . , 1}.

For t = 0, 1, we set Φ−1(t) equal to −100 and 100, respectively. The following

line of R code creates a text file stored on the C drive in the Temp directory

(this location can be changed if desired) that contains the vector x in a format

that can be copied and pasted into WinBUGS:

dput(c(-100,qnorm(seq(0.01,0.99,0.01)),100),file="C:\\Temp\\x.txt")

Alternatively, the user can simply type in the grid of values. Because

the data were log transformed, the variable names ty0CA125 and ty0CA199

were used for the transformed CA-125 and CA-19-9 biomarker data for the

controls. Similar variable names were used in WinBUGS for the transformed

data for the cases.

model{ # Model for the outcomes for both tests

for(i in 1:51){

ty0CA199[i] <- log(y0CA199[i]) # Transform controls

ty0CA125[i] <- log(y0CA125[i])

ty0CA199[i] ~ dnorm(mu0199,tau0199) # Log normal model

ty0CA125[i] ~ dnorm(mu0125,tau0125) # for controls

}

for(i in 1:90){

12



ty1CA199[i] <- log(y1CA199[i]) # Transform cases

ty1CA125[i] <- log(y1CA125[i])

ty1CA199[i] ~ dnorm(mu1199,tau1199) # Log normal model

ty1CA125[i] ~ dnorm(mu1125,tau1125) # for cases

} # Diffuse priors

mu0199~dnorm(0,0.01)

tau0199~dgamma(0.01,0.01)

mu0125~dnorm(0,0.01)

tau0125~dgamma(0.01,0.01)

mu1199~dnorm(0,0.01)

tau1199~dgamma(0.01,0.01)

mu1125~dnorm(0,0.01)

tau1125~dgamma(0.01,0.01)

AUC199 <- phi( (mu1199 - mu0199)/sqrt(1/tau0199 + 1/tau1199))

AUC125 <- phi( (mu1125 - mu0125)/sqrt(1/tau0125 + 1/tau1125))

for(i in 1:101){

# Get ROC values over the grid x[] = phi^{-1}(t[])

ROC199[i]<- phi(sqrt(tau1199)*(mu1199-mu0199)+sqrt(tau1199/tau0199)*x[i])

ROC125[i]<- phi(sqrt(tau1125)*(mu1125-mu0125)+sqrt(tau1125/tau0125)*x[i])

}# Predictive probabilities of infection over the grid y[]

for(i in 1:321){

f1199[i] <- sqrt(tau1199)*exp((-tau1199/2)*pow(y[i]-mu1199,2))

f0199[i] <- sqrt(tau0199)*exp((-tau0199/2)*pow(y[i]-mu0199,2))

f1125[i] <- sqrt(tau1125)*exp((-tau1125/2)*pow(y[i]-mu1125,2))

f0125[i] <- sqrt(tau0125)*exp((-tau0125/2)*pow(y[i]-mu0125,2))
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probMale125[i] <- f1125[i]*pm/(f1125[i]*pm + f0125[i]*(1-pm))

probFemale125[i] <- f1125[i]*pf/(f1125[i]*pf + f0125[i]*(1-pf))

probMale199[i] <- f1199[i]*pm/(f1199[i]*pm + f0199[i]*(1-pm))

probFemale199[i] <- f1199[i]*pf/(f1199[i]*pf + f0199[i]*(1-pf))

}

} # The data and grid points

list(pm = 0.028, pf = 0.005,

x = c(-100, -2.32634787404084, -2.05374891063182, ...,

2.05374891063182, 2.32634787404084, 100),

y = c(2, 2.025, 2.05, 2.075, ..., 9.95, 9.975, 10) )

list(mu0199=0,mu1199=0,mu0125=0,mu1125=0,tau0199=1,

tau1199=1,tau0125=1,tau1125=1)

y0CA199[] y0CA125[] y1CA199[] y1CA125[]

28 13.3 2.4 79.1

15.5 11.1 719 31.4

8.2 16.7 2106.6 15

3.4 12.6 24000 77.8

...

END

There are two grids in the data, one is x, which corresponds to the grid

of t values discussed above. The other is y, which is used to get values of

predictive probabilities of disease over the range of log outcomes in the data,

namely from 2 to 10. For each grid point, WinBUGS output includes mean

(or median), and a 95% probability interval for the posterior distribution of

the proportion of diseased individuals, Pr(D|y, data ), and the ROC values
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ROC(t). In the code, there are predictive probabilities for both types of

tests and for males and females. Results are plotted in Figure 3, but we wait

to discuss them until we finish discussing how we handled the ROC curve

output.

