
Synthetic Social Construction for Autonomous Characters

Eric Baumer and Bill Tomlinson

Donald Bren School of Information and Computer Sciences
University of California, Irvine

Irvine, CA 92697-2775
ebaumer@ics.uci.edu, wmt@ics.uci.edu

Abstract
Borrowing ideas from the notion of social construction of
self, this paper puts forth the idea of synthetic social
construction - multiagent systems in which agents socially
construct each others’ roles and behaviors via their
interactions with one another. An example
implementation of synthetic social construction is
presented demonstrating one use of this method to
facilitate social learning. Synthetic social construction
represents a novel approach to adaptive behavior in
multiagent systems informed by human behaviors.

Introduction

Multiagent systems have proven themselves a useful tool
in accomplishing certain types of computational tasks,
such as bidding in auctions, societal simulations, or
control of multi-robot systems. Rather than having a
single, unified computational entity with which to work,
designers can now employ many individual autonomous
computational entities. While not a panacea, these
multiagent systems are more adept at solving certain types
of problems than their single agent counterparts.
 However, in order to take full advantage of these
abilities, it may be beneficial to approach these systems
both as collections of interacting individuals and
holistically as societies. By borrowing ideas from
sociology, anthropology, and philosophy, we can gain
new insight into different methods and techniques that
might be used when developing multiagent systems (or
societies). This type of thought is already evident in other
multiagent work (López y López, Luck and d'Inverno
2004) (Mao and Gratch 2004).
 One such idea comes from social constructionism
(Berger and Luckmann 1966): the social construction of
self. This theory posits that we define ourselves in terms
of interaction with others. When one is the recipient of
another’s actions, one changes one’s self concept
depending on what actions were taken; if I am a frequent
recipient of complements and respect, I may begin to hold
myself in higher regard. When another is the recipient of
similar actions, one sees one’s self as similar to that other;

if someone else is also repeatedly complemented and
respected, I could consider myself similar to him or her.
When such similarities are in place, one takes one’s cues
for social action (or inaction) from those that one
considers to be similar to one’s self. If the other person
who had been regularly complemented and respected
became thankful and humble (or if the other person
remained tacitly aloof), I might be inclined to have a
similar reaction (or lack thereof).
 Admittedly, this description is not a full and complete
notion of social constructionist theory, nor can such a
theory explain the entirety of social interaction.
However, the social construction of self has useful
implications for designers of multiagent systems,
particularly in regard to agent interaction and learning.
 Previously, most learning in multiagent systems has
been done via forms of reinforcement learning, memory-
based reasoning, or model learning (Enembreck and
Barthès 2005). While these methods have been both
formally and experientially proven suitable for systems
with a single agent, they have not been shown to have
similar efficacy in the learning problem for multiagent
systems. Some of these techniques have been modified
for use by multiagent systems, but generally with some
sort of caveat – either assumptions must be made about
the conditions of the environment, agents must be given
some a priori knowledge, multiple methods must be
combined to be effective, or, most commonly, formal
proof of their validity and efficacy has not been shown.
 This paper presents a method for generating adaptive
behavior in multiagent systems, synthetic social
construction, wherein an agent adapts its behavior based
on both the actions other agents take towards it and the
interactions other agents have with one another. This
paper does not offer a formal proof of the technique’s
perfection or completeness. Rather, it presents one
example implementation in a domain where synthetic
social construction is particularly pertinent and
demonstrates results obtained there. We close with a
discussion of advantages, limitations, and future work,
both of the particular implementation and the method in
general.

Related Work

This work brings together ideas from several other
projects and synthesizes concepts that span multiple
disciplines.

Social Construction
Autonomous agents have already been used to simulate a
number of different social phenomena, including
normative reasoning (López y López, Luck and d'Inverno
2004), social judgment (Mao and Gratch 2004), and
others (Stirling 2004) (Hales and Edmonds 2003). Here,
we use agents to simulate social construction (Berger and
Luckmann 1966), specifically, a limited notion of the
social construction of self. Using the idea that agents in
societies take their cues from other agents that they see as
similar to themselves, we enable agents to learn which
actions to take by observing which actions are taken by
similar agents.

