
Using Social Agents to Visualize Software Scenarios

Thomas A. Alspaugh, Bill Tomlinson, and Eric Baumer∗

Department of Informatics
Donald Bren School of Information and Computer Sciences

University of California, Irvine

Figure 1: Visual model of an ATM scenario

Abstract

Enabling nonexperts to understand a software system and the sce-
narios of usage of that system can be challenging. Visually mod-
eling a collection of scenarios as social interactions can provide
quicker and more intuitive understanding of the system described
by those scenarios. This project combines a scenario language
with formal structure and automated tool support (ScenarioML) and
an interactive graphical game engine featuring social automomous
characters and text-to-speech capabilities. We map scenarios to so-
cial interactions by assigning a character to each actor and entity
in the scenarios, and animate the interactions among these as social
interactions among the corresponding characters. The social inter-
actions can help bring out these important aspects: interactions of
multiple agents, pattern and timing of interactions, non-local in-
consistencies within and among scenarios, and gaps and missing
information in the scenario collection. An exploratory study of this
modeling’s effectiveness is presented.

CR Categories: D.2.1 [Requirements]: Languages and Tools

Keywords: scenario analysis, ScenarioML, social autonomous
characters, interactive animation

1 Introduction

Scenarios and use cases are widely used in a number of ways during
the development process, and by a variety of participants [Alexan-

∗e-mail: {alspaugh,wmt,ebaumer}@ics.uci.edu

der 2004; Benner et al. 1992]. These participants frequently include
stakeholders and users who are not experts in the use and analysis of
scenarios. It is essential that these nonexperts be able to understand
the scenarios of usage that describe a software system. Scenarios
are an effective communication medium between stakeholders and
developers. Their narrative form and use of natural language take
advantage of people’s natural ability to understand stories. How-
ever, scenarios also involve challenges, especially when more than
one scenario must be considered at once. Other researchers have
noted that people are better at identifying errors of commission than
errors of omission: they are more successful at finding individual
statements that are incorrect, than at identifying missing informa-
tion, non-local inconsistencies between two or more scenarios, un-
stated assumptions about the world or the system, or ambiguous or
ill-defined terminology. Visually modeling a collection of scenar-
ios as social interactions (see Figure 1) provides an additional path
to achieve better understanding of the systems described by those
scenarios. If the modelling preserves the interconnections and de-
pendencies of the scenarios, it can take advantage of people’s basic
compentences with social interactions to give viewers insight into
the interactions described by the scenarios. The research presented
here uses the metaphor of social interaction to improve nonexperts’
comprehension of sets of scenarios.

This project combines a scenario language with structure, seman-
tics, and automated tool support (ScenarioML) with an interactive
graphical game engine featuring social automomous characters and
text-to-speech capabilities. The animated social interactions of the
autonomous characters and the text which they speak is driven by
the collection of scenarios used as input to the visualization. Visu-
alization of another collection of scenarios is accomplished simply
by giving the new scenarios as input to the visualization software.

Other researchers have developed a 3D representation for visualiz-
ing large software systems and representing high dimensional data
[Marcus et al. 2003]. This research demonstrates the value that may
be gained by utilizing the human ability to process spatial informa-
tion.

Related work in requirements engineering has found that rich me-
dia enhance the effectiveness of scenarios for walkthrough, analy-



sis, and elicitation of further requirements. However, the cost of
producing the rich media to do this is substantial, and of course it
is difficult to produce rich media for systems that do not yet exist
[Pang et al. 2005]. Our approach produces a visualization of a sce-
nario that is produced directly from the scenario itself, a far less
costly approach. And as each scenario evolves, its visualization
evolves with it with minimal cost and effort.

Our mapping from scenarios to animated social interactions results
in an animated character for each actor, agent, and entity desired to
be shown in the visualization. Each character is accompanied by
an identifying label, and actors and agents speak their actions as a
means of expressing the accomplishment of those actions. Interact-
ing characters move to face each other during their interaction. The
social interactions thus modeled brings out the patterns of interac-
tion between actors, agents, and entities, and the temporal pattern
in which actions occur. Inconsistencies in those patterns within and
between scenarios are perceived as inconsistent social interactions
between the corresponding characters. Presenting these patterns in
a social form provides an additional means of identifying missing
information, unstated assumptions, and ill-defined terms by map-
ping them into a social space in which they may be more visible
than in their original narrative form.

A video illustrating this work may be found at http://orchid.
calit2.uci.edu/∼wmt/movies/softvis.mov.

The remainder of this paper is organized as follows. Section 2 dis-
cusses the related work that provides a context for this research.
Section 3 describes our implementation of the scenario-driven, 3D
animated social interaction visualization. We present an evalua-
tion of its effectiveness in Section 4. Section 5 discusses results,
insights, and lessons learned. We outline some future work in Sec-
tion 6, and summarize our conclusions in Section 7.