Summary output from WinBUGS was saved as a text file with column

headings named “PostMean”, “L025”, and “U975”, and read into R. The R

code that produced Figure 3 is presented below.

t <- c(0,seq(0.01,0.99,0.01),1)

ROC125 <- PostMean[1:101]

ROC199 <- PostMean[102:202]

ROC125L <- L025[1:101]

ROC125U <- U975[1:101]

ROC199L <- L025[102:202]

ROC199U <- U975[102:202]

plot(t,ROC199,type="l",ylim=c(0,1),xlim=c(0,1),

axes=F,xlab="",ylab="",lwd=2)

axis(side=1,at=c(0,0.2,0.4,0.6,0.8,1),

labels=c("0","0.2","0.4","0.6","0.8","1"))

axis(side=2,at=c(0,0.2,0.4,0.6,0.8,1),

labels=c("0","0.2","0.4","0.6","0.8","1"),line=0)

lines(t,ROC125,lty=1,lwd=2)

lines(t,ROC199L,lty=2,lwd=2)

lines(t,ROC199U,lty=2,lwd=2)

lines(t,ROC125L,lty=2,lwd=2)

lines(t,ROC125U,lty=2,lwd=2)
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text(.1,.95, "CA-19-9") text(.3,.35, "CA-125")

Exercise. Revise the above code to give results for only the CA199 marker.

Run the code and compare results with those obtained here. Make your own

plot of the ROC curve for this single marker.

Example 2.2. Diagnosing pancreatic cancer continued.

We again consider the Wieand data but now examine the use of the CA-

19-9 and CA-125 markers to diagnose cancer of the pancreas for individual

patients. We note that all individuals associated with the data in the ex-

ample have already been diagnosed. But we can imagine that an individual

has just been tested and that either or both of the marker outcomes have

been obtained. Moreover, for this example, we have some additional infor-

mation. We have a large sample of extraneous data that indicated that the

prevalence for males is 2.8% and that the prevalence for females is 0.5%.

Thus, we decide to calculate predictive probabilities of pancreatic cancer as

a function of the log of the marker values for this individual, and why not

at the same time, calculate these probabilities over a range of values as al-

ready discussed. We do this for both males and females, separately. Note

that this really has little to do with males and females, but rather it has to

do with the prevalence. The predictive probability always depends heavily

on the prevalence. This particular analysis presumes known prevalences of

2.8% and 0.5%, respectively. These values correspond to the lifetime risk

for pancreatic cancer in Australian males and females (Australian Institute

of Health and Welfare National Mortality Database, Australias Health 2004;

http://www.aihw.gov.au). However, in the absence of known values, it is
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simple to modify the code to have two independent beta priors for the two

prevalences. If there were only one group of individuals involved, there would

be a single beta prior for it.

To perform this analysis, we assume that the operating characteristics

of the tests are the same in males and females, and in Australia if we are

to make the best use of the prevalence information. Figure 4 presents a

comparison of the predicted probability of pancreatic cancer across a range

of (log transformed) biomarker values for male and female patients. Specific

values are given below. The last for loop in the WinBUGS code above was

used to generate these results. The vector y used in that code contains log

transformed biomarker values ranging from 2 to 10 by increments of 0.025.

This vector was created in R using

dput(seq(2,10,0.025), file="C:\\Temp\\y.txt")

and then pasted into WinBUGS. Predictive probabilities are given in the

table below.

Marker Value

4 5 6 7

CA-19-9 Male 0.043 0.437 0.943 0.998

Female 0.008 0.145 0.800 0.991

CA-125 Male 0.072 0.324 0.717 0.891

Female 0.013 0.094 0.453 0.766

Exercise. Revise the above code to obtain only predictive probabilities of

pancreatic cancer using only the CA-19-9 marker. Obtain a plot of these

probabilities over the same grid.

17



2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log(y)

P
r(

D
|y

)

CA−19−9, Male
CA−19−9, Female
CA−125, Male
CA−125, Female

Figure 4: Predicted probability of pancreatic cancer across log transformed

biomarker scores (y).

Exercise. Augment the above code so that you can calculate the posterior

probability that the AUC based on CA-19-9 is larger than the AUC based

on CA-125, assuming that the two markers are conditionally independent.

Also give a 95% posterior interval for the difference.

2.1 Posterior Calculations

With gold-standard data, inferences are based on a posterior sample

{(π(j), θ
(j)
0 , θ

(j)
1 ) : j = 1, . . . ,MC}.
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For each sample point define

f
(j)
0 (y) ≡ f0(y|θ(j)0 ), F

(j)
0 (y) ≡ F0(y|θ(j)0 ), S

(j)
0 (y) = 1− F

(j)
0 (y)

and

f
(j)
1 (y) ≡ f1(y|θ(j)1 ), F

(j)
1 (y) ≡ F1(y|θ(j)1 ), S

(j)
1 (y) = 1− F

(j)
1 (y).

We can now compute posterior samples from the ROC curve. Let

ROC(j)(t) = S
(j)
1

(
S
−1(j)
0 (t)

)
.