Learning
Learning, both in AI and autonomous agents, is a well-
known, important, and difficult problem. Q-learning
(Watkins and Dayan 1992) is a common, robust technique
for single agent learning. Although it has been noted that
Q-learning is not particularly well-suited for dynamic,
multiagent environments (Tuyls, Verbeeck and Lenaerts
2003) (Chalkiadakis and Boutilier 2003), modified
versions have been adapted to and incorporated in
multiagent learning (Nunes and Oliveira 2004) (Tuyls,
Verbeeck and Lenaerts 2003) (Weinberg and Rosenschein
2004).
 Various other methods have been developed, besides
reinforcement learning, including memory-based
reasoning and model learning. However, as noted
elsewhere (Enembreck and Barthès 2005), many of these
techniques do not adapt readily or easily to multiagent
systems.

Coalitions
Another societal phenomenon that has been incorporated
into multiagent systems is the forming of subgroups, or
coalitions, within a society (Sherory and Kraus 1995)
(Griffiths and Luck 2003). Most of these coalitions are
goal-based, that is, agents form and join coalitions to
better accomplish their own goals. While the coalitions
are formed, agents explicitly work together to accomplish
a temporarily unified goal.
 While synthetic social construction forms subgroups
within societies of autonomous agents, such groups are
not formed to facilitate the accomplishment of a specific
task. Furthermore, the agents do not pool their collective
skills to achieve a previously unattainable goal. Rather,
the groups formed here are made for the purposes of
learning. While learning could be seen as a goal, it is a

different sort of goal than those typical of coalitions, in
that it is not at some point accomplished and then checked
off so the next goal can be addressed.

Characters
The specific implementation discussed in this paper builds
on work done with autonomous characters by a number of
different researchers and groups (Tomlinson et al. 2005)
(Tomlinson et al. 2001). While this paper does not bear
relevance specifically or only to autonomous characters,
the system discussed below was implemented on a
platform based on other characters research.

Synthetic Social Construction

This paper presents the idea of Synthetic Social
Construction, a method with which agents learn action
selection by observing the choices made by other agents.
Part of the notion of the social construction of self says
that one takes cues on how to act from others to which
one sees oneself as similar. When such a similar person
takes or does not take an action, one is more or less
inclined to take that action as well, respectively.

Similarity
In order for an agent to determine from whom to learn, it
may be beneficial that the agent have a means of
measuring its similarity to other agents. We provide a
similarity metric that differs from Euclidean distance or
other such metrics. We do not use these other metrics
because they give the same distance regardless of the
magnitude of the values. For example, Euclidean
distance says that the point (10, 10) is just as far away
from the point (20, 20) as the point (110, 110) is from
(120, 120). However, we wanted to be able to take range
into account. That is, while the exact distance between
these two points is the same, the proportions between the
actual values are quite different. To capture this idea, we
use a similarity metric that bases similarity not only on
the difference between values but also on their difference
with respect to their magnitudes.
 Let us consider two agents, x and y, with various
properties p1, … pn, which, for measuring similarity, we
call dimensions. We use the notation x.pi to refer to x’s ith
property pi. These properties can be of two kinds: discrete
or continuous. We now define a similarity function s(j, k)
to compare any two agents in a single dimension.
 For discrete properties, either the agents have the same
value or they do not. For example, a person could be a
homeowner or not be a homeowner, but there is not a
continuum of partial homeownership such that one person
could own more of a home than another person. For such
properties, if x.pi = y.pi, then x and y are similar in that
dimension, and s(x.pi, y.pi) = 1. Otherwise, they are
different, and s(x.pi, y.pi) = 0. This maintains the identity
property for metrics.