2 Related Work

Over the past decade, several researchers have investigated the use
of images and multimedia to enhance scenarios.

Wood et al.’s AMORE tool enhanced requirements with multime-
dia captured during elicitation, primarily for better recordkeeping
and traceability [Wood et al. 1994]. The recorded interviews pro-
vide a richer record than the derived requirements, and were also
envisioned as a means of teaching and improving requirements elic-
itation skills.

Haumer et al.’s CREWS-EVE used rich media representations of
scenarios showing uses of an existing system, for the purpose of
recording more complete requirements information and providing
a better basis for requirements evolution [Haumer et al. 1998]. The
rich media were used to achieve better stakeholder involvement,
complementing the strengths of scenarios and enhancing the re-
quirements baseline. The rich media showed concrete system uses,
and supported better explanation of the requirements, more effec-
tive understanding of variant ways of using a system, better pre-
sentation of multiple viewpoints, and structured review of current
requirements.

The ART-SCENE tool of Maiden et al. uses rich media to com-
plement scenarios [Zachos and Maiden 2004; Zachos et al. 2005].
Maiden points out that stakeholders are better at identifying errors
of commission than errors of omission, The enhanced context that
rich media can provide gives more cues than text scenarios, and is
more likely to elicit information that would remain tacit with text-
only scenarios. A recent study showed that rich-media scenarios in

ART-SCENE resulted in discovery of a larger number of alterna-
tive courses, though not a larger number of resulting requirements
[Pang et al. 2005]. The study also showed that construction of rich
media for enhancing scenarios was an expensive process, and was
not necessarily cost-effective.

The visualization of software systems has been shown to enable
computer scientists to work with greater comprehension, improved
accuracy and increased speed [Tudoreanu 2003]. In particular, vi-
sualizations are helpful to enable novice users in fault localization
tasks [Ruthruff et al. 2003].

The implementation of this project builds on previous research in
the design of interactive virtual worlds and autonomous animated
agents. These topics have been explored extensively by the com-
mercial sector (e.g., the computer game industry), by academic re-
searchers (e.g., the Autonomous Agents and Multi-Agent Systems
conference), and by governmental organizations (e.g., the US mili-
tary’s Simulation, Training and Instrumentation Command (STRI-
COM)). While a full review of this literature is not possible in the
confines of this paper, there are several projects that are most rele-
vant to this work, and exemplary of other work in these fields.

This project has been programmed using a graphics system based
on JOGL, the Java implementation of OpenGL. This graphics sys-
tem uses an adaptation of a non-photorealistic renderer created for
the AlphaWolf project [Tomlinson et al. 2002] and employs graph-
ical effects developed for the Virtual Raft project [Tomlinson et al.
2005]. The animations of the autonomous agents are enabled by a
motor system that blends example animations in real time [Downie
2001]. The autonomous behavior of the agents is built on a frame-
work inspired by the work of Blumberg [Blumberg 1996] and Perlin
[Perlin and Goldberg 1996].

Conceptually, the project draws on the idea of the Memory Palace,
a mnemonic device that has been employed for millennia by orators
such as Cicero [Ciceronis 55 B.C.]. This method for remembering
complex information involves making a connection between pieces
of the information and different physical locations. These pieces of
information may then be retrieved in order by mentally “walking”
through the space, and remembering each piece of information by
its connection to that place. This method for memorization draws
on the superior ability of humans to remember the physical configu-
rations of spaces, which exceeds our ability for rote memorization.
In his keynote address at the 2006 Game Developers Conference,
Philip Rosedale, the CEO of Linden Labs, proposed that the pop-
ular “Second Life” virtual world that his company created could
be used as a memory tool [Rosedale 2006]. The project described
in this paper draws on this same concept — the using of a real-
world metaphor to connect potentially abstract concepts to mental
structures that are easier for people to manipulate. The research
described here extends the idea of the Memory Palace to include
both physical and social elements. Social interactions are one of
the few topics that people can remember as well as they remem-
ber physical configurations [Byrne and Whiten 1988]. In addition,
the anthropomorphization of abstract concepts has been common
across human history (e.g., the Everyman morality play of the 15th
century, in which Good Deeds and Knowledge are personified char-
acters [Anonymous 1998]. By using both a physical and a social
metaphor, this “Memory World” can be a useful tool for remem-
bering, comparing and mentally operating on a complex body of
information such as a collection of scenarios.



3 Implementation

In the pursuit of visualizing software systems using the metaphor
of social interaction, this paper presents a system that visualizes
a collection of scenarios as interactions between autonomous an-
imated agents. The system consists of several main components:
the ScenarioML encoding of a scenario collection; an interface
menu that lets the user select which scenario should be enacted by
the animated agents; a real-time 3D graphical world inhabited by
autonomous animated agents who enact the scenarios; a scenario
manager that keeps track of what event is currently being enacted
in which scenario.