These are computed across a fine grid for t, such as t = 0, 0.01, 0.02, . . . , 1.

We also obtain posterior samples

AUC(j) =

∫ 1

0

ROC(j)(t)dt or pAUC(j) =

∫ t1

t0

ROC(j)(t)dt

which are computed using a numerical integration procedure if they do not

have closed-form expressions. The ROC curve is estimated as

ROC(t)
.
=

1

MC

MC∑
j=1

ROC(j)(t)

=
1

MC

MC∑
j=1

S
(j)
1

(
S
−1(j)
0 (t)

)
with interval estimates derived from the percentiles of the posterior sample.

Point and interval estimates for AUC (or pAUC) are found similarly. Note

that computations related to the ROC curve do not involve the prevalence.

Disease diagnosis is based on the predictive probability of disease con-

ditional on an individuals test data y, which is approximated using Monte
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Carlo sampling as follows:

Pr(D|y, data ) =

∫
Pr(D|y, θ0, θ1, π, data )p(θ0, θ1, π| data )dθ0dθ1dπ

=

∫
f1(y)π

f1(y)π + f0(y)[1− π]
p(θ0, θ1, π| data )dθ0dθ1dπ

.
=

1

MC

MC∑
j=1

f
(j)
1 (y)π(j)

f
(j)
1 (y)π(j) + f

(j)
0 (y)[1− π(j)]

.

In the pancreatic cancer example where prevalences were assumed known

for males and females, the “known” values were substituted. This would

generally not be the case.

Exercise. Treat the pancreatic cancer data as if there were no GS test,

that is, regard the 51+90 = 141 observations as if they came from the mix-

ture πf1(·) + (1 − π)f0(·). Using only the CA-19-9 marker data, obtain

the predictive probabilities of pancreatic cancer. Use N(log(20),100) and

N(log(200),100) priors for the means in the no cancer and cancer cases re-

spectively, and the same priors for precisions. Also use a prior on beta(25,75)

prior for π, and then repeat using a beta(75,25) prior on π and compare re-

sults. Be careful to check for convergence. You should use starting values

that have the mean log marker value for the cancer group larger than for the

non cancer group. Finally, modify the code so that you can also obtain an

ROC curve estimate based on this marker. Give 95% confidence intervals for

the ROC(t) values for several values of t.

Exercise. Microarray technology and statistical methods for microarray data

analysis allow for identification of specific genes that are associated with dis-

ease (e.g. cancer) occurrence. The following case-control data from Pepe
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(2003, page 98) (see also Pepe et al., 2003) are gene expression levels for a

specific gene from 23 non-diseased individuals and from 30 ovarian cancer

patients. Obtain graphical (e.g. side-by-side boxplots, histograms) and nu-

merical (e.g. mean, standard deviation, range), summaries of the data to

investigate the distribution of gene expression levels for the two groups. Us-

ing a binormal analysis with diffuse prior distributions, (i) estimate the ROC

curve and obtain a pointwise probability band for it, (ii) obtain the poste-

rior mean and median AUC, and (iii) obtain and interpret a 95% probability

interval for AUC. Comment on the discriminatory ability of this gene as a

potential diagnostic test for ovarian cancer.

Gene expression level

Controls 0.442, 0.500, 0.510, 0.568, 0.571, 0.574, 0.588, 0.595,

0.595, 0.595, 0.598, 0.606, 0.617, 0.628, 0.641, 0.641,

0.680, 0.699, 0.746, 0.793, 0.884, 1.149, 1.785

Cases 0.543, 0.571, 0.602, 0.609, 0.628, 0.641, 0.666, 0.694,

0.769, 0.800, 0.800, 0.847, 0.877, 0.892, 0.925, 0.943,

1.041, 1.075, 1.086, 1.123, 1.136, 1.190, 1.234, 1.315,

1.428, 1.562, 1.612, 1.666, 1.666, 2.127

Exercise. Check the normality assumption for the cases and for the controls

in the data above. If the data don’t look normal, find a transformation that

makes them look better in this sense.

Exercise: Using the ovarian cancer gene expression data from the previous

exercise, plot the predicted probability across a grid of transformed gene ex-

pression levels. Also compute 95% pointwise bands for the prediction curve.
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Do this separately for women in the general population where disease preva-

lence is 0.04%, and for women in the at-risk population (women 50 years

of age or older, or with a family history of ovarian cancer) where disease

prevalence is 0.25%. These prevalence values were derived from Bell et al.

(1998). How would you classify women from the general population with

expression levels of 0.50, 1.0, and 1.5? How would you classify women from

the increased risk population with expression levels of 0.50, 1.0, and 1.5?

