Database M odeling and Design
3" Edition

Toby J. Teorey
University of Michigan

L ecture Notes
(last revision 10/24/98)

Contents

|. Database Systems and the Life Cycle (Chapter 1)..........cocco i ieiien . 2
Introductory concepts; objectives of database management 2
Relational databaselifecycle 3
Characteristics of agood database design process 7

Il. Requirements Analysis (Chapter 3).......ccoi it i e e, B

[Il. Entity-Relationship (ER) Modeling (Chapters 2-4).................. 11
Basic ER modeling concepts 11
Schema integration methods 22
Entity-relationship 26
Transformations from ER diagramsto SQL Tables 29

I'VV. Normalization and normal forms (Chapter 5)..........c.co il 35

First normal form (INF) to third normal form (3NF) and BCNF 35
3NF synthesis algorithm (Bernstein) 42
Fourth normal form (4NF) 47

V. Access Methods (Chapter 6)ot oo s it s e e e e e e e e e e 50
Sequential access methods 50
Random access methods 52
Secondary Indexes 58
Denormalization 62
Join strategies 64

V1. Database Distribution Strategies (Chapter 8)..........cocoiiii i it e ennn. 66
Requirements of ageneralized DDBMS: Date’'s 12 Rules 68
Distributed database requirements 72
The non-redundant “ best fit” method 74
The redundant “all beneficial sites’” method 77

VI1l. Data Warehousing, OLAP, and Data Mining (Chapter 9)...... 79
Datawarehousing 79
On-line analytical processing (OLAP) 86
Datamining 90

|. Database Systems and the Life Cycle
Introductory Concepts

data—a fact, something upon which an inference is based (information or knowledge has value, data has
cost)

data item—smallest named unit of data that has meaning in the real world (examples: last name, address,
ssn, political party)

data aggregate (or group) -- acollection of related dataitems that form a
whole concept; asimple group is afixed collection, e.g. date (month, day, year); arepeating group is a
variable length collection, e.g. a set of aliases.

recor d—group of related dataitems treated as a unit by an application program (examples. presidents,
elections, congresses)

file—collection of records of asingle type (examples: president, election)

database—computerized collection of interrelated stored data that serves the needs of multiple users within
one or more organizations, i.e. interrelated collections of records of potentially many types.
Motivation for databases over files: integration for easy access and update, non-redundancy, multi-access.

database management system (DBM S) -- ageneralized software system for manipulating databases.
Includes logical view (schema, sub-schema), physical view (access methods, clustering), data manipulation
language, data definition language, utilities - security, recovery, integrity, etc.

database administrator (DBA) -- person or group responsible for the effective use of database
technology in an organization or enterprise. Motivation: control over al phases of the lifecycle.

Objectives of Database M anagement

1. Data availability—make an integrated collection of data available to awide variety of users
* a reasonable cost—performance in query update, eliminate or control data redundancy
* in meaningful format—data definition language, data dictionary
* easy access—query language (4GL, SQL, forms, windows, menus);
embedded SQL, etc.; utilities for editing, report generation, sorting

2. Dataintegrity—insure correctness and validity
* checkpoint/restart/recovery
* concurrency control and multi-user updates
* accounting, audit trail (financial, legal)

3. Privacy (the god) and security (the means)
* schema/sub-schema, passwords
4. Management control—DBA: lifecycle control, training, maintenance

5. Dataindependence (arelative term) -- avoids reprogramming of applications, allows easier conversion and
reorganization

* physical dataindependence—program unaffected by changes in the storage structure or access methods

* logical dataindependence—program unaffected by changesin the schema

* Social Security Administration example (1980is)
- changed benefit checks from $999.99 to $9999.99 format
- had to change 600 application programs
- 20,000 work hours needed to make the changes (10 work years)

* Student registration system—cannot go to a 4-digit or hexadecimal course numbering system because of
difficulty changing programs

*Y 2K (year 2000) problem—many systems store 2-digit years (e.g. ‘02-OCT-98') in their programs and
databases, that give incorrect results when used in date arithmetic (especially subtraction), so that ‘00’ is
still interpreted as 1900 rather than 2000. Fixing this problem requires many hours of reprogramming and
database aterations for many companies and government agencies.

