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Abstract 
Borrowing ideas from the notion of social construction of 
self, this paper puts forth the idea of synthetic social 
construction - multiagent systems in which agents socially 
construct each others’ roles and behaviors via their 
interactions with one another.  An example 
implementation of synthetic social construction is 
presented demonstrating one use of this method to 
facilitate social learning.  Synthetic social construction 
represents a novel approach to adaptive behavior in 
multiagent systems informed by human behaviors. 

Introduction  

Multiagent systems have proven themselves a useful tool 
in accomplishing certain types of computational tasks, 
such as bidding in auctions, societal simulations, or 
control of multi-robot systems.  Rather than having a 
single, unified computational entity with which to work, 
designers can now employ many individual autonomous 
computational entities.  While not a panacea, these 
multiagent systems are more adept at solving certain types 
of problems than their single agent counterparts. 
 However, in order to take full advantage of these 
abilities, it may be beneficial to approach these systems 
both as collections of interacting individuals and 
holistically as societies.  By borrowing ideas from 
sociology, anthropology, and philosophy, we can gain 
new insight into different methods and techniques that 
might be used when developing multiagent systems (or 
societies).  This type of thought is already evident in other 
multiagent work (López y López, Luck and d'Inverno 
2004) (Mao and Gratch 2004). 
 One such idea comes from social constructionism 
(Berger and Luckmann 1966): the social construction of 
self.  This theory posits that we define ourselves in terms 
of interaction with others.  When one is the recipient of 
another’s actions, one changes one’s self concept 
depending on what actions were taken; if I am a frequent 
recipient of complements and respect, I may begin to hold 
myself in higher regard.  When another is the recipient of 
similar actions, one sees one’s self as similar to that other; 
                                                
   

if someone else is also repeatedly complemented and 
respected, I could consider myself similar to him or her.  
When such similarities are in place, one takes one’s cues 
for social action (or inaction) from those that one 
considers to be similar to one’s self.  If the other person 
who had been regularly complemented and respected 
became thankful and humble (or if the other person 
remained tacitly aloof), I might be inclined to have a 
similar reaction (or lack thereof). 
 Admittedly, this description is not a full and complete 
notion of social constructionist theory, nor can such a 
theory explain the entirety of social interaction.  
However, the social construction of self has useful 
implications for designers of multiagent systems, 
particularly in regard to agent interaction and learning. 
 Previously, most learning in multiagent systems has 
been done via forms of reinforcement learning, memory-
based reasoning, or model learning (Enembreck and 
Barthès 2005).  While these methods have been both 
formally and experientially proven suitable for systems 
with a single agent, they have not been shown to have 
similar efficacy in the learning problem for multiagent 
systems.  Some of these techniques have been modified 
for use by multiagent systems, but generally with some 
sort of caveat – either assumptions must be made about 
the conditions of the environment, agents must be given 
some a priori knowledge, multiple methods must be 
combined to be effective, or, most commonly, formal 
proof of their validity and efficacy has not been shown. 
 This paper presents a method for generating adaptive 
behavior in multiagent systems, synthetic social 
construction, wherein an agent adapts its behavior based 
on both the actions other agents take towards it and the 
interactions other agents have with one another.  This 
paper does not offer a formal proof of the technique’s 
perfection or completeness.  Rather, it presents one 
example implementation in a domain where synthetic 
social construction is particularly pertinent and 
demonstrates results obtained there.  We close with a 
discussion of advantages, limitations, and future work, 
both of the particular implementation and the method in 
general. 



Related Work 

This work brings together ideas from several other 
projects and synthesizes concepts that span multiple 
disciplines. 

Social Construction 
Autonomous agents have already been used to simulate a 
number of different social phenomena, including 
normative reasoning (López y López, Luck and d'Inverno 
2004), social judgment (Mao and Gratch 2004), and 
others (Stirling 2004) (Hales and Edmonds 2003).  Here, 
we use agents to simulate social construction (Berger and 
Luckmann 1966), specifically, a limited notion of the 
social construction of self.  Using the idea that agents in 
societies take their cues from other agents that they see as 
similar to themselves, we enable agents to learn which 
actions to take by observing which actions are taken by 
similar agents. 