3 Regression

We now consider the situation where there is additional information in the

form of a covariate or covariate vector, say x1, . . . , xp−1. A typical covariate

that is related to disease status might be age. Older people or animals might

be more likely to have a particular disease/infection/affliction than younger

ones. We would like to incorporate such information if deemed relevant. This

information can help diagnosis in both the dichotomous and continuous test

cases. We first consider the continuous case. We make a crucial assumption

that, the test outcome data are independent of the covariate data given

disease status. So, for example, we would assume that a test outcome for HIV

(human immunovirus) infection would be independent of age, conditional on

actual HIV status. This translates to mean f1(y|x,HIV +) = f(y|HIV +)

and f0(y|x,HIV −) = f0(y|HIV −), where y is HIV marker outcome. The

distribution of marker outcomes among HIV + individuals is not affected by

x, and similarly for HIV − individuals. In general, we replace HIV + with D

and HIV − with D̄.
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On the other hand, we do assume that x is related to disease status. So

now, prevalence depends on x. We thus define the prevalence of D among

individuals who share covariate vector x as Pr(D|x) = πx. There are many

models that might relate prevalence to covariate values. The most common

is one that we discussed at length in Chapter 8, namely the logistic regression

model. This model is

logit(πx) = x′β, where x′ = (1, x1, . . . , xp−1), β′ = (β1, . . . , βp).

We focus on the non gold-standard (NGS) case, so we sample individuals

with unknown disease status. Consider those in this population who have

covariate values x, and then randomly sample one of them. From this indi-

vidual, obtain a test outcome y. Then the marginal pdf for the test outcome

is

f(y|x) = πxf1(y|D) + (1− πx)f0(y|D̄),

where we have assumed conditional independence, which was discussed above.

Then the predictive probability of disease for an individual with test value y

and covariate x is obtained using Bayes Theorem as:

Pr(D|x, y) = πxf1(y|D)

πxf1(y|D) + (1− πx)f0(y|D̄)
,

which looks just like what we had before only now π is replaced with πx.

We are essentially done except for the fact that the above pdf’s are not

known since they generally depend on unknown parameters as discussed in

the previous section. Moreover, β is not known either if we use the logistic

regression model for πx. But these are all objects that we have dealt with

before.
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Our approach from here is to simply treat β as we did in chapter 8 on

logistic regression, and to treat f0 and f1 as we did in the previous section of

this chapter. Suppose that we believe that the test values y can reasonably be

assumed to be log normal as discussed for the example in the previous section.

Let’s thus assume that the data have already been transformed so that y is

now the logarithm of the original test value. We have a single sample of size

n independently obtained values in the form {yi, xi : i = 1, ..., n}. Using our

previous notation, the likelihood function is obtained as

L(β, θ0, θ1|Y ) =
n∏

i=1

{πif1(yi|θ1) + (1− πi)f0(yi|θ0)}

where the pdf’s are now normal with means µi and variances σ2
i for i = 0, 1,

and logit(πi) = x′
iβ.

We use the same priors that were used before, from Chapter 8 and the

previous section. If you think about it for just a second, you realize that

the posterior is not tractable, that is, it’s not in a nice recognizable form.

Moreover, it’s not immediately obvious how to program this model into Win-

BUGS in its current form. Thus, we consider augmenting the data in a way

that makes everything much easier.

Let zi be an indicator of the disease status for the ith individual in the

data. So we have zi ∼Bernoulli(πi). If we knew all of the zi’s, the likelihood

would be in a nice form, namely, the augmented data likelihood is

L(β, θ0, θ1|Y, Z) =
n∏

i=1

{πif1(yi|θ1)}zi{(1− πi)f0(yi|θ0)}1−zi

=
∏

{yi:zi=1}

f1(yi|θ1)
∏

{yi:zi=0}

f0(yi|θ0)
n∏

i=1

πzi
i (1− πi)

1−zi .
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Note that this likelihood is in the same form as if we had training data, as

discussed in the previous section, and in addition, an independent binomial

(logistic) regression sample. Thus if we put the same types of priors on (θ0, θ1)

and β, all independent, then the corresponding augmented data posterior,

p(θ0, θ1, β|Y, Z) = p(θ0|Y, Z)p(θ1|Y, Z)p(β|Z), where each component is in

exactly the same form as what was previously discussed.

The WinBUGS code is now especially easy to write and we give code

below with p = 2. We assume that the single covariate is dichotomous. The

data given were simulated with the first 100 observations from a N(50,100)

pdf and the next 200 observations were from a N(40,100) pdf. Then for the

first 100 observations, we let the Bernoulli covariate x take on the value 1 for

19 values and 0 for the 20th and continuing in this pattern. For the second

hundred, we reversed the patterns. Thus, 95% of the first 100 x values

were ones and 95% of the last 200 are zeros. Let π0 = Pr(D|x = 0) and

π1 = Pr(D|x = 1). We have logit(π0) = β1 and logit(π1) = β1+β2. We let π̃i

be the probability of disease when x = i, and let π̃i’s have independent beta

priors with π̃1 ∼ Beta(19, 1) and π̃2 ∼ Beta(1, 19). This prior information is

consistent with the truth so we are cheating quite a bit here, but mainly for

the purpose of illustration. We then induce a joint prior on β the same way

we did in Chapter 8. The WinBUGS code below makes this clear.