Relational Database Lifecycle

1. Requirements formulation and analysis
* natural data relationships (process-independent)
* usage requirements (process-dependent)
* hardware/software platform (OS, DBMS)
* performance and integrity constraints
* result: requirements specification document, data dictionary entries

2. Logical database design
2.1 ER modeling (conceptual design)
2.2 View integration of multiple ER models
2.3 Transformation of the ER model to SQL tables
2.4 Normalization of SQL tables (up to 3NF or BCNF)
*result: global database schema, transformed to table definitions

3. Physical database design
* index selection (access methods)
* clustering

4. Database distribution (if needed for data distributed over a network)
* data fragmentation, allocation, replication

5. Database implementation, monitoring, and modification

Database Life Cycle

Stepl Information Requirements (reality)

Stepll Loqgical design

Step Il.a ER modeling (conceptual)

Fetail
salespersaon
WiEyy

Step I1.b View

Customer wiew

customer

M

Salespersons

customer ”—®—N product
M M
served- by sold-buy
1 salespersaon
M
integration

arder

places

setved- by

customer w
M

arder

M

1 galespersan

Integration of retail salesperson’s and customer's wiews

\ﬂ:‘r/

M

product

Step Il.c Transformation of the ER diagram to S0OL tables

Customer
credta Lable customBer
Cust- no cust-name | ... {cusi_no inieger,
CUSt_NBMAa Cherg1S),
cust_addr char30),
sales_name chari 153,
Product prod_—no integer,
. primary kay [cust_naoy,
prod-no | prod-name | gty-in-stock foreign key (sales_namme)
references salesperaan,
Toralgn key (prod_no)
rafarances product);
Salespersan
sales-name|addr | dept | job-level |vacation-days
Order Order-product
order-no |sales-name |cust-no order-no| prod-no

Step Il.d Normalization of SOL tables

{3NF, BCNF, 4NF, SNF)

Decomposition of tables and removwal of update anomalies.

Salespersan

Sales-vacations

sales-name|addr | dept | job-level job-level | vacation-days
Step IIl Physical Design (including denormalization)
Customer
t- t-
custTno | bustThame \5 Customer/refined
cust-no | cust-name | sales-name

Order f",_/f'/f/?

order-no | sales-name | cUst-no | physical design parameters:

Indexing, access methods, clustering

Step IY Data distrmibution

&1l parts
&1 salespersons
A1l customers

a1l parts
Salespersons in Michigan
Custormers in greater

Detroit

&11 parts

Salespersons
in Michigan

Customers
in Michigan

&11 parts
Salespersons in 11Tinois
Custormers in [Mlinois

read wiite

&11 parts
Salespersons in northeast
Customers in northeast

S1 =AnnArbor, 32 = Detroit, 53 = Chicago, 54 = Bostan, 55 = Mew York
T1,TZ, T3 are transactions (the figure shows all sites where they are initiated

Decisions: fragmentation, replication, allocation
Objectives: min. response time, min. communication cost, max availability

Characteristics of a Good Database Design Process

* iterative requirements analysis
- interview top-down
- use simple modelsfor data flow and data relationships
- verify model

* stepwise refinement and iterative re-design

* well-defined design review process to reduce development costs review team
-database designers
-DBMS software group
-end users in the application areas when to review
- after requirements analysis & conceptual design
- dfter physical design
- after implementation (tuning) meeting format
- short documentation in advance
- formal presentation
- criticize product, not person
- goal isto locate problems, do solutions off line
- time limit is 1-2 hours

Il. Requirements Analysis

Pur pose - identify the real-world situation in enough detail
to be able to define database components. Collect two types of data: natural data (input to the database) and
processing data (output from the database).
Natural data requirements (what goes into the database)
1. Organizational objectives
- sell more cars this year
- moveinto to recreationa vehicle market
2. Information system objectives
- keep track of competitors' products and prices
- improve quality and timing of datato management regarding production schedule delays, etc.
- keep track of vital resources needed to produce and market a product
3. Organizational structure/chart
4. Administrative and operational policies
- annual review of employees
- weekly progress reports
- monthly inventory check
- trip expense submission