Learning 
Learning, both in AI and autonomous agents, is a well-
known, important, and difficult problem.  Q-learning 
(Watkins and Dayan 1992) is a common, robust technique 
for single agent learning.  Although it has been noted that 
Q-learning is not particularly well-suited for dynamic, 
multiagent environments (Tuyls, Verbeeck and Lenaerts 
2003) (Chalkiadakis and Boutilier 2003), modified 
versions have been adapted to and incorporated in 
multiagent learning (Nunes and Oliveira 2004) (Tuyls, 
Verbeeck and Lenaerts 2003) (Weinberg and Rosenschein 
2004). 
 Various other methods have been developed, besides 
reinforcement learning, including memory-based 
reasoning and model learning.  However, as noted 
elsewhere (Enembreck and Barthès 2005), many of these 
techniques do not adapt readily or easily to multiagent 
systems. 

Coalitions 
Another societal phenomenon that has been incorporated 
into multiagent systems is the forming of subgroups, or 
coalitions, within a society (Sherory and Kraus 1995) 
(Griffiths and Luck 2003).  Most of these coalitions are 
goal-based, that is, agents form and join coalitions to 
better accomplish their own goals.  While the coalitions 
are formed, agents explicitly work together to accomplish 
a temporarily unified goal. 
 While synthetic social construction forms subgroups 
within societies of autonomous agents, such groups are 
not formed to facilitate the accomplishment of a specific 
task.  Furthermore, the agents do not pool their collective 
skills to achieve a previously unattainable goal.  Rather, 
the groups formed here are made for the purposes of 
learning.  While learning could be seen as a goal, it is a 

different sort of goal than those typical of coalitions, in 
that it is not at some point accomplished and then checked 
off so the next goal can be addressed. 

Characters 
The specific implementation discussed in this paper builds 
on work done with autonomous characters by a number of 
different researchers and groups (Tomlinson et al. 2005) 
(Tomlinson et al. 2001).  While this paper does not bear 
relevance specifically or only to autonomous characters, 
the system discussed below was implemented on a 
platform based on other characters research. 

Synthetic Social Construction 

This paper presents the idea of Synthetic Social 
Construction, a method with which agents learn action 
selection by observing the choices made by other agents.  
Part of the notion of the social construction of self says 
that one takes cues on how to act from others to which 
one sees oneself as similar.  When such a similar person 
takes or does not take an action, one is more or less 
inclined to take that action as well, respectively. 

Similarity 
In order for an agent to determine from whom to learn, it 
may be beneficial that the agent have a means of 
measuring its similarity to other agents.  We provide a 
similarity metric that differs from Euclidean distance or 
other such metrics.  We do not use these other metrics 
because they give the same distance regardless of the 
magnitude of the values.  For example, Euclidean 
distance says that the point (10, 10) is just as far away 
from the point (20, 20) as the point (110, 110) is from 
(120, 120).  However, we wanted to be able to take range 
into account.  That is, while the exact distance between 
these two points is the same, the proportions between the 
actual values are quite different.  To capture this idea, we 
use a similarity metric that bases similarity not only on 
the difference between values but also on their difference 
with respect to their magnitudes. 
 Let us consider two agents, x and y, with various 
properties p1, … pn, which, for measuring similarity, we 
call dimensions.  We use the notation x.pi to refer to x’s ith 
property pi.  These properties can be of two kinds: discrete 
or continuous.  We now define a similarity function s(j, k) 
to compare any two agents in a single dimension. 
 For discrete properties, either the agents have the same 
value or they do not.  For example, a person could be a 
homeowner or not be a homeowner, but there is not a 
continuum of partial homeownership such that one person 
could own more of a home than another person.  For such 
properties, if x.pi = y.pi, then x and y are similar in that 
dimension, and s(x.pi, y.pi) = 1.  Otherwise, they are 
different, and s(x.pi, y.pi) = 0.  This maintains the identity 
property for metrics. 