We used mildly informative priors for the µ’s in that we picked prior

guesses for them, but we placed large variances on the corresponding normal

priors. We used diffuse priors for the precisions. Observe that the code

specifies a distribution for the latent z’s first, and then specifies a distribution

for y’s that is conditional on the z’s. This is akin to writing f(z, y) =
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f(z)f(y|z) for the joint pdf.

Note that the variables denoted by v will give numerical approximations

to the predictive densities f(y|z = i, data) =
∫
f(y|z = i, θi)p(θi| data )dθi

for i = 0, 1. Note that in the code, we index these with 1 and 2 rather than

1 and 0. This is because zeros cannot be used in WinBUGS arrays. So in

the code, we meant 1 to be 1, and 2 to be 0. Finally, note that we have

initialized the z’s by simply defining the initial z’s to be the observed x’s. If

you don’t initialize them yourself, WinBUGS will try to do that by sampling

from it’s best guess for the Bernoulli(πi)’s. But this will give non-integral

initial values, and WinBUGS will choke. So you need to start somewhere

reasonable. You should monitor the z’s and try different starting values to

check for convergence.

Finally note that we have also calculated the predictive probabilities of

disease for each individual in the sample in the code below. You should be

aware that the mean the z’s is theoretically equivalent to the posterior mean

of the predictive probabilities. However, in monitoring these probabilities,

defined as “prob” in the code, you will also be able to get posterior probability

intervals for the proportions of individuals in the population with either x = 1

or x = 1 that will be diseased.

model{

for(i in 1:n){

z[i] ~ dbern(pi[i])

y[i] ~ dnorm(mmu[i], ttau[i])

mmu[i] <- z[i]*mu[1] + (1-z[i])*mu[2]

ttau[i] <- z[i]*tau[1] + (1-z[i])*tau[2]
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logit(pi[i]) <- beta[1] + beta[2]*x[i]

}

tildepi[1] ~ dbeta(a[1],b[1])

tildepi[2] ~ dbeta(a[2],b[2])

beta[1] <- logit(tildepi[1])

beta[2] <- logit(tildepi[2]) - logit(tildepi[1])

for(i in 1:2){

mu[i] ~ dnorm(d[i],0.001)

tau[i] ~ dgamma(0.001,0.001)

}

v[1] ~ dnorm(mu[1],tau[1]) #Pred Dens Popn 1

v[2] ~ dnorm(mu[2],tau[2]) #Pred Dens Popn 0

# Get predictive probabilities of $D$

for(i in 1:n){

f1[i] <- sqrt(tau[1])*exp((-tau[1]/2)*pow(y[i]-mu[1],2))

f2[i] <- sqrt(tau[2])*exp((-tau[2]/2)*pow(y[i]-mu[2],2))

prob[i] <- f1[i]*pi[i]/(f1[i]*pi[i] + f2[i]*(1-pi[i]))

}

}

initial values and data available from our website

Exercise. Run the above code and monitor the predictive probabilities and

the z’s. Observe that the posterior means are approximately the same for

each case in the data. Also give 95% probability intervals for the probabilities

of disease in the population corresponding to cases 1 and 201 in the data.

Finally, modify the code so that you can get plots of estimated probabilities
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of disease as a function of y over a suitable range of y values, for both types

of individual, with x = 0 and with x = 1.

4 Regression: Dichotomous Case

Our final exploration in this section is to consider the dichotomous case ver-

sion of the previous section. This simply means that we still have covariate

information x about the prevalence, so the prevalence is still modeled as

logit(πx) = x′β. But now instead of a continuous response, y, we have a di-

chotomous response, which we also term as y. This response may be for a test

outcome that is naturally dichotomous, or it may result from dichotomizing

a continuous response by picking a cutoff. Either way, we have a sensitivity,

η = Pr(y = 1|D), and a specificity, θ = Pr(y = 0|D̄).

We will also have a sample of (independent) values, {yi, xi}, just as before.

Only now, the likelihood looks like

L(η, θ, β|Y ) =
n∏

i=1

{πiη + (1− πi)(1− θ)}yi{πi(1− η) + (1− πi)θ}1−yi .

Priors are the same as before for (η, θ, β). This model can be handled easily

with or without latent zi’s. We leave the latent case to the reader as an

exercise. The WinBUGS code below is for smoking cessation data that were

analyzed by McInturff et al (2004).