5. Dataelements, relationships, constraints, computing environment

Processing requirements (what comes out of the database)

1. Existing applications - manual, computerized

2. Perceived new applications

* gquantifies how dataiis used by applications

* should be a subset of dataidentified in the natural relationships (but may not be due to unforeseen applications)

* problem - many future applications may be unknown

Data and Process Dictionary Entries for Requirements Analysisin the Database Design Lifecycle
Entity Description (possibly in a datadictionary)

Name customer
Reference-no
Cardinality
Growth rate
Synonyms
Role (or description)
product made by the company.
Security level
Subtypes
Key attribute(s)
Non-key attribute(s)
salesperson, order, product
Used in which applications

4201

10,000

100 per month

user, buyer

someone who purchases or rents a

0 (customer list is public)

adults, minors

cust-no

cust-name, addr, phone, payment-status Relationship to other entities

billing, advertising

Attribute description (dataelementsin adatadictionary)

Name cust-no

Reference-no

Range of legal values

Synonyms

Datatype

Description

Key or nonkey

Source of data

Used in applications

Attribute trigger
dataelement is queried or updated*/

Relationship description
Name purchase

Reference-no

Degree

Entities and connectivity
Synonyms

Attributes (of the relationship)
Assertions

Process (application) description
Name payroll

Reference-no

Frequency

Priority

Deadline

Data elements used

Entities used

Data volume (how many entities)

Interviews at different levels

4202

1 to 999,999

cno, customer-number

integer

customer id number set by the company.
key

table of allowable id numbers

billing

/* describes actions that occur when a

511037

binary

customer(0,n), product(1,n)

buy

quantity, order-no

acustomer must have purchased at
least one product, but some products
may not have been purchased as yet by
any customers.

163

bi-weekly

10

noon Fridays

emp-name, emp-saary
employee

implicit from entity cardinality

Top management - business definition, plan/objectives, future plans
Middle management - functions in operational areas, technical areas, job-titles, job functions
Employees - individual tasks, data needed, data out

Specific end-users of a DBMS - applications and data of interest

Basic rulesin interviewing

1. Investigate the business first

2. Agree with the interviewee on format for documentation (ERD, DFD, etc.)
3. Define human tasks and known computer applications

4. Develop and verify the flow diagram(s) and ER diagram(s)

5. Relate applications to data (this hel ps your programmers)

Example: order entry clerk

Function: Take customer orders and either fill them or make adjustments.

Frequency: daily

Task Def Volume Data Elements
1. Create order 2000 A,B,EH

2. Vdidate order 2000 A,B,G,H,J
3. Fill out error form 25 A, C

4. Reserve item/price 6000 A,D,H

5. Request aternate items 75 A E I,KM
6. Enter unit price 5925 A F, I N

10

[11. Entity-Relationship (ER) Modeling

Basic ER Modeling Concepts

Entity - aclass of real world objects having common characteristics and properties about which we wish to record
information.

Relationship - an association among two or more entities

* occurrence - instance of arelationship is the collective instances of the related entities

* degree - number of entities associated in the relationship (binary, ternary, other
n-ary)

* connectivity - one-to-one, one-to-many, many-to-many

* existence dependency (constraint) - optional/mandatory

Attribute - acharacteristic of an entity or relationship

* |dentifier - uniquely determines an instance of an entity

* |dentity dependence - when a portion of an identifier is inherited from another entity
* Multi-valued - same attribute having many values for one entity

* Surrogate - system created and controlled unique key (e.g. Oracle's “ create sequence’)

11

Concept Representation & Example

Entity Employes
weak entity Employee-
job-history
Relationship
Attribute
emp-id

identifier (key)

descriptor (nonkey)
multivalued descriptor

comples attribute

12

Concept Representation & Example

Degree 1 manager /
Fecursive
binary Employes manages
M managed
binary Department Division
ternar . M M _
d Skill Project
Fl
Employee
Connectivity
is-
one-to-one Department managed- U Employee

by

many-to-many

Employes

Project

task-assignment
start-date

Existence

5=
managed -
by

optianal Department

Employes

13

ER model constructs
using the
Chen notation

Department

Divisian

ER model constructs using the
"crow's foot" approach
[Ever86, Knowledgeware]
Mas=1 min=1
l/ min=0 L{/max:1