 Continuous properties are values in some range and can 
be more or less similar depending on their position in that 
range.  For example, a person who is 1.75m tall would be 
more similar to another person who is 1.8m tall than one 
who is 2m tall.  For such properties, the similarity in that 
dimension is given by the formula: 

where s(x.pi, y.pi) is the similarity x bears to y in 
dimension pi.  Note that s(x.pi, y.pi) = s(y.pi, x.pi), which is 
significant for two reasons.  One, when comparing x and 
y, we only have to do one calculation, rather than needing 
one calculation for x’s similarity to y and a separate 
calculation for y’s similarity to x.  Granted, the 
calculation involved here is not incredibly demanding and 
in all reality will most likely not give a huge performance 
boost.  However, in real-time systems, one common 
application area for autonomous agents, often times every 
little performance boost makes a difference, especially 
when dealing with very large numbers of agents.  More 
importantly, though, this equality maintains the symmetry 
property for metrics. 
 We also trap the similarity for any given dimension in 
the range 0.0 – 1.0.  s(j, k) has a maximum value of 1 
(when j = k), so the only real trapping is done if s(j, k) 
comes out negative.  If agents x and y are vastly 
dissimilar in some dimension, we do not want that 
dissimilarity to detract from similarities in other 
dimensions.  So, if s(j, k) comes out negative, rather than 
keep the negative value we simply replace it with 0.  This 
trapping means that we may not maintain the triangle 
inequality for metrics.  However, as discussed elsewhere 
(Santini and Jain 1995) (Finnie and Sun 2002), the 
triangle inequality does not and should not always apply 
to similarity metrics. 
 Note that there are two situations in which the average, 
and thus the denominator, may be 0, causing the value to 
be undefined.  First, if both x.pi and y.pi are 0, then the 
average will obviously be 0.  Here, we introduce a special 
case to return a similarity of 1, since the two have the 
exact same value.  Second, if x.pi = -1 * y.pi, then the 
average here, too, will be 0.  Since we are using a 
similarity metric that bases similarity partially on 
magnitude and in this case x and y have exactly the 
opposite magnitude in the dimension in question, we say 
that they have absolutely no similarity in that dimension 
and return a similarity of 0. 
 Now we define a similarity function S(x, y) to compare 
two agents across all dimensions as given by the formula: 

where S(x, y) is the overall similarity of x and y across all 
dimensions. 

Simple Learning 
This method allows one agent to learn from other agents 
based on those agents’ decisions.  However, the initial 
learning done by those must be based on some sort of 
reasonable course of action.  Otherwise, an agent will 
base its actions on the arbitrary decisions of others rather 
than on decisions informed by those others’ experiences.  
This, this method can only be used in conjunction with 
some other learning algorithm. 
 The most intuitively applicable methods are 
reinforcement learning and memory-based reasoning.  In 
reinforcement learning, the agent receives some sort of 
feedback after a given decision that makes the agent more 
or less inclined to make the same decision again.  When 
that time comes, another agent can simply observe the 
first agent’s decision and then adapt its behavior 
accordingly. 
 The case of memory-based reasoning is somewhat 
similar.  When an individual agent makes a decision 
based on its memories, it can update those memories with 
the result of the present decision and store that 
information for future decision making.  Likewise, when 
one agent watches another agent make a decision, the first 
agent can update its memories almost as if it had made 
the same decision. 
 Model learning, however, does not apply as easily.  It is 
difficult for one agent to determine if another agent’s 
model is similar to its own and if even makes sense to 
update its model based on the other agent’s actions.  That 
is not to say that model learning could in no way be used 
here, but rather that other learning methods are more 
amenable. 
 Once one agent has learned from its actions and adjusts 
its decisions accordingly, it becomes possible for other 
agents to observe these decisions and adapt their behavior 
to reflect the new decisions. 

Social Learning 
Based on the similarity metric described above, each 
agent keeps a record of how similar it is to another agent.  
When one agent observes another agent take or not take 
an action about which it cares, the agent in question then 
modifies its likelihood of taking a similar action based on 
the degree of similarity to that other agent. 
 Thus for an agent x, its tendency to take a certain 
action at some future time, Tn + 1, after observing some 
action of agent y is given by the formula: 

where dy is the decision of the agent y (1 is performing the 
action and 0 is not), Tn is agent x’s current tendency to 
take the given action, and S(x, y) is x’s similarity to y, as 
defined above. 
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 There are two important aspects of this approach to 
note.  One is that agent x’s tendency approaches agent y’s 
action asymptotically; x’s modifies it’s tendency by half 
the difference between its tendency and y’s action.  
Second is that the tendency adjustment is multiplied by 
the agents’ similarity, which is on a scale of 0.0 to 1.0.  
The greater the similarity between two agents, the greater 
the influence one will have on the other. 
 It is important to remember that this method of learning 
does not attempt to converge over time, or even attempt 
to reach an optimal value.  Rather, the purpose is an 
attempt at emulating some of the ways that humans 
perform social construction.  Thus, the paper contains no 
proof or mathematical demonstration of this method’s 
optimality. 