 Continuous properties are values in some range and can
be more or less similar depending on their position in that
range. For example, a person who is 1.75m tall would be
more similar to another person who is 1.8m tall than one
who is 2m tall. For such properties, the similarity in that
dimension is given by the formula:

where s(x.pi, y.pi) is the similarity x bears to y in
dimension pi. Note that s(x.pi, y.pi) = s(y.pi, x.pi), which is
significant for two reasons. One, when comparing x and
y, we only have to do one calculation, rather than needing
one calculation for x’s similarity to y and a separate
calculation for y’s similarity to x. Granted, the
calculation involved here is not incredibly demanding and
in all reality will most likely not give a huge performance
boost. However, in real-time systems, one common
application area for autonomous agents, often times every
little performance boost makes a difference, especially
when dealing with very large numbers of agents. More
importantly, though, this equality maintains the symmetry
property for metrics.
 We also trap the similarity for any given dimension in
the range 0.0 – 1.0. s(j, k) has a maximum value of 1
(when j = k), so the only real trapping is done if s(j, k)
comes out negative. If agents x and y are vastly
dissimilar in some dimension, we do not want that
dissimilarity to detract from similarities in other
dimensions. So, if s(j, k) comes out negative, rather than
keep the negative value we simply replace it with 0. This
trapping means that we may not maintain the triangle
inequality for metrics. However, as discussed elsewhere
(Santini and Jain 1995) (Finnie and Sun 2002), the
triangle inequality does not and should not always apply
to similarity metrics.
 Note that there are two situations in which the average,
and thus the denominator, may be 0, causing the value to
be undefined. First, if both x.pi and y.pi are 0, then the
average will obviously be 0. Here, we introduce a special
case to return a similarity of 1, since the two have the
exact same value. Second, if x.pi = -1 * y.pi, then the
average here, too, will be 0. Since we are using a
similarity metric that bases similarity partially on
magnitude and in this case x and y have exactly the
opposite magnitude in the dimension in question, we say
that they have absolutely no similarity in that dimension
and return a similarity of 0.
 Now we define a similarity function S(x, y) to compare
two agents across all dimensions as given by the formula:

where S(x, y) is the overall similarity of x and y across all
dimensions.

Simple Learning
This method allows one agent to learn from other agents
based on those agents’ decisions. However, the initial
learning done by those must be based on some sort of
reasonable course of action. Otherwise, an agent will
base its actions on the arbitrary decisions of others rather
than on decisions informed by those others’ experiences.
This, this method can only be used in conjunction with
some other learning algorithm.
 The most intuitively applicable methods are
reinforcement learning and memory-based reasoning. In
reinforcement learning, the agent receives some sort of
feedback after a given decision that makes the agent more
or less inclined to make the same decision again. When
that time comes, another agent can simply observe the
first agent’s decision and then adapt its behavior
accordingly.
 The case of memory-based reasoning is somewhat
similar. When an individual agent makes a decision
based on its memories, it can update those memories with
the result of the present decision and store that
information for future decision making. Likewise, when
one agent watches another agent make a decision, the first
agent can update its memories almost as if it had made
the same decision.
 Model learning, however, does not apply as easily. It is
difficult for one agent to determine if another agent’s
model is similar to its own and if even makes sense to
update its model based on the other agent’s actions. That
is not to say that model learning could in no way be used
here, but rather that other learning methods are more
amenable.
 Once one agent has learned from its actions and adjusts
its decisions accordingly, it becomes possible for other
agents to observe these decisions and adapt their behavior
to reflect the new decisions.

Social Learning
Based on the similarity metric described above, each
agent keeps a record of how similar it is to another agent.
When one agent observes another agent take or not take
an action about which it cares, the agent in question then
modifies its likelihood of taking a similar action based on
the degree of similarity to that other agent.
 Thus for an agent x, its tendency to take a certain
action at some future time, Tn + 1, after observing some
action of agent y is given by the formula:

where dy is the decision of the agent y (1 is performing the
action and 0 is not), Tn is agent x’s current tendency to
take the given action, and S(x, y) is x’s similarity to y, as
defined above.