Qffice

| M
Employee

1 is- M
uccElnied L

Employee-
job-history

wedk entity

Employee

Fecursive binary relationship

(a) ER construct comparizons

is-
Employee Departrment Gmanaged—” Employee
by
o | has |
Department Division | | Department.
| | is-occupied-
Employes Office || by . Employes
|W|:|rl<s— |
Project Employee | on | Project
Employee-
job-history

intersection entity

is-group-leader-of

Employee

Fecursive entity

14

Super-class (super-type)/subclass (subtype) relationship
Generalization

* similarities are generalized to a super-class entity, differences are specialized to a subclass entity, called an “1SA”
relationship (“specialization” isthe inverse relationship)

* digointness constraint - there is no overlap among subclasses

* completeness constraint - constrains subclasses to be all-inclusive of the super-class or not (i.e. total or partial
coverage of the superclass)

* gpecial property: hierarchical in nature

* gpecial property: inheritance - subclass inherits the primary key of the super-class, super-class has common nonkey
attributes, each subclass has specialized non-key attributes

Aggregation

* “part-of” relationship among entities to a higher type aggregate entity (“contains’ is the inverse relationship)

* attributes within an entity, data aggregate (mo-day-year)

* entity clustering variation: membership or “is-member-of” relationship

Software-product

Frograrm User's Guide

15

- supertype
Employee

subtypes

|

Manager Engineer Technician Secretary

{a) Generalization with digjoint subtypes

Indiwidual

Employee Customer

{b) Generalization with overlapping subtypes and completeness constraint

16

Constraintsin ER modeling
* role - the function an entity playsin arelationship
* existence constraint (existence dependency) - weak entity
* exclusion constraint - restricts an entity to be related to only of several other
* entities at agiven pointintime
- mandatory/optional
- specifies lower bound of connectivity of entity instances

- participating in arelationship as 1 or 0

* uniqueness constraint — one-to-one functional dependency among key attributes
in arelationship: binary, ternary, or higher n-ary

& work task can be assigned to
either an external project or an
internal project, but not both.

Work-task

is-

is-for azsigned-
to
£
+
N
External-project Internal-project

17

Uses-

Technician notebook Froject
MNotebook
& technician uses exactly one notebook for Functional dependencies

each project. Each notebook belongs to one
technician for each project. Mote that g
technician may sti11 work on many projects
and maintain different notebooks for
different projects.

emp-id, project-name -: notebook-no
emp-id, notebook-no -» project-name
project-name, notebook-no -> emp-id

{a) one-to-one-to-one ternary relationship

Froject assigned-

o

Employes

Location

Egch employee assigned to a project works Functional dependencies
at only one location for that project, but
can be at different locations for different
projects. &t g particular location, an
emplayee warks on only one project. At a
particular location, there can be many
employees assigned to a given project.

emp-id, loc-name -» project-name
emp-id, project-name -: loc-name

(b} one-to-one-to-many ternary relationship

M .
Manager ! mnanages Engineer
Fh
Froject

Egch engineer woarking on a particular project
has exactly one manager, but each manager Functional dependencl
of a project may manage many engineers, and _) _
gach manager of an engineer may manage project-name, emp-id —» mgr-id

that engineer on many projects.
ic) one-to-many-to-many ternary relationship

18

Employee

skill-used

Skil

Employees can use many skills on any

one of many projects, and each project
has many emplogyees with various skills.

{d) many-to-many-to-many ternary relationship

19

Froject

Functional dependencies

Mone

ER

diagram

notation

entity,
attribute
{ho operation)

Employee

(@) Entity with attributes

Department

{b) One-to-one

Division

Office

(el Many-to-many

{f) Recursive binary
relationship

1 is- K|
o

(d) One-to-many, one side optional

M |
Employee—{ 0

job-class

Employee

Department

(o) One-to-many, many side optional

Employee

Project

Employes

20

Object diagram using

the Blaha and Premerlani

variations of UML notation
[BRJ9S, BIPrag]