Implementation 

Currently, work is being done on implementing synthetic 
social construction in the Virtual Raft Project (Tomlinson 
et al. 2005).  The following section presents the portions 
of that implementation that have been completed thus far. 

The Virtual Raft Project 
The Virtual Raft Project centers on a mobile computing 
interaction paradigm in which stationary computers are 
islands of virtual space and mobile devices are rafts by 
which autonomous systems may cross the sea of real 
space that separates virtual islands.  To emphasize this 
metaphor, the mainstay of the installation consists of three 
collocated desktop machines on each of which a group of 
virtual characters live.  Tablet PC’s act as virtual rafts, 
which users can physically bring up to one of the islands 
to allow a character to jump off of the island and onto the 
raft.  If the raft is then brought to another island, the 
character will jump off onto that island.  For a better 
sense of the system and the interactions involved, please 
see the video at http://tinyurl.com/5yxkn. 

To Jump or Not to Jump 
The main decision these characters are faced with is 
whether or not they will be jumping onto or off of the raft.  
Initially, the characters would jump whenever a raft or 
island was present.  The tablet PC’s that serve as virtual 
rafts incorporate accelerometers, which allow the attitude 
of the tablet to affect the movement of the raft on the 
tablet’s screen, such that tilting the tablet in one direction 
causes the raft to move in that same direction.  If the raft 
is tilted too far, the character falls in the water and its fire 
goes out.  When the raft moves around, the character 
attempts to balance on the raft, all the while making a 
record of how long it was on the raft and how rough the 
ride was, the later codified by the amount of sliding 
around the raft does and labeled as the distance the raft 
traveled.  We wanted the characters to form impressions 
about whether traveling on the raft is a good or bad thing, 
depending on how their trip went.  This could be 

accomplished with a simple reinforcement learning 
system.  However, once the characters arrived on a new 
island, we wanted them to pass those impressions on to 
other characters.  In this way, different characters could 
share their different ideas about the raft and collectively 
get much more diverse sample than would be possible 
individually. 
 When a character is first created, we start it off with a 
100% likelihood of jumping onto the raft.  This is partly 
because if the characters did not start off jumping then the 
installation would not be incredibly engaging, and partly 
because if the characters did not jump to begin with 
people would likely assume the behavior was a 
malfunction rather than a designed behavior. 
 Once a character has ridden the raft and then 
disembarks, it adjusts its likelihood to board the raft again 
based on the quality of the trip.  This implementation uses 
a simple reinforcement learning strategy based on the 
amount of time spent on the raft, how far the raft traveled, 
and whether the character fell in the water.  After a trip on 
the raft, the agent’s new jump tendency is given by the 
formula: 