3.1 ScenarioML

ScenarioML [Alspaugh 2006] is an XML language designed for ex-
pressing scenarios and making use of them. ScenarioML provides
flexibility in determining the specificity with which a system is de-
scribed, the individual properties used to describe the system, and
structure of the events occurring in the system. It allows a designer
to specify scenarios with widely varying degrees of complexity; a
scenario could contain a single simple event, a chain of events to
occur in sequence, a partial temporal order of events whose oc-
currence is constrained by the partial order, or any combination of
the above. The events are further extended by lists of possible al-
ternatives one of which may occur, iteration of an event occurring
repeatedly under constraints, episodes reusing the events of another
scenario, and other constructs. ScenarioML is designed to map onto
the common human-readable scenario forms, and at the same time
provide an undergirding of formal structure for automation and tool
support. Figure 2 gives an XML excerpt and Figure 5 shows the
same scenario formatted for this study. For the purposes of this
initial investigation, scenario collections were used that contained
chains of events to be carried out in the specified order.

3.2 Graphical 3D World

The virtual world used to visualize the scenarios in this project
builds on previous research in the areas of interactive multime-
dia installations, synthetic characters, and autonomous social en-
tities [Tomlinson et al. 2001; Tomlinson et al. 2005]. The graphics
system was written entirely in Java and renders its graphics using
JOGL, the Java implementation of OpenGL. This graphical world
implements a background and ground plane against which charac-
ters interact, a virtual camera system, and a lighting model. Here,
the world is populated by a set of autonomous animated agents,
each of which represents an entity in the scenario collection be-
ing visualized. These animated agents cast shadows on the ground
plane, adding to the three-dimensionality of the visualization.

3.3 Animated Autonomous Agents

The animated autonomous agents in the virtual world are modeled
and rigged (i.e., they had their geometric meshes attached to articu-
lated skeletons) in a 3D animation program called 3D Studio Max.
These virtual characters are designed to play animations in real time
through Java. Each character has a motor system that seamlessly
connects each animation and is also able to blend between several
example animations. These example animations were created in
3D Studio Max and then exported in a raw data format so that they
could be manipulated by the Java code.

Figure 2: ScenarioML scenario (excerpt)

The characters represent entities in the scenario collection being
visualized. Each character is also accompanied by a nametag,
which floats above its head and displays the name of the entity
the character represents. Also, they are able to produce audi-
ble spoken utterances using the FreeTTS text-to-speech system
(http://freetts.sourceforge.net/). Since the “expressive
resolution” of a character’s animation (i.e. how much viewers can
tell about the character’s role in the scenario) from watching its an-
imation may not be good enough to express all of the elements in
a scenario, the name tags and speech capabilities can augment their
animated behavior with specifics such as numbers, names and other
more precise information.

Entities in this system can have a number of properties. First, en-
tities can either be physical, such as an ATM or a bank, or virtual,
such as a query the ATM might send to the bank. This distinction
is made visible by the color of the crown on the entity’s head; a
blue crown is used for physical entities and a green for virtual (see
Figure 3).

The visualization also includes a blue sign that reads “Physical En-
tities,” and a green sign that reads “Virtual Entities,” to remind the
user which color is which. Green was chosen for virtual entities be-
cause of the popularity of The Matrix movies over the past several
years, in which green text on a black background represents a data
world. Blue was chosen to represent real entities because it was one
of the two other primary colors of light, and was deemed to have
fewer strong connotations than red, which is inextricably tied to
ideas such as “stop,” “blood,” etc. Entities can also have an owner,
another entity the first entity will follow around. For example, an
ATM card is owned by a customer, and thus when the customer
approaches the ATM, its ATM card automatically goes with it. In
early prototypes of this system, it became clear that many scenarios
relied on the reader having pre-existing knowledge of relationships
such as the ownership of an ATM card by a customer. While it
may be viable to rely on an audience having such knowledge in a



Figure 3: Visualization of a TIS event. Actual entities such as the
pilot, TIS (partially obscured), and ground radar have blue crowns,
and virtual entities such as a ping carrying data are crowned in
green.

common interaction such as an ATM withdrawal, especially when
dealing with a US audience, there are many other collections of
scenarios where the reader will not have this kind of pre-existing
expertise. In these contexts, it is critical that the scenarios are ex-
plicit in expressing all of the relationships among the entities.

An entity can also be stationary or mobile; a customer is mobile,
while an ATM is stationary. Stationary entities are prohibited from
walking around in the graphical world. This information may also
be obvious to many observers in certain collections of scenarios
— for example, many people will understand that banks should
not walk around. However, as with the ownership issue mentioned
above, it is important for scenarios to represent explicitly informa-
tion such as the mobility of the entity so that observers may have
a solid understanding of the interactions that are occurring. This
explicitness is particularly important in situations where many ob-
servers do not have pre-existing expertise with the content domain.