The response variable corresponds to successful cessation of smoking or

not. Covariates are age level (20-29; ≥ 30, or < 20), education level (HS

graduate; some college, less than HS graduate), and smoking history (less

than one pack per day or more). We set baseline categories to be “under 20”
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years of age, “less than HS grad”, and “a pack or more a day”. Thus we have

a 3 category age variable with two binary variables indicating age groups 20-

29 (x2) and ≥ 30 (x3), a 3 category education variable with two variables

indicating HS grad (x4) and some college (x5), and a smoking history variable

indicating less than a pack a day (x6). There are thus 1 + 2 + 2 + 1 regression

coefficients in the model. We elicited our prior on probabilities of smoking

cessation for six covariate combinations, which are given in the table below.

This specification was then used to induce a prior on the six dimensional

vector β, using the technique discussed in Chapter 8. In addition, an expert

gave information about the sensitivity, which in this instance means the prob-

ability of saying you quit smoking when you did, and the specificity, which

means the probability of saying you didn’t quit when in fact you didn’t quit.

Since it would be unlikely that someone would say that they didn’t quit when

they did, a rather strong prior was placed on the sensitivity, a Beta(99, 1).

However, there was much less certainty about the specificity, which is re-

flected by the Beta(14, 2) prior, which has much less weight associated with

it.

Covariate combinations considered for the prior elicitation were:

Case Int x2 x3 x4 x5 x6 Distn Prior mode

1 1 1 0 1 0 1 Be(8, 15) 0.33

2 1 0 1 1 0 1 Be(10, 15) 0.39

3 1 1 0 1 0 0 Be(3, 13) 0.14

4 1 1 0 0 1 1 Be(8, 10) 0.44

5 1 1 0 0 0 1 Be(4, 15) 0.18

6 1 0 0 1 0 0 Be(6, 15) 0.26
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model{

for(i in 1:N){

y[i] ~ dbern(q[i]) # specification of the LR model with error

q[i] <- pi[i]*Se+(1-pi[i])*(1-Sp)

logit(pi[i]) <- beta[1]+x2[i]*beta[2]+x3[i]*beta[3]

+x4[i]*beta[4]+x5[i]*beta[5]+x6[i]*beta[6]

}

Se ~ dbeta(99, 1) # the priors are specified for Se and Sp

Sp ~ dbeta(14, 2)

p[1] ~ dbeta(8, 15) # spec of the prior on 6 probs of smoking

p[2] ~ dbeta(10, 15) # cessation for 6 covariate combinations

p[3] ~ dbeta(3, 13)

p[4] ~ dbeta(8, 10)

p[5] ~ dbeta(4, 15)

p[6] ~ dbeta(6, 15)

# relate the regression coefficients to the

# probabilities on which prior was specified

# this results in an induced informative prior

# on the regression coefficients

beta[1] <- xinv[1,1]*logit(p[1]) + xinv[1,2]*logit(p[2])

+ xinv[1,3]*logit(p[3]) + xinv[1,4]*logit(p[4])

+ xinv[1,5]*logit(p[5]) + xinv[1,6]*logit(p[6])

beta[2] <- xinv[2,1]*logit(p[1]) + xinv[2,2]*logit(p[2])

+ xinv[2,3]*logit(p[3]) + xinv[2,4]*logit(p[4])
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+ xinv[2,5]*logit(p[5]) + xinv[2,6]*logit(p[6])

beta[3] <- xinv[3,1]*logit(p[1]) + xinv[3,2]*logit(p[2])

+ xinv[3,3]*logit(p[3]) + xinv[3,4]*logit(p[4])

+ xinv[3,5]*logit(p[5]) + xinv[3,6]*logit(p[6])

beta[4] <- xinv[4,1]*logit(p[1]) + xinv[4,2]*logit(p[2])

+ xinv[4,3]*logit(p[3]) + xinv[4,4]*logit(p[4])

+ xinv[4,5]*logit(p[5]) + xinv[4,6]*logit(p[6])

beta[5] <- xinv[5,1]*logit(p[1]) + xinv[5,2]*logit(p[2])

+ xinv[5,3]*logit(p[3]) + xinv[5,4]*logit(p[4])

+ xinv[5,5]*logit(p[5]) + xinv[5,6]*logit(p[6])

beta[6] <- xinv[6,1]*logit(p[1]) + xinv[6,2]*logit(p[2])

+ xinv[6,3]*logit(p[3]) + xinv[6,4]*logit(p[4])

+ xinv[6,5]*logit(p[5]) + xinv[6,6]*logit(p[6])

}

initial values and data available from our web site

Exercise. Modify the above code to make inferences about the probability

of quitting smoking over a range of covariate combinations. Make a table

of estimated probabilities with probability intervals so that it is easy to see

what is the effect of age, education and smoking history on the probability

of quitting. Make inferences for sensitivity and specificity. Now run the code

assuming perfect sensitivity and specificity and comment on the change in

inferences. Next assume uniform priors for the last three p’s and see what

effect this has on inferences. Finally, revise the code to specify N(0, 1) priors

on all regression coefficients and compare results.
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5 Dependent Dichotomous Tests

If two tests have the same biological basis for detecting disease/infection, for

example, if both tests are ELISA tests only made by different manufacturers,

then we would expect them to be dependent, even conditional on disease

status. This problem is then handled by expanding the model discussed for

two tests in the previous section. Using the same notation from there, we

realize that

Pr(T+
1 |T+

2 , D) ̸= Pr(T+
1 |D), Pr(T−

1 |T−
2 , D̄) ̸= Pr(T−

1 |D̄).