ClassMame Employee

attribute ernp-id: string
ernp-name: string
job-class: integer

operation change-job-class
change-name

is-managed-
by
Department | ——— Employee

has
Division————@|Department
is-occupied-
by 1+
o—— Employee

Office

wWorks-on)
Employee [—@|Project

group-legder

Employee

._

ER diagram Object diagram using
notation the UML notation
[BRI19S, BIProa]

Individual Individual

ir type-of

Employee Customer Employee Customer

(a) Generalization ("is-a") relationship
with supertype and nondisjoint subtypes

Group
Group i
Team
Team
®
Individual Individual
(b} Aggregation ("part-of") relationship
Employes Project Employee
emp-hired
zkill-
Skill Skill hiss Project
skill - used]
proiect-
assigned

(c) ternary relationship

Schema Integration Methods

Goal in schema integration

21

- to create a non-redundant unified (global) conceptua schema
Q) completeness - all components must appear in the global schema
2 minimality - remove redundant concepts in the global schema
(€] understandability - does global schema make sense?
1. Comparing of schemas
* ook for correspondence (identity) among entities
* detect possible conflicts
- naming conflicts
homonyms - same name for different concepts
synonyms - different names for the same concept
- structural conflicts
type conflicts - different modeling construct for the same concept (e. g. “order” as an entity, attribute,
relationship)
- dependency conflicts - connectivity is different for different views (e.g. job-title vs. job-title-history)
- key conflicts - same concept but different keys are assigned (e.g. ID-no vs. SSN)
- behaviora conflicts - different integrity constraints (e.g. null rules for optional/mandatory: insert/del ete rules)
* determine inter-schema properties
- possible new relationships to combine schemas
- possible abstractions on existing entities or create new super-classes (super-types)
2. Conforming of schemas
* resolve conflicts (often user interaction is required)
* conform or align schemas to make compatible for integration
* transform the schemavia
- renaming (homonyms, synonyms, key conflicts)
- type transformations (type or dependency conflicts)
- modify assertions (behavioral conflicts)
3. Merging and restructuring

* superimpose entities

* restructure result of superimposition

22

Department

{name j
[address }

publizhes

contains

Topic-area

EI'IE'II'I'IE‘-'I

{a) Original schema 1 focused on reports

Fublication

title

code

(code)
(dept—narne)

contains

Cantractor

Keyword

i title)

(b} Original schema 2, focused on publications

23

{name j
[address }

code
research-area

Fublication contains Topic-area

title

@ept—name]

ta) Schema 2.1, in which Keywaord has changed to Topic-area

research-area

Department
t dept-name ;

1

M
Fublicatiaon

contains Topic-area

title

code

research-ares

(b} Schera 2.2, in which the attribute dept-name has changed
to an attribute and an entity

24

Fublication

1

itle

T

1

Feport contains Topic-aresa

M | riame

Fesearch-
area

Department| nublishes

narme

(o)
{ address ;

written-for

Contractor

| name"u
l; address i

25

Entity-Relationship Clustering

Motivation

* conceptual (ER) models are difficult to read and understand for large and complex databases, e.g. 10,000 or more data
elements

* thereisaneed for atool to abstract the conceptual database schema (e. g. clustering of the ER diagram)
* potential applications

- end user communication

- application design team communication

- documentation of the database conceptual schema (in coordination with the data dictionary)

Clustering Methodology
Given an extended ER diagram for a database.....
Step 1. Define points of grouping within functional areas.
Step 2. Form entity clusters
* group entities within the same functional area
* resolve conflicts by combining at a higher functional grouping
Step 3. Form higher entity clusters.
Step 4. Validate the cluster diagram.

* check for consistency of interfaces.
* end-users must concur with each level.