where Jn + 1 is the new jump tendency, Jn is the previous 
jump tendency, d is the distance traveled on the raft, t is 
the time spent on the raft, and f is 1 if the character fell 
off the raft and 0 if not. 
 While on the island, the characters observe one another, 
and each determines its similarity with respect to the 
others using the similarity metric described above.  The 
current implementation uses five dimensions: the island 
on which the characters were born, the amount of time 
they spent on the raft during their last trip, the distance 
the traveled during that trip, whether they have a fire on 
their hand, and what color fire they are carrying.  Birth 
island is signified by the color of a character’s crown and 
is a discrete value; we do not say that certain islands are 
closer to others.  While sitting around the fire, the 
characters take turns “telling stories” to one another, 
which is signified visually by one of the characters 
standing up, gesturing as if speaking, and optionally 
(depending on the installation) verbally and audibly 
describing their trip to the other characters.  Thus, it 
makes sense that characters would be able to compare 
themselves to each other based on trip duration and 
quality, both of which are treated as continuous values for 
the purposes of the similarity metric.  Whether or not a 
character’s fire is lit is obvious and can intuitively be 
factored into similarity as a discrete value.  What color 
fire the character is carrying can only be known if it has a 
fire and thus is only factored into the similarity metric if 
both of the characters in question have their respective 
fires lit.  In this case, fire color is treated as a continuous 
value, since during the course of the installation the 
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characters can mix fire colors.  Fire color is stored as an 
RGB value, so the overall similarity in this dimension is 
the composite of the similarities of the red, green, and 
blue components of each character’s fire color. 
 As a visual signification of similarity, the characters 
tend to “hang out” near other characters to which they are 
similar.  Characters are most drawn to others to which 
they are most similar and are most repelled from those to 
which they are most dissimilar.  This makes it apparent to 
the user that various groups are being formed within the 
population on an island. 
 The learning is actually done when a user brings a raft 
up to an island.  When the raft approaches, all the 
characters on the island turn around and take notice of the 
raft’s presence.  Each character then decides for itself 
whether it is interested in jumping on the raft or not, 
based on a pseudorandom number compared to its 
jumping tendency.  If it is in fact interested, the character 
will visually signify this interest by approaching the 
foreground of the screen.  If it decides it would rather not 
jump, the character turns back around and sits down again 
at the fire.  When this decision occurs, each character 
observes the other characters’ decisions and modifies their 
own jump tendency using the social learning formula 
described above. 

Discussion 

Here, we list some of the benefits of synthetic social 
construction, address some of its limitations, mention 
some possible future directions, and list a few questions 
that could be addressed in this workshop.  Throughout, we 
mention aspects that were particular to this 
implementation. 

Benefits 
Collective Learning.  As mentioned at the beginning of 
this paper, the learning problem for multiagent systems is 
an important and difficult one.  Synthetic social 
construction offers a novel approach to multiagent 
learning that takes advantage of different agents having 
different experiences.  Rather than restricting an agent to 
learning from its own experience, this method allows the 
agent to learn behavior from others’ experiences by 
watching their decisions.  An agent cannot watch another 
agent make a decision, observe the outcome, and decide if 
it would make the same decision.  Rather, the first agent 
lets the other agent determine whether the course of 
action was a beneficial one, observes the other agent 
modify its decision patterns, and then adapts its own 
decisions based on those modifications. 
Character Believability.  When the Virtual Raft Project 
began, enhancing character believability was a core 
concept.  By allowing characters to break the screen, the 
characters are no longer seen as entities that live only 
within a single device but as entities that maintain 
permanence across several stationary and mobile devices.  

When a character maintains this permanence, it becomes 
less like a part of a computer program bound to one 
machine and more like a truly autonomous character. 

Social Simulation.  Simulating artificial societies has 
become an important area of research, as evidenced by, 
among other things, an entire journal devoted to the 
subject, the Journal of Artificial Societies and Social 
Simulation.  If such pursuits are truly intended to imitate 
human societies, it might be beneficial to incorporate 
mechanism similar to those theorized to be in place in 
humans.  Furthermore, behaviors that emerge from such 
synthetic societies may be able to help us understand the 
human behavior after which it was modeled and help 
inform new lines of questioning and new areas of 
research. 

Limitations 

Not Optimal.  This learning method does not seek any 
optimal solution or equilibrium (at least, not explicitly).  
This is both a limitation and an advantage.  For some 
applications, agents should be finding the best solution 
possible.  However, in other applications, agents may not 
be intended to find an optimal course of action, there may 
not be a clear definition of optimality, or such optimality 
may not exist.  In these situations, learning from other 
agents may become a distinctive advantage.  Also, this 
method is well suited for applications where agents are 
being used to model social interactions rather than to 
accomplish some task. 
Homogeneity.  For the similarity metrics to work the 
agents have to be homogeneous, otherwise they won’t 
know how to compare to one another.  If the agents are 
not homogenous, it does not rule out the use of some 
similarity metric, but it does make the development of 
such a metric more difficult. 
Scalability.  As the number of agents increases, 
scalability quickly becomes a pressing issue.  If the 
number of agents is n, it takes O(n2) time to compare 
every agent to every other agent. 
 Implementation described here includes an 
optimization that removes the need to run an O(n2) 
process to constantly update character similarities.  Rather 
than comparing every character to every other character at 
every time step, the characters have a simple tracking that 
stores a previous value for each of the dimensions of 
interest.  At every time step, the current value is 
compared against the previous value.  If anything has 
changed, all the similarities for that character are 
recalculated, which takes O(n) time, where n is the 
number of agents.  This is far better than an O(n2) process 
every time step, but it does require O(n * m) extra 
memory, where m is the number of dimensions being used 
for similarity testing.  This is a useful optimization, but 
ultimately it may prove as a weakness in this method 
since not every implementation will have so few 
dimensions or be able to take advantage of dimensions 
that are not constantly in flux. 