Lastly, some entities are persistent, while others are transient. For
example, the ATM, customer, ATM card, and bank are all persis-
tent, and thus present during all events in the scenario collection.
However, entities such as queries from the ATM and responses to
those queries from the bank are transient. When the visualization
of a scenario reaches an event that involves one of these entities,
the entity appears. It remains present until it is no longer part of the
scenario, then disappears. For example, a scenario collection about
a traffic information system (TIS) in airplane cockpits, the pilot,
the cockpit’s TIS, and the ground radar are all persistent. Entities
such as other planes that may enter the same airspace or pings sent
between the ground radar and TIS are transient. When the ground
radar sends out a ping, a virtual entity representing the ping appear
next to the ground radar. When the TIS receives the ping, the ping
moves from the radar to the TIS. Once the TIS has received and
processed the ping, the character representing the ping disappears.
This use of transient entities helps to reduce cognitive load on the
user. Rather than having to keep track of as many as a dozen en-
tities that may all take part in a scenario collection, the user can
focus on just the entities participating in the current event of the
scenario being enacted. Figure 4 describes these characteristics in
pseudocode.

It is important to reiterate that when a human reads a scenario,
many of these properties that an entity may have are included in
the reader’s common sense knowledge about the systems in ques-

Entity {
boolean physical;

//true is physical, false is virtual
Entity owner;

//who, if anyone, owns this entity and
//determines where its "home position" is

boolean mobile;
//true is mobile, false is stationary

boolean persistent;
//true is persistent, false is transient

}

Figure 4: Pseudocode describing entity characteristics

tion. Many people know that an ATM is stationary. However, the
presence of this background experience becomes less reliable when
describing complex systems to novices and non-experts. It might
not be common knowledge to every reader that a ground radar sys-
tem is actually on the ground, rather than on the plane, and is thus
stationary. In this way, the visualization described here can help
readers unfamiliar with the topical matter of a scenario to under-
stand basic attributes about the various entities involved.

Also, the matter of entities and properties points to a strength of
ScenarioML. There is nothing about a simple, basic encoding of
a scenario collection into ScenarioML that would make entities be
explicitly noted as entities. Rather, as an XML language, Scenari-
oML provides the tools to extend the language and create whatever
tags are necessary. Using ScenarioML’s attribute-value pair (AVP),
a new attribute, EntityName, was created that signified which ele-
ments of the scenario should be considered entities. Furthermore,
AVPs were also used to encode all the entity’s properties. This
has the negative effect of requiring a little more work in writing
the scenarios themselves. However, the benefit in making the sce-
narios more readily comprehensible to all stakeholders should out-
weigh the extra time required. Furthermore, scenario collections
with such enhancements are still perfectly valid in the ScenarioML
schema, and thus these enhancements do not prevent the scenario
collection from being used in a way any other scenario collection
could.

The core behavior of the autonomous agents includes two core
skills — navigation and expression. These two skills are triggered
by the scenario manager (see below). When combined with the sce-
nario manager’s ability to generate spoken utterances, these skills
provide a sufficient range of behavior for a wide variety of scenar-
ios, while remaining simple enough to be clear to both the scenario
designers and the scenario’s end users.

The navigation skill enables a mobile agent to navigate to an arbi-
trary position and orientation, and enables a stationary agent to ori-
ent to an arbitrary target. This process involves finding the direction
vector from the character’s position to the target, and then dynam-
ically blending animations with different degrees of turning so that
the character exhibits a walk or turn behavior with an appropriate
degree of turning to bring it into the correct physical relationship
with the target. Apparent physical relationships are critical to the
perception of interactions among people, devices or software sys-
tems; while two computers can network across the world nearly as
easily as they can network to a device in the same room, people are
much more closely tied to the physical configurations of entities for
those entities to be seen as social.

When an agent navigates to a new position, any agents that are
owned by that agent also follow along until they are within a suit-
able distance from their owner. Through this mechanism, groups of
entities may be caused to travel in groups through the visualization



space.

Once an agent has arrived at the correct position and orientation,
it will perform the expressive behavior dictated by scenario man-
ager. This behavior usually involves gesturing with the hands and
upper body while standing, whereas the default pose for agents is
squatting down. This difference in primary pose helps to direct an
observer’s to the action currently taking place in the enactment of
the scenario — characters that are standing, moving and/or gestur-
ing are the key actors at any given moment of the scenario.

3.4 Scenario Manager

The scenario manager is similar to the director of a play, or the
drama manager in an interactive narrative [Mateas 1999]. It must
determine which entities are involved in the current event, keep
track of the visualization’s progress through a scenario, determine
when the current event has been completed, select the next event,
and determine when the entirety of the scenario has been enacted.