26

Department

Contractor

—_

M 1
F-sec Feport

—~&

Authar

{a) ER model before clustering

Ll =

I
N

F-abbr

Department

Contractor

1 i
@

Report M M| Report

Feport

rentity c]uster}2_1

Project

(b} ER model after clustering

27

Froject

—1 U

(@) Dominance grouping (b} Abstraction grouping

u

1 U

{c) Constraint grouping (d) Relationship grouping

28

Transformations from ER diagramsto SQL Tables
* Entity —directly to aSQL table

* Many-to-many binary relationship —directly to a SQL table, taking the 2 primary keysin the 2
entities associated with this relationship as foreign keysin the new table

* One-to-many binary relationship —primary key on “one” side entity copied as aforeign key in the
“many” side entity’ stable

* Recursive binary relationship —samerules as other binary relationships

* Ternary relationship —directly to a SQL table, taking the 3 primary keys of the 3 entities associated
with this relationship as foreign keys in the new table

* Attribute of an entity —directly to be an attribute of the table transformed from this entity
* Generalization super-class (super-type) entity —directly to a SQL table

* Generalization subclass (subtype) entity —directly to a SQL table, but with the primary key of
its super-class (super-type) propagated down as aforeign key into its table

* Mandatory constraint (1 lower bound) on the “one” side of a one-to-many

relationship —theforeign key in the “many” side table associated with the primary key in the “one” side
table should be set as “not null” (when the lower bound is 0, nulls are allowed as the default in SQL)

29

Feport

has-abbr

1

Abbreviation

(@) one-to-one, both
entities mandatory

Department

managed- b

Every report has one abbreviation, and every
gbbreviation represents exactly one report.
create table report

(report_no integer,

report_name varchar{25&],

primary keytreport_naoy;
create table abbreviation

{abbr_no charig),

report_no integer not null unigue,

primary key {abbr_naj,

foreign key {report_no)references report

on delete cascade on update cascade);

Every department must have g manager, but an
employee can be a manager of at most one department.

create table department
{dept_no integer,
dept_name char{za),
mgr-id char{ 10y not null unigue,
primary key t{dept_nay,
foreign key {mar_id} references employee

on delete set default on update cascade);
Employes create table employee
rermp_id char{10},
(b} one-to-one, one entity emp_name char{20),

optional, ane mand

Engineer

has -
allocated

Desktop

() one-to-one,

atory primary key (emp-id}};

Some desktop computers are allocated to engineers,
but not necessarily to all engineers.
create table engineer
{emp_id charf10},
desktop_no integer,
primary key {emp_id}};

create table desktop
(desktop_no integer,
emp-id char{1Q]},
primary key {desktop_na},
fareign key (emp_id) references engineer

both entities optional on delete set null on update cascade);

30

Department

1

M

Employees

{d) one-to-many, bath
entities mandatory

Department

publishes

Every employee works in exactly one department, and
each department has at least one employee.

create table department
fdept_no integer,

dept_name char{20),
primary key (dept_noll;
create table employee
termp-id chari10},
emp_name char{2a),
dept_no integer not null,
primary key femp_id],
foreign key {dept_no) references department
on delete set default on update cascade);

Each department publishes one or more reports. & given
report may not necessarily be published by a department.
create table department
{dept_no integer,
dept_name char{20),
primary key (dept_no);
create table report
{report_no integer,

Report dept_no integer,
primary key (report_noy,
(e} one-to-manu, one entity foreign key (dept_no) references department
optional, one unknown on delete set null on update cascade);
Every professional association could have none, one, or
Engineer many engineer members. Each engineer could be a member

Frof-assoc

(f) rmany-to-rmany, both
entities optional

of none, one, or many professional associations.
create table engineer
fernp_id chari{107,
primary key (ermp_idl};
create table prof-assoc
fagsoc_name varchari{2sa),
primary key (assoc_name));

create table belongs_to

fermp_id chari1a),

assoc_name varchar(2567,

primary key (emp_id, assoc-name),

foreign key {emp_id) references engineer
an delete cascade on update cascade,

foreign key fassoc_name) references prof-assoc
on delete cascade on update cascade);

31

Employee

(a) one-to-one, both
gsides optiaonal

Engineer

1 M

is-
roup-leade
-of

(b} ane-to-many, ane side

Any employee is allowed to be married
to another emplogee in this company.

create table employee
{ernp_id char{10},
emp_name char{20},
spouse_id char{10),
primary key (emp_idJ,
foreign key (spouse_id) references employee
on delete set null on update cascade);

Engineers are divided into groups for certain
projects. Each group has a leader.

create table engineer
fermp-id char{10),
leader_id char{10) not null,
primary key (emp_idJ,
foreign key {leader-id) references engineer
on delete set default on update cascade);

mandatory, many side optional

Employee

is-
coauthor-
with

{c) many-to-many,
both sides optional

Each employee has the opportunity to coauthor a
repart with one or more other employees, or to
wiite the repart alane.