Simple Learning.  Despite the ability to learn from other 
agents, this method still requires that some agent learn for 
itself first, either by reinforcement learning as in the 
implementation described here or by some other method.  
Once one agent has learned something, it can demonstrate 
that knowledge to other agents, but it must learn 
experientially on its own to begin with. 

Future Work 
Jump Off.  Currently, the characters are only concerned 
with whether or not to jump on the raft; when presented 
with an island onto which to jump, they will always jump 
off the raft.  This could be improved by allowing the 
agents to gather simple data about an island, such as the 
average similarity of the characters or some information 
about the norms on that island (López y López, Luck and 
d'Inverno 2004), and then making a decision as to whether 
or not that was an island onto which they wanted to jump. 

Vicarious Learning.  Rather than one agent relying on 
another agent to learn something and then having the first 
agent just watch what the second agent does, the first 
agent should be able to watch the second agent’s actions 
and determine for itself whether the results are desirable.  
This sort of might get back to something like (Tuyls, 
Verbeeck and Lenaerts 2003), where they use a type of Q-
learning modified for agents. 
Trust.  After one agent has observed another and learned 
something from it, the agent could analyze the benefit of 
learning from that other agents and possibly establish a 
degree of trust between them that would augment or 
mitigate further learning. 

Permanence and Habituation.  Once an agent has 
learned by watching another agent do the same task a 
hundred times, that learning should be incredibly 
ingrained so that if the other agent suddenly does 
something different, the first does not necessarily modify 
its behavior immediately to follow suit.  Alternatively, 
once one agent has watched another agent do the same 
task a hundred times, the agent may have become 
habituated to that particular stimulus and so it no longer 
has any effect on the agent. 

Questions 
There are a number of questions this work has raised that 
could possibly be addressed in this workshop. 
 Currently, the system still relies on a very simple 
reinforcement learning method.  Would there be a way to 
make the learning entirely social?  One possibility in this 
implementation would be to assign all the characters 
random initial jump tendencies and allow whatever order 
happens to emerge.  However, there would still be no link 
between the raft trip and the characters’ decisions.  Does 
it even make sense to try and remove reinforcement or 
some other simple learning? 
 A large part of social construction deals with how 
individuals act toward each other, but currently the 

characters in the Virtual Raft Project do not take any 
actions directly toward one another.  What sorts of actions 
and interactions might make sense?  Should they trade?  
Should they fight (one participant at CHI moved all the 
characters to one island and then wanted a Battle Royale 
to ensue)?  Should they have tea?  Should they just chat? 
 Is there a way to overcome the scalability problems of 
comparing every agent with every other one?  There are 
classical logic puzzles about passing information among 
parties, but in this case, the information each agent has is 
calculated and only pertinent to that agent.  Could there 
be some way to work around this? 
 What else could we do with synthetic social 
construction, other than learning?  Could we use it for 
coalition forming?  Can we use it for construction of 
concepts other than self, such as emotion, social roles, or 
possibly, rather than mimicking other agents, allow agents 
to mimic humans with which they interact? 

Conclusion 

This paper has presented synthetic social construction, a 
method for an agent in a multiagent system to adapt its 
behavior based on the behavior of other agents.  The 
specifics of one initial implementation in the Virtual Raft 
Project were described, along with some benefits and 
limitations of the approach.  Admittedly, having 
autonomous characters decide whether on not to jump on 
or off a virtual raft seems relatively simple in the scope of 
possible social behavior.  However, applying the basic 
concepts from this implementation to other systems may 
have the potential to create complex, compelling, and 
useful behavior.  Synthetic social construction offers a 
novel approach to multiagent learning, social simulation, 
and decision-making in multiagent systems. 
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