Currently, the scenario manager handles only scenarios consisting
of single events or chains of successive events. In this way, the sce-
nario manager is not required to determine which path to follow in
a graph of scenarios, but rather goes through the scenarios in the or-
der specified. When an event begins, the scenario manager finds all
the entities that are participating in that scenario. If any of those en-
tities are transient, they appear when the event begins. The average
position of all the entities involved is calculated, and those entities
go there. When the entities arrive at that location, they gesticu-
late as if conversing, representing that these entities are currently
interacting while the other entities are not currently active. If the
scenario involves a stationary entity, the other entities approach the
stationary one. This visualization prohibits two stationary entities
from participating in the same scenario. In an event like an ATM
sending a query to the bank, the sending of the query is one event,
and the bank receiving it is a separate event. Not only does this
help to make the scenario clearer, but it provides a failure mode if
there is a problem with the scenario in that it requires two entities
that cannot move to interact, such as requiring the ATM to interact
directly with the bank.

In addition to coordinating the animation of the agents enacting the
selected scenario, the scenario manager also vocalizes the textual
content of the scenario using the Java Speech API. While the ani-
mated agents have nametags so as to denote which entities are in-
teracting with which, the “expressive resolution” of the character’s
animation (i.e. how much viewers can tell about the character’s
role in the scenario) is intentionally low, so that the same animation
can be used simply to indicate that an entity is participating in an
event. The scenario manager’s vocalization of the textual content
of the scenario makes use of multiple modalities to provide the user
with information about the scenario. According to the cognitive
theory of multimedia learning [Mayer 2001], a multimedia system
should not simultaneously present the user with text and animation,
because trying to watch both becomes too much cognitive load for
that single modality. By employing audio, the system can use an
additional modality to convey additional information without cog-
nitively overloading users.

The scenario manager determines that an event has ended when all
the entities involved in that event have reached the destination spec-
ified at the beginning of the event and the speech engine has com-
pleted reading the text of the event. When this occurs, the scenario
manager proceeds to the next event in the scenario. If there are no
more events in the scenario, the speech engine is used to notify the
user that the selected scenario has been completed. The user can
choose to leave all the entities where they ended up at the end of

the scenario, or he or she can reset all the entities to their initial
positions.

3.5 Human-Computer Interface

The interface for this visualization consists of a Macromedia Flash
animation running in a web browser, which displays a menu of the
scenarios in the current collection. The flash animation communi-
cates with the Java program running the visualization using a socket
connection. When the flash animation starts up, it contacts the vi-
sualization to get the names of the scenarios, which it then uses to
populate the menu it presents to the user. When the user clicks on
one of the items in the menu, the animation sends the name of the
item clicked to the visualization. The characters then begin to enact
that scenario.

4 Evaluation

We hypothesized that our visualization would be of benefit to non-
experts trying to understand a collection of scenarios. We evalu-
ated the visualization by presenting two small scenario collections
in two different ways to two groups of sophomore and junior com-
puter science students at the University of California, Irvine. The
22 students were appropriate subjects because they themselves are
non-experts in understanding and analyzing collections of scenar-
ios, and the systems represented by them. One of the scenario col-
lections represented a familiar system and context, an Automated
Teller Machine (ATM); the other system represented a system and
context with which nearly all the students were unfamiliar, the Traf-
fic Information System (TIS) used in some private planes to help
avoid mid-air collisions. Each collection consisted of three sce-
narios, described in approximately 800 words; the ATM collection
had about 60 events and the TIS collection about 40. Both collec-
tions were derived from observations of actual uses of the systems
in question, which were ATMs of the first author’s credit union and
the Bendix/King KMD250 Multi-Function Display/GPS.

The two scenario collections were presented to the first group of
eleven subjects in text form only, and to the second group of eleven
subjects in text form accompanied by an animated social interaction
visualization. This portion of the experiment lasted 30 minutes, to
give each group time to work through the scenarios and/or view
all of the visualizations. The two groups then switched tasks, with
the first group viewing both text scenarios and visualization, and
the second group the text scenarios only. Both groups were then
given the same fixed amount of time (30 minutes) to examine and
analyze both scenario collections. Thus each scenario collection
was evaluated twice by both groups but in different presentations,
and each group was exposed to the presentations in a different order
(text then visualization, or visualization then text).

The visualizations were presented twice to each group, in the se-
quence ATM ATM TIS TIS. The presentation took almost the entire
30 minutes.

Each collection was seeded with approximately twenty faults.
These faults covered a range of common types of scenario faults,
including the types we expected our social visualization to be espe-
cially effective with.

Gap Some behavior or information is not given, but is needed to
understand the system.

Local inconsistency The scenarios describe nearby events that are
apparently contradictory.



Figure 5: Scenario in text form

Nonlocal inconsistency The scenarios describe events that are ap-
parently contradictory, in two different scenarios or separated
by many intervening events in the same scenario.

External inconsistency The scenarios describe unrealistic events
that could not happen in the physical world, or that conflict
with he constraints of the system’s environment.

Undefined item A scenario uses a term, actor, entity, action, or
other item that is not defined and unlikely to be familiar to the
readers.

Ambiguously-defined item A term, actor, entity, action or other
item is familiar to the readers in one sense but is used differ-
ently in the scenarios.