create table employee
(emp_id char{10),
emp_name char{20),
primary key (emp_id));

create table coauthor

fauthor_id char{10},

coauthor_id char{10},

primary key (author_id, coauthar-ids,

foreign key {author_id) references employee
on delete cascade on update cascade,

foreign key {coauthor_id) references employee
on delete cascade on update cascade);

32

Froject

Each em

Employee

can be a
project.

assigned-
to

warks o

ployee assigned to a project works

at only one location for that project, but

t & different Tocation for a different
&t 5 given location, an employee
b only one project. At a particular

location there can be many employees
assigned Lo a given project.

Location

create table employee (emp_id char{10},
emp_name char{20),
primary key (emp_-idJ;
create table project (project_name char{20),
primary key (project_namel};
create table Tocation (loc_name char{15},
primary key {loc_name);

create table assigned_to (emp_id char(10],
project_name chari20),
loc-name char{15) not null,
primary key (emp-id, project_name],
foreign key (emp-id} references employee
an delete cascade on update cascade,
foreign key (project_name) references project
on delete cascade on update cascade,
foreign key (loc_name} references location
an delete cascade on update cascade),
unique (emp_id, loc_name));

assigned_to

Functional dependencies

emp_id [project_name | loc_narme
AG101 forest =lala
43101 aceah E71
20702 acean A2
20702 river D54
1266 river G114
S1266 acean &2
Ta323 hills Baa

(b} one-to-one-to-many ternary relationships

33

emp-id, loc-name -> project_name
emp-id, project_name -: loc_name

[ndiwidual

An individual may be either an
employee or a customer, or both,
or neither.

Employee Customer

create table individual (indiv_id char{10},
indiv_name char{20},
indiv_addr char{2q)},
primary key (indiv-_id));

create table employee (emp_id char{10},

job_title char{13},

primary key (emp _id),

foreign key (emp-id) references individual
on delete cascade on update cascade);

create table customer (cust_no char{10],
cust_credit char{ 12},
primary key (cust_no),
foreign key (cust_no) references individual
on delete cascade on update cascade);

V. Normalization and Normal Forms

First normal form (1INF) to third normal form (3NF) and BCNF

Goals of normalization
1. Integrity
2. Maintainability

Side effects of normalization
* Reduced storage space required (usually, but it could increase)
* Simpler queries (sometimes, but some could be more complex)
* Simpler updates (sometimes, but some could be more complex)

First normal form (1NF) -- atable Risin INF iff al underlying
domains contain only atomic values, i.e. there are no repeating groupsin
arow.

functional dependency—qgiven atable R, aset of attributes B is functionally dependent on another set of attributes
A if at each instant of time each A value is associated with only one B value. Thisisdenoted by A ->B. A trivia
FD isof theform XY --> X (subset).

super-key -- aset of one or more attributes, which, when taken collectively, allows usto identify uniquely an
entity or table.

candidate key—any subset of the attributes of a super-key that is also a super-key, but not reducible.
primary key -- arbitrarily selected from the set of candidate keys, as needed for indexing.

Third normal form (3NF)
-- atableisin 3NFif, for every nontrivial FD X --> A, either:
(2) attribute X is a super-key, or
(2) attribute A is amember of a candidate key (prime attribute)

Boyce-Codd normal form (BCNF)

-- atableisin BCNFif, for every nontrivial FD X --> A,
(2) attribute X is a super-key.

35

Tables, Functional Dependencies, and Nor mal Forms

shipment

Supplier

First Normal Form

TABLE SUPPLIER_PART (100k rows, 73 bytes/row => 7.3 MB)

SNUM
S1
S1
S1
S1
S1
S1
S2
S2
S3
S3
4
4
4
S5

Functional dependencies

SNAME
SMITH
SMITH
SMITH
SMITH
SMITH
SMITH
JONES
JONES
BLAKE
BLAKE
CLARK
CLARK
CLARK
ADAMS

STATUS CITY

20
20
20
20
20
20
10
10
10
10
20
20
20
30

LONDON
LONDON
LONDON
LONDON
LONDON
LONDON
PARIS

PARIS

PARIS

PARIS

LONDON
LONDON
LONDON
ATHENS

SNUM --> SNAME, STATUS,CITY
CITY --> STATUS
PNUM --> PNAME, WT
SNUM,PNUM,SHIPDATE --> QTY

Attribute sizes (bytes)