Equivalently, the corresponding joint probabilities don’t factor as the product

of their marginal probabilities.

However, the representation of the data remains the same. That is, we

have, in the case of two populations and two tests, a 2×2×2 table of observed

data. We don’t discuss the augmented data case here where the latent counts

of diseased individuals are also modeled. For this situation, our data are

simply the two 2×2 tables, y1 and y2, where yk ∼ Mult(ni, {pijk : i, j = 1, 2},

as in the case from chapter 14, except that now we have different pij’s. There

are at least two ways to model the cell probabilities. The easiest to explain

and program was introduced by Dendukuri and Joseph (2001) (DJ), who

considered the two-tests and one population problem under dependence. An

alternative that has some nice features was introduced by Georgiadis et al

(2003). In either case, we still assume that test accuracies are the same in

each population.
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Define

CovDp = Pr(T+
1 , T+

2 |D, popn k)− η1η2

CovDn = Pr(T−
1 , T−

2 |D̄, popn k)− θ1θ2.

Then we observe that tests 1 and 2 are conditionally independent if and only

if these two quantities are both zero. Define ηij = Pr(T i
1, T

j
2 |D) where i, j = 1

corresponds to + and i, j = 0 corresponds to −. So η10 = Pr(T+
1 , T−

2 |D).

Define θij’s analogously, so that, for example, Pr(T+
1 , T+

2 |D̄) = θ11. We then

have the marginal probabilities

pijk = Pr(T i
1, T

j
2 |popn k) = πkηij + (1− πk)θij.

We then observe that

η11 = η1η2 + CovDp

θ00 = θ1θ2 + CovDn

etc. There are 6 more expressions like these, and they can be surmised from

the WinBUGS code below.

Thus, our model now has two additional parameters that reflect two dif-

ferent kinds of conditional dependence. The total number of parameters is

now 8, while we still only have 6 degrees of freedom in the two-test, two-

population case. In the one population case, we have 7 parameters and only

3 degrees of freedom. So our model lacks identifiability and specification of

the priors becomes even more important, again. When one of the tests has

been in use for some time, it’s properties may be reasonably well known. In

this instance, there may be accurate and precise information for say (η1, θ1).
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In this instance, we can proceed with the model for the two-population case

discussed here with the expectation that the data in conjunction with this

prior information will result in reasonable inferences for the test accuracies

for the other test, which is likely the main goal of interest. Moreover, if

the two population prevalences are known reasonably well, we would then

be comfortable making inferences about the accuracy of both tests. In the

one population, we should believe that our priors are reasonably precise and

accurate for 4 parameters.

It would be rare in our experience that we would be particularly interested

in estimating the above covariance parameters. The important point is that

our model accommodates non zero covariances. There is one issue that we

still need to discuss related to these parameters. It is straightforward to

establish that CovDp and CovDn are bounded above and below, for example,

(η1 − 1)(1− η2) ≤ CovDp ≤ min(η1, η2)− η1η2.

A similar inequality holds for CovDn, which can be surmised from the code

below. These inequalities are important since, if violated, the consequence

is that various probabilistic quantities could be smaller than zero or above

one, which could result in embarrassing results. These inequalities guarantee

that we will obey probability laws in making our inferences.

Because we would rarely have very precise information about these co-

variances, we recommend placing uniform priors on them, over the range of

possible values specified by the inequalities. If it were believed with certainty

that there could not be a negative association, for example, the priors could

be uniform starting at 0 and stopping at the appropriate upper bound.
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We consider data that were collected by Bouma et. al (2004), for a

single population. Two fluorescent-antibody tests (FAT) were used to detect

classical swine fever virus. Expert opinion was elicited for the sensitivities

and specificities for both tests as well as for the prevalences. Uniform priors

were used for the covariances. Observe that we also make inferences for the

correlations between the Bernoulli tests; definitions are given in the code.