The subjects were also given questionnaires to fill out during the
30-minute period. The questionnaire consisted of these questions:

1. What problems did you find, and when (what minute) did you
find each one? (with sufficient space for 30 items.)

2. Have you ever used a system like the one the scenarios de-
scribe (ATM or TIS)?

3. What other comments or suggestions do you have about the
scenarios, the way they were presented, or this study?

At the end of the 30 minutes, the two groups were given fresh copies
of the questionnaire and they swapped places, so that the first (text-
only) group now saw the animated social interaction visualization,
and the second (text plus visualization) group was given time to
read and analyze the text scenarios. Each group was again given 30
minutes.

The questionnaires were analyzed by classifying each noted prob-
lem, if possible, as an identification of a specific fault. These faults
included the intentionally seeded faults and a small number of addi-

ATM TIS
Text 4.8 (0.9) 2.7 (1.6)
Visualization 0.9 (1.5) 0.6 (0.8)
Total 5.7 (1.4) 3.2 (2.0)

Table 1: Average errors found per subject (and standard deviation)
working first from text then from visualization; 9 subjects each for
ATM and TIS

ATM TIS
Visualization 3.8 (2.4) 1,9 (1.9)
Text 4.1 (3.0) 2.3 (2.0)
Total 7.9 (4.1) 4.2 (2.9)

Table 2: Average errors found per subject (and standard deviation)
working first from visualization then from text; 10 ATM subjects,
11 TIS subjects

tional “authentic” faults that the subjects identified. The problems
were then organized by the context in which they were noted:

• By a subject working with the text scenarios and animated
visualization, during the first 30 minutes.

• By a subject working with the text scenarios only, during the
first 30 minutes.

• By a subject working with the text scenarios only, during the
second 30 minutes; all these subjects had worked with the
visualization earlier.

• By a subject working with the text scenarios and animated
visualization, during the second 30 minutes; all these subjects
had worked with the text scenarios earlier.

We hypothesized that an initial analysis would show the effective-
ness of the visualization with respect to the print presentation for
problem identification and overall comprehension, and that this ef-
fectiveness would vary for different kinds of problems. We also hy-
pothesized that a further analysis in more detail (not yet completed)
would show the extent to which the two forms favored identifica-
tion of each individual problem. Our expectation was that some
problems would be more easily identified in one form or the other,
and that this would be confirmed by cases in which a subject ini-
tially did not identify that problem using one form (print, or print
plus visualization) but then in the second period identified it using
the other form. We chose to give the subjects the text scenarios to
refer to as they viewed the visualization, because we thought it pos-
sible that many subjects would not effectively grasp the details of
the visualization without a text copy to refer to occasionally.

The overall results of this initial study are summarized in Tables 1
and 2. The figures in the table sum the numbers of problems found
by each subject. The data are from 9 to 11 subjects in each group;
the data for several subjects was unusable for this study, due to
subjects’ late arrivals or problems with their questionnaires.

In the first 30 minutes, subjects working with this prototype of
the visualization (accompanied by text) identified somewhat fewer
problems than those working from the text scenarios alone, both for
the familiar system (ATM, 20% fewer) and the unfamiliar system
(TIS, 28% fewer). Thus it seems clear that the visualization is not
as effective as the text alone in helping subjects identify problems
with scenarios. It was very interesting that the subjects who worked
first with the visualization and text scenarios, and second with the
text scenarios alone, identified a substantial number of additional
problems from the text scenarios in the second half-hour. This was
in contrast to the subjects who worked first with the text scenarios



and then also with the visualization; these subjects found relatively
few additional problems. This suggests that initial exposure to the
visualization may significantly augment the effectiveness of the text
scenarios. A further study will be necessary comparing visualiza-
tion then text to an equivalent time spent only on the text scenarios.

5 Discussion

One demonstration of the value of this system lies in the fact that,
upon viewing the visualization of the scenarios that they themselves
had written, the designers of the system found numerous errors
in those scenarios. In addition, the visualization made it apparent
how to correct those errors. For example, when the ATM customer
walked to the ATM and the ATM card stayed back at its initial po-
sition, it pointed out very clearly the failure mode of the user for-
getting his/her ATM card at home.

A similar small epiphany occurred when one of the designers was
giving the entities their animations, so that any entities participating
in a given event gesticulate while the others just squat. At the point
in the scenario where the customer enters a PIN, he noticed that the
PIN entity was gesturing, but not the customer entity. Thinking he
must have coded something wrong, he opened up the XML file to
double check. Sure enough, in that particular event, the PIN had
been tagged as an entity, but not the customer. The visualization
made this error explicit in a way that would have been easy to miss
in a text-only format.

While multimodality may not be optimal for all technological sys-
tems, there are certain elements of scenarios that might be most
effectively understood using one or another of the conventional
modalities through which people interact with computational sys-
tems. Some scenario issues might be most readily observed in a vi-
sual format, others in an auditory format, still others in a text-based
format. By enabling observers to examine scenarios in a medium
with both audible text and visible movement, certain issues with
a collection of scenarios may come to light that might otherwise
remain largely hidden.