2/)..(
.2/)..(1).,.(

ii

iii
ii pypx

pxpypxpypxs
+

−+−=

d

pypxs
yxS i

ii∑
=

).,.(
),(

),(*
21 yxS

dT
T yn

n

−
=+

 There are two important aspects of this approach to
note. One is that agent x’s tendency approaches agent y’s
action asymptotically; x’s modifies it’s tendency by half
the difference between its tendency and y’s action.
Second is that the tendency adjustment is multiplied by
the agents’ similarity, which is on a scale of 0.0 to 1.0.
The greater the similarity between two agents, the greater
the influence one will have on the other.
 It is important to remember that this method of learning
does not attempt to converge over time, or even attempt
to reach an optimal value. Rather, the purpose is an
attempt at emulating some of the ways that humans
perform social construction. Thus, the paper contains no
proof or mathematical demonstration of this method’s
optimality.

Implementation

Currently, work is being done on implementing synthetic
social construction in the Virtual Raft Project (Tomlinson
et al. 2005). The following section presents the portions
of that implementation that have been completed thus far.

The Virtual Raft Project
The Virtual Raft Project centers on a mobile computing
interaction paradigm in which stationary computers are
islands of virtual space and mobile devices are rafts by
which autonomous systems may cross the sea of real
space that separates virtual islands. To emphasize this
metaphor, the mainstay of the installation consists of three
collocated desktop machines on each of which a group of
virtual characters live. Tablet PC’s act as virtual rafts,
which users can physically bring up to one of the islands
to allow a character to jump off of the island and onto the
raft. If the raft is then brought to another island, the
character will jump off onto that island. For a better
sense of the system and the interactions involved, please
see the video at http://tinyurl.com/5yxkn.

To Jump or Not to Jump
The main decision these characters are faced with is
whether or not they will be jumping onto or off of the raft.
Initially, the characters would jump whenever a raft or
island was present. The tablet PC’s that serve as virtual
rafts incorporate accelerometers, which allow the attitude
of the tablet to affect the movement of the raft on the
tablet’s screen, such that tilting the tablet in one direction
causes the raft to move in that same direction. If the raft
is tilted too far, the character falls in the water and its fire
goes out. When the raft moves around, the character
attempts to balance on the raft, all the while making a
record of how long it was on the raft and how rough the
ride was, the later codified by the amount of sliding
around the raft does and labeled as the distance the raft
traveled. We wanted the characters to form impressions
about whether traveling on the raft is a good or bad thing,
depending on how their trip went. This could be

accomplished with a simple reinforcement learning
system. However, once the characters arrived on a new
island, we wanted them to pass those impressions on to
other characters. In this way, different characters could
share their different ideas about the raft and collectively
get much more diverse sample than would be possible
individually.
 When a character is first created, we start it off with a
100% likelihood of jumping onto the raft. This is partly
because if the characters did not start off jumping then the
installation would not be incredibly engaging, and partly
because if the characters did not jump to begin with
people would likely assume the behavior was a
malfunction rather than a designed behavior.
 Once a character has ridden the raft and then
disembarks, it adjusts its likelihood to board the raft again
based on the quality of the trip. This implementation uses
a simple reinforcement learning strategy based on the
amount of time spent on the raft, how far the raft traveled,
and whether the character fell in the water. After a trip on
the raft, the agent’s new jump tendency is given by the
formula:

where Jn + 1 is the new jump tendency, Jn is the previous
jump tendency, d is the distance traveled on the raft, t is
the time spent on the raft, and f is 1 if the character fell
off the raft and 0 if not.
 While on the island, the characters observe one another,
and each determines its similarity with respect to the
others using the similarity metric described above. The
current implementation uses five dimensions: the island
on which the characters were born, the amount of time
they spent on the raft during their last trip, the distance
the traveled during that trip, whether they have a fire on
their hand, and what color fire they are carrying. Birth
island is signified by the color of a character’s crown and
is a discrete value; we do not say that certain islands are
closer to others. While sitting around the fire, the
characters take turns “telling stories” to one another,
which is signified visually by one of the characters
standing up, gesturing as if speaking, and optionally
(depending on the installation) verbally and audibly
describing their trip to the other characters. Thus, it
makes sense that characters would be able to compare
themselves to each other based on trip duration and
quality, both of which are treated as continuous values for
the purposes of the similarity metric. Whether or not a
character’s fire is lit is obvious and can intuitively be
factored into similarity as a discrete value. What color
fire the character is carrying can only be known if it has a
fire and thus is only factored into the similarity metric if
both of the characters in question have their respective
fires lit. In this case, fire color is treated as a continuous
value, since during the course of the installation the