model{

x[1:4] ~ dmulti(p[1:4], n)

p[1] <- pi*(Sefat1*Sefat2+covDp) + (1-pi)*((1-Spfat1)*(1-Spfat2)+covDn)

p[2] <- pi*(Sefat1*(1-Sefat2)-covDp) + (1-pi)*((1-Spfat1)*Spfat2-covDn)

p[3] <- pi*((1-Sefat1)*Sefat2-covDp) + (1-pi)*(Spfat1*(1-Spfat2)-covDn)

p[4] <- pi*((1-Sefat1)*(1-Sefat2)+covDp) + (1-pi)*(Spfat1*Spfat2+covDn)

ls <- (Sefat1-1)*(1-Sefat2)

us <- min(Sefat1,Sefat2) - Sefat1*Sefat2

lc <- (Spfat1-1)*(1-Spfat2)

uc <- min(Spfat1,Spfat2) - Spfat1*Spfat2

pi ~ dbeta(13.322, 6.281) ### Mode=0.70, 95% sure > 0.50

Sefat1 ~ dbeta(9.628,3.876) ### Mode=0.75, 95% sure > 0.50

Spfat1 ~ dbeta(15.034, 2.559) ### Mode=0.90, 95% sure > 0.70

Sefat2 ~ dbeta(9.628, 3.876) ### Mode=0.75, 95% sure > 0.50

Spfat2 ~ dbeta(15.034, 2.559) ### Mode=0.90, 95% sure > 0.70

covDn ~ dunif(lc, uc)

covDp ~ dunif(ls, us)

rhoD <- covDp / sqrt(Sefat1*(1-Sefat1)*Sefat2*(1-Sefat2))

rhoDc <- covDn / sqrt(Spfat1*(1-Spfat1)*Spfat2*(1-Spfat2))
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}

list(n=214, x=c(121,6,16,71))

list(pi=0.7, Sefat1=0.75, Spfat1=0.90, Sefat2=0.75, Spfat2=0.90)

Exercise. Run the above code. Try different priors, for example, try Unif[0,uc]

and Unif[0,us] priors for CovDn and CovDp to see what is the impact on

the analysis. Also run modified code with the covariances set to zero and

compare output. Does it seem necessary to model the covariances?

Exercise. Modify the above code to handle two population data. Then,

analyze the Trout data from chapter 14 using this code and the priors dis-

cussed there. Compare results with what was obtained there. Does it seem

necessary to model the dependence for those data?

Now consider a different example, where two tests are applied sequen-

tially to samples of animals from multiple populations to detect brucellosis

in cattle. We model the prevalences exchangeably as we did in chapter 14.

Test 1 is BAPA, so Sebapa and Spbapa are the sensitivity and specificity for

BAPA. Test 2 is Rivanol, so Seriv and Spriv are the sensitivity and specificity

of Rivanol. If test 1 is positive, test 2 is applied. Otherwise, test 2 is not

applied. So there are only 3 possible categories for the two test outcomes,

namely (+,+), (+,−), and (−, NA). The code below thus models the three

category responses within each population as a 3 category multinomial. The

code makes clear precisely what the model is.

model{

for(i in 1:K){
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x[i, 1:3] ~ dmulti(p[i, 1:3], n[i])

p[i,1] <- pi[i]*(Sebapa*Seriv+covDp) + (1-pi[i])*((1-Spbapa)*(1-Spriv)+covDn)

p[i,2] <- pi[i]*(Sebapa*(1-Seriv)-covDp) + (1-pi[i])*((1-Spbapa)*Spriv-covDn)

p[i,3] <- 1-p[i,1]-p[i,2]

pi[i] ~ dbeta(alpha, beta)

}

Sebapa ~ dbeta(88.3,1.9) ## Mode=0.99, 95% sure > 0.95

Spbapa ~ dbeta(13.3,6.3) ## Mode=0.70, 95% sure > 0.50

Seriv ~ dbeta(130.7,15.4) ## Mode=0.90, 95% sure > 0.85

Spriv ~ dbeta(99.7,6.2) ## Mode=0.95, 95% sure > 0.90

alpha <- mu*psi

beta <- psi*(1-mu)

mu ~ dbeta(16.9,48.6) ## Mode=0.25; 95% sure < 0.35

psi ~ dgamma(7.23, 1.28)

ls <- (Sebapa-1)*(1-Seriv)

lc <- (Spbapa-1)*(1-Spriv)

us <- min(Sebapa,Seriv)-Sebapa*Seriv

uc <- min(Spbapa, Spriv) - Spbapa*Spriv

covDn ~ dunif(lc, uc)

covDp ~ dunif(ls, us)

rhoDp <- covDp / sqrt(Sebapa*(1-Sebapa)*Seriv*(1-Seriv))

rhoDn <- covDn / sqrt(Spbapa*(1-Spbapa)*Spriv*(1-Spriv))

pi21 ~ dbeta(alpha,beta)

a[1] <- 1-step(pi21-0.50)

a[2] <- 1-step(pi21-0.10)
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a[3] <- step(pi21-0.90)

a[4] <- step(pi21-0.75)

}

initial values and data are available on our web site

Exercise. Analyze these data using the above code. Then modify the code

to handle independent tests and run it. Comment on the necessity to model

the dependence.
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