In the pilot study, it became clear that revisions would be needed
to several elements of the implementation of the visualization. For
example, the green and blue crowns of the agents appeared to be too
subtle for most of the participants to perceive. In a future version,
the entire character’s body will be blue or green. Similarly, the
text-to-speech capabilities were a bit too difficult to understand on
a casual viewing than would be optimal. In addition the fonts on
the nametags were too small to be viewed from a distance. For this
tool to be most useful to novices and non-experts, and also for it
to be useful to groups of users, the identities and characteristics of
the animated agents need to be exceedingly clear, lest people miss
critical information.

6 Future Work

This project has several clear directions for future work. Specifi-
cally, future versions of the project will be created to visualize col-
lections of more complex scenarios, such as eventDags (directed
acyclic graphs of events) and multiple scenarios being enacted si-
multaneously. In addition, these projects will involve the incorpo-
ration of temporal constraints on when events can occur.

With regard to the visualization, future versions will involve a more
thorough treatment of transient entities. Transient entities should
be seen coming and going from the scenario, so as not to break the

social metaphor. Real social entities do not spontaneously appear
and disappear in the middle of an interaction, but sometimes people
do come and go during the course of an interaction.

It may be more effective to visualize some entities in a non-
character form, for example as a geometric shape. This may be par-
ticularly appropriate for messages (such as queries from the ATM
to the bank, or pings from ground radar to the TIS) and possibly for
other entities with limited autonomy (such as banks and ATMs).
Further study will be needed.

Future versions of the project could more closely follow the Mem-
ory Palace metaphor by incorporating physical structures for static
elements of a simulation, to augment the social characters that rep-
resent the behavioral elements.

There will also be an effort to enable the bottom up organization
of entities, scenarios and collections of scenarios. This organiza-
tional process will allow the individual entities to determine what
scenarios they know about, watch other entities interacting, try to
determine what scenario is being followed, and thereby improve
their performance in various scenarios.

A number of technical choices may benefit from further investiga-
tion, such as the visualization background, the use of shadows, how
characters’ identities are shown, and how vocalization is used and
handled.

There will also be a continuation of the process to evaluate the effi-
cacy of this system. The study described in this paper was valuable
in framing the core questions to be asked of a system such as this
one; future efforts will involve an effort to answer these questions
in a rigorous and statistically significant way. Future work includes
more extensive analysis of the data from this study, for example of
specific types of faults found in each context and by each subject,
and a follow-on study that compares the two presentation orders
from this study with the effect of simply spending the additional
time on a single presentation form, for example 60 minutes with
the text form alone.

7 Conclusions

Scenarios are a useful tool for specifying software systems, espe-
cially for novices and non-experts. Collections of scenarios often
have many complex interdependencies, which may make the col-
lections difficult to understand. However, people’s basic compe-
tences with everyday interactions can be leveraged to aid in the
understanding of these complex systems. This research uses the
metaphor of social interaction to improve people’s comprehension
of sets of scenarios.

The system presented in this paper uses animated autonomous
agents to visualize the interactions between entities in a collection
of scenarios. The system presents the user with a collection of sce-
narios from which the user can choose one for visualization. The
animated agents then visually enact the scenario and vocalize its
textual components.

The scenarios for this system are encoded using ScenarioML, an
XML language that provides formal structure to textual scenarios.
This tool enables designers to make explicit the most relevant inter-
actions, relationships, and interdependencies in the scenarios. Fur-
thermore, this formal structure allows a computational system to
read, process, and enact the scenarios.

The system described here was demonstrated to a group of under-
graduate students as part of a pilot study to examine ways to test



the system’s efficacy in showing the interdependencies within col-
lections of scenarios. This pilot study brought to light a number
of elements that are critical to the success of a social visualization
— legibility, audibility and clear agent interactions. Based on this
pilot study, future studies are being planned to determine the de-
gree to which social software visualization can harness people’s in-
nate ability to understand social systems, helping them comprehend
other complex phenomena such as the operation of current software
systems.

With the abundance of computational power now available, it may
not be unreasonable to devote significant computational resources
to the creation of expressive visualizations that help to engage ob-
servers with the usage scenarios of software systems. Social visu-
alizations such as the one described here may be able to add value
to text presentation of scenarios, granting novices and non-experts
the ability to understand complex software systems more efficiently
and more deeply.

Acknowledgements

The authors would like to thank the California Institute for
Telecommunications and Information Technology; Suzanne Shae-
fer; Zack (Gang) Ji, Man Lok Yau, Andrew Correa, Uel McMahan,
and the other members of the Social Code Group at UC Irvine; and
the anonymous reviewers.