SNUM

SNAME
STATUS

CITY
PNUM

5
20
2
10
8

PNAME
WT
QTY

SHIPDATE

Total size

SHLUIT

PNUM PNAME

SAISREIEIIR

P4
P5
P5

10
5
5
8

73

36

NUT
BOLT
WRENCH
WRENCH
CLAMP
LEVEL
NUT
BOLT
WRENCH
CLAMP
BOLT
WRENCH
CLAMP
CLAMP

WT
12
22
27
24
22
19
12
22
27
22
22
24
22
22

a~NwNNPPLOWORLRNODNWO

SHIPDATE
1-4-90
2-17-90
11-5-89
6-30-91
8-12-91
4-21-91
5-3-90
12-31-90
3-25-91
3-27-91
10-31-89
7-14-90
8-20-90
8-11-91

Third Normal Form

TABLE PART (100 rows, 23 bytes'row => 2.3 KB)

PNUM PNAME WT Functional dependencies
P1 NUT 12 PNUM --> PNAME, WT

P2 BOLT 17

P3 WRENCH 17

P4 WRENCH 24

P5 CLAMP 12

P6 LEVEL 19

TABLE SHIPMENT (100k rows, 26 bytes'row => 2.6 MB)

SNUM PNUM QTY SHIPDATE Functional dependency
S1 P1 31-4-90 SNUM, PNUM, SHIPDATE--> QTY
S1 P2 2 2-17-90

S1 P3 6 11-5-89

S1 P4 2 6-30-90

S1 P5 1 8-12-91

S1 P6 5 4-21-91

S2 P1 3 5-3-90

S2 P2 4 12-31-90

S3 P3 4 3-25-91

S3 P5 2 3-27-91

4 P2 2 10-31-89

4 P4 3 7-14-90

S4 P5 7 8-20-90

S5 P5 58-11-91

NOT Third Normal Form
TABLE SUPPLIER (200 rows, 37 bytes/row => 7.4 KB)

SNUM SNAME STATUS CITY Functional dependencies

S1 SMITH 20 LONDON SNUM --> SNAME, STATUS, CITY
S2 JONES 10 PARIS CITY --> STATUS

S3 BLAKE 10 PARIS

4 CLARK 20 LONDON

S5 ADAMS 30 ATHENS

Decomposition of Table Supplier into two Third Normal Form (3NF) Tables

37

Third Normal Form

TABLE SUPPLIER W/O STATUS (200 rows, 35 bytes/row =>7 KB)
SNUM SNAME CITY
Functional dependency

S1 SMITH LONDON SNUM --> SNAME, CITY
S2 JONES PARIS

S3 BLAKE PARIS

$4 CLARK LONDON

S5 ADAMS ATHENS

TABLE CITY_AND_STATUS (100 rows, 12 bytesrow => 1.2 KB)

CITY STATUS Functional dependency
LONDON 20 CITY --> STATUS
PARIS 10

ATHENS 30

38

Functional Dependency Inference rules
(Armstrong’s Axioms)

1. Reflexivity

If Y isasubset of the attributes of X, then X->Y.
X =ABCD, Y =ABC => X->Y

X->X trivia case

2. Augmentation
If X->Y and Z isasubset of table R (i.e. Z isany set of attributesin R), then XZ ->YZ.

3. Transitivity
If X->Y and Y->Z then X->Z.

4. Pseudo-transitivity
If X->Y and YW->Z then XW->Z.
(transitivity is a special case of pseudo-transitivity when W is null)

5. Union
If X->Y and X->Z then X->YZ.

6. Decomposition

If X->YZ then X->Y and X->Z.

Superkey Rule 1. Any FD involving all attributes of a table defines
a super-key on the LHS of the FD.

Given: any FD containing all attributesin the table R(W,X,Y,Z), i.e. XY -> WZ.
Proof:