()f

tdJJ nn

*1.01.0

25.0
10

25.025.0
20

25.01

−+

 ++

 ++=+

characters can mix fire colors. Fire color is stored as an
RGB value, so the overall similarity in this dimension is
the composite of the similarities of the red, green, and
blue components of each character’s fire color.
 As a visual signification of similarity, the characters
tend to “hang out” near other characters to which they are
similar. Characters are most drawn to others to which
they are most similar and are most repelled from those to
which they are most dissimilar. This makes it apparent to
the user that various groups are being formed within the
population on an island.
 The learning is actually done when a user brings a raft
up to an island. When the raft approaches, all the
characters on the island turn around and take notice of the
raft’s presence. Each character then decides for itself
whether it is interested in jumping on the raft or not,
based on a pseudorandom number compared to its
jumping tendency. If it is in fact interested, the character
will visually signify this interest by approaching the
foreground of the screen. If it decides it would rather not
jump, the character turns back around and sits down again
at the fire. When this decision occurs, each character
observes the other characters’ decisions and modifies their
own jump tendency using the social learning formula
described above.

Discussion

Here, we list some of the benefits of synthetic social
construction, address some of its limitations, mention
some possible future directions, and list a few questions
that could be addressed in this workshop. Throughout, we
mention aspects that were particular to this
implementation.

Benefits
Collective Learning. As mentioned at the beginning of
this paper, the learning problem for multiagent systems is
an important and difficult one. Synthetic social
construction offers a novel approach to multiagent
learning that takes advantage of different agents having
different experiences. Rather than restricting an agent to
learning from its own experience, this method allows the
agent to learn behavior from others’ experiences by
watching their decisions. An agent cannot watch another
agent make a decision, observe the outcome, and decide if
it would make the same decision. Rather, the first agent
lets the other agent determine whether the course of
action was a beneficial one, observes the other agent
modify its decision patterns, and then adapts its own
decisions based on those modifications.
Character Believability. When the Virtual Raft Project
began, enhancing character believability was a core
concept. By allowing characters to break the screen, the
characters are no longer seen as entities that live only
within a single device but as entities that maintain
permanence across several stationary and mobile devices.

When a character maintains this permanence, it becomes
less like a part of a computer program bound to one
machine and more like a truly autonomous character.

Social Simulation. Simulating artificial societies has
become an important area of research, as evidenced by,
among other things, an entire journal devoted to the
subject, the Journal of Artificial Societies and Social
Simulation. If such pursuits are truly intended to imitate
human societies, it might be beneficial to incorporate
mechanism similar to those theorized to be in place in
humans. Furthermore, behaviors that emerge from such
synthetic societies may be able to help us understand the
human behavior after which it was modeled and help
inform new lines of questioning and new areas of
research.

Limitations

Not Optimal. This learning method does not seek any
optimal solution or equilibrium (at least, not explicitly).
This is both a limitation and an advantage. For some
applications, agents should be finding the best solution
possible. However, in other applications, agents may not
be intended to find an optimal course of action, there may
not be a clear definition of optimality, or such optimality
may not exist. In these situations, learning from other
agents may become a distinctive advantage. Also, this
method is well suited for applications where agents are
being used to model social interactions rather than to
accomplish some task.
Homogeneity. For the similarity metrics to work the
agents have to be homogeneous, otherwise they won’t
know how to compare to one another. If the agents are
not homogenous, it does not rule out the use of some
similarity metric, but it does make the development of
such a metric more difficult.
Scalability. As the number of agents increases,
scalability quickly becomes a pressing issue. If the
number of agents is n, it takes O(n2) time to compare
every agent to every other agent.
 Implementation described here includes an
optimization that removes the need to run an O(n2)
process to constantly update character similarities. Rather
than comparing every character to every other character at
every time step, the characters have a simple tracking that
stores a previous value for each of the dimensions of
interest. At every time step, the current value is
compared against the previous value. If anything has
changed, all the similarities for that character are
recalculated, which takes O(n) time, where n is the
number of agents. This is far better than an O(n2) process
every time step, but it does require O(n * m) extra
memory, where m is the number of dimensions being used
for similarity testing. This is a useful optimization, but
ultimately it may prove as a weakness in this method
since not every implementation will have so few
dimensions or be able to take advantage of dimensions
that are not constantly in flux.

Simple Learning. Despite the ability to learn from other
agents, this method still requires that some agent learn for
itself first, either by reinforcement learning as in the
implementation described here or by some other method.
Once one agent has learned something, it can demonstrate
that knowledge to other agents, but it must learn
experientially on its own to begin with.

Future Work
Jump Off. Currently, the characters are only concerned
with whether or not to jump on the raft; when presented
with an island onto which to jump, they will always jump
off the raft. This could be improved by allowing the
agents to gather simple data about an island, such as the
average similarity of the characters or some information
about the norms on that island (López y López, Luck and
d'Inverno 2004), and then making a decision as to whether
or not that was an island onto which they wanted to jump.

Vicarious Learning. Rather than one agent relying on
another agent to learn something and then having the first
agent just watch what the second agent does, the first
agent should be able to watch the second agent’s actions
and determine for itself whether the results are desirable.
This sort of might get back to something like (Tuyls,
Verbeeck and Lenaerts 2003), where they use a type of Q-
learning modified for agents.
Trust. After one agent has observed another and learned
something from it, the agent could analyze the benefit of
learning from that other agents and possibly establish a
degree of trust between them that would augment or
mitigate further learning.

Permanence and Habituation. Once an agent has
learned by watching another agent do the same task a
hundred times, that learning should be incredibly
ingrained so that if the other agent suddenly does
something different, the first does not necessarily modify
its behavior immediately to follow suit. Alternatively,
once one agent has watched another agent do the same
task a hundred times, the agent may have become
habituated to that particular stimulus and so it no longer
has any effect on the agent.

Questions
There are a number of questions this work has raised that
could possibly be addressed in this workshop.
 Currently, the system still relies on a very simple
reinforcement learning method. Would there be a way to
make the learning entirely social? One possibility in this
implementation would be to assign all the characters
random initial jump tendencies and allow whatever order
happens to emerge. However, there would still be no link
between the raft trip and the characters’ decisions. Does
it even make sense to try and remove reinforcement or
some other simple learning?
 A large part of social construction deals with how
individuals act toward each other, but currently the

characters in the Virtual Raft Project do not take any
actions directly toward one another. What sorts of actions
and interactions might make sense? Should they trade?
Should they fight (one participant at CHI moved all the
characters to one island and then wanted a Battle Royale
to ensue)? Should they have tea? Should they just chat?
 Is there a way to overcome the scalability problems of
comparing every agent with every other one? There are
classical logic puzzles about passing information among
parties, but in this case, the information each agent has is
calculated and only pertinent to that agent. Could there
be some way to work around this?
 What else could we do with synthetic social
construction, other than learning? Could we use it for
coalition forming? Can we use it for construction of
concepts other than self, such as emotion, social roles, or
possibly, rather than mimicking other agents, allow agents
to mimic humans with which they interact?

Conclusion

This paper has presented synthetic social construction, a
method for an agent in a multiagent system to adapt its
behavior based on the behavior of other agents. The
specifics of one initial implementation in the Virtual Raft
Project were described, along with some benefits and
limitations of the approach. Admittedly, having
autonomous characters decide whether on not to jump on
or off a virtual raft seems relatively simple in the scope of
possible social behavior. However, applying the basic
concepts from this implementation to other systems may
have the potential to create complex, compelling, and
useful behavior. Synthetic social construction offers a
novel approach to multiagent learning, social simulation,
and decision-making in multiagent systems.

References
Berger, P. L. and Luckmann, T. (1966). The Social
Construction of Reality: A Treatise on the Sociology of
Knowledge. Garden City, NY, Anchor Books.

Chalkiadakis, G. and Boutilier, C. (2003). Coordination in
Multiagent Reinforcement Learning: A Bayesian
Approach. Autonomous Agents and Multiagent Systems,
Melbourne, Australia, ACM Press.

Enembreck, F. and Barthès, J.-P. (2005). ELA -- A New
Approach for Learning Agents. Autonomous Agents and
Multi-Agent Systems 10: 215-248.

Finnie, G. R. and Sun, Z. (2002). Similarity and Metrics
in Case-Based Reasoning. International Journal of
Intelligent Systems 17(3): 273-287.

Griffiths, N. and Luck, M. (2003). Coalition Formation
through Motivation and Trust. International Conference

on Autonomous Agents, Melbourne, Australia, ACM
Press.

Hales, D. and Edmonds, B. (2003). Evolving social
rationality for MAS using "tags". Proceedings of the
second international joint conference on Autonomous
agents and multiagent systems, ACM Press: 497--503.

López y López, F., Luck, M. and d'Inverno, M. (2004).
Normative Agent Reasoning in Dynamic Societies.
International Conference on Autonomous Agents, New
York, NY, IEEE Computer Society.

Mao, W. and Gratch, J. (2004). Social Judgment in
Multiagent Interactions. Autonomous Agents and
Multiagent Systems, New York, NY, ACM Press.

Nunes, L. and Oliveira, E. (2004). Learning from Multiple
Sources. Autonomous Agents and Multiagent Systems,
New York, NY, ACM Press.

Santini, S. and Jain, R. (1995). Similarity Matching.
Second Asian Conference on Computer Vision, Singapore.

Sherory, O. and Kraus, S. (1995). Coalition formation
among autonomous agents: Strategios and complexity.
From Reaction to Cognition. C. Castelfranchi and J.-P.
Müller. Heidelberg, Springer-Verlag: 57-72.

Stirling, W. C. (2004). A Sociological Framework for
Multiagent Systems. Autonomous Agents and Multiagent
Systems, New York, NY, ACM Press.

Tomlinson, B., Downie, M., Berlin, M., Gray, J., Wong,
A., Burke, R., Isla, D., Ivanov, Y., Johnson, M. P., Lyons,
D., Cochran, J., Yong, B., Stiehl, D., Soetjipto, R.,
Zaharopol, D. and Blumberg, B. (2001). AlphaWolf.
Proceedings of SIGGRAPH 2001: conference abstracts
and applications.

Tomlinson, B., Yau, M. L., O'Connell, J., Williams, K.
and Yamaoka, S. (2005). The Virtual Raft Project: A
Mobile Interface for Interacting with Communities of
Autonomous Characters. Conference Abstracts and
Applications, ACM Conference on Human Factors in
Computing Systems (CHI 2005), Portland, OR.

Tuyls, K., Verbeeck, K. and Lenaerts, T. (2003). A
Selection-Mutation Model for Q-learning in Multi-Agent
Systems. Autonomous Agents and Multiagent Systems,
Melbourne, Australia, ACM Press.

Watkins, C. J. C. H. and Dayan, P. (1992). Technical
Note: Q-Learning. Machine Learning 8(3-4): 279-292.

Weinberg, M. and Rosenschein, J. S. (2004). Best-
Response Multiagent Learning in Non-Stationary
Environments. Autonomous Agents and Multiagent
Systems, New York, NY, ACM Press.