References

ALEXANDER, I. 2004. Introduction: Scenarios in system devel-
opment. In Scenarios, Stories, Use Cases: Through the Systems
Development Life-Cycle, I. F. Alexander and N. Maiden, Eds.
John Wiley & Sons, Ltd., 3–24.

ALSPAUGH, T. A. 2006. Scenarios, business rules, and match-
ing. Technical Report UCI-ISR-06-5, Institute for Software Re-
search, University of California, Irvine.

ANONYMOUS. 1998. Everyman. In Internet Medieval Source
Book, P. Halsall, Ed. http://www.fordham.edu/HALSALL/
basis/everyman.html.

BENNER, K., FEATHER, M. S., JOHNSON, W. L., AND ZOR-
MAN, L. 1992. Utilizing scenarios in the software development
process. In IFIP Working Group 8.1 Working Conference on In-
formation Systems Development Processes.

BLUMBERG, B. 1996. Old Tricks, New Dogs: Ethology and Inter-
active Creatures. Media Laboratory, MIT, Cambridge, MA.

BYRNE, R., AND WHITEN, A., Eds. 1988. Machiavellian Intelli-
gence. Clarendon Press, Oxford.

CICERONIS, M. T., 55 B.C. De Oratore ad Quintum Fratrem, Liber
II. http://www.forumromanum.org/literature/cicero
oratore2.html.

DOWNIE, M. 2001. behavior, animation, music: the music and
movement of synthetic characters. Media Arts & Sciences, MIT,
Cambridge, MA.

HAUMER, P., POHL, K., AND WEIDENHAUPT, K. 1998. Require-
ments elicitation and validation with real world scenes. IEEE
Transactions on Software Engineering 24, 12 (Dec.), 1036–
1054.

MARCUS, A., FENG, L., AND MALETIC, J. I. 2003. 3D represen-
tations for software visualization. In SoftVis ’03: Proceedings of
the 2003 ACM Symposium on Software Visualization, 27–37.

MATEAS, M. 1999. An Oz-centric review of interactive drama
and believable agents. In Artificial Intelligence Today: Recent
Trends and Developments, M. Wooldridge and M. Veloso, Eds.,
vol. 1600 of Lecture Notes in AI. 297–328.

MAYER, R. E. 2001. Multimedia Learning. Cambridge University
Press.

PANG, T., MAIDEN, N., ZACHOS, K., AND NCUBE, C. 2005. Do
rich media scenarios support requirements discovery? In 11th
International Workshop on Requirements Engineering: Founda-
tion for Software Quality (REFSQ’05), 152–166.

PERLIN, K., AND GOLDBERG, A. 1996. Improv: A system for
scripting interactive actors in virtual worlds. In SIGGRAPH,
205–216.

ROSEDALE, P., 2006. Serious Games Summit keynote: You can
(not) be serious. http://www.gamasutra.com/features/
20060320/carless 01.shtml.

RUTHRUFF, J., CRESWICK, E., BURNETT, M., COOK, C., PRAB-
HAKARARAO, S., M. FISHER, I., AND MAIN, M. 2003. End-
user software visualizations for fault localization. In SoftVis ’03:
Proceedings of the 2003 ACM symposium on Software visualiza-
tion, 123–132.

TOMLINSON, B., ET AL. 2001. AlphaWolf. In Proceedings of
SIGGRAPH 2001: conference abstracts and applications.

TOMLINSON, B., DOWNIE, M., BERLIN, M., GRAY, J., LYONS,
D., COCHRAN, J., AND BLUMBERG, B. 2002. Leashing the
AlphaWolves: Mixing user direction with autonomous emotion
in a pack of semi-autonomous virtual characters. In Proceedings
of the 2002 ACM SIGGRAPH Symposium on Computer Anima-
tion (SCA-02), ACM Press, New York, S. N. Spencer, Ed., 7–14.

TOMLINSON, B., YAU, M. L., O’CONNELL, J., WILLIAMS, K.,
AND YAMAOKA, S. 2005. The Virtual Raft Project: a mobile
interface for interacting with communities of autonomous char-
acters. In CHI Extended Abstracts, 1150–1151.

TUDOREANU, M. E. 2003. Designing effective program visual-
ization tools for reducing user’s cognitive effort. In SoftVis ’03:
Proceedings of the 2003 ACM symposium on Software visualiza-
tion, 105–114.

WOOD, D. P., CHRISTEL, M. G., AND STEVENS, S. M. 1994.
A multimedia approach to requirements capture and modeling.
In First International Conference on Requirements Engineering
(ICRE’94), 53–56.

ZACHOS, K., AND MAIDEN, N. 2004. ART-SCENE: Enhancing
scenario walkthroughs with multi-media scenarios. In 12th IEEE
International Requirements Engineering Conference (RE’04),
360–361.

ZACHOS, K., MAIDEN, N., AND TOSAR, A. 2005. Rich-media
scenarios for discovering requirements. IEEE Software 22, 5
(Sept./Oct.), 89–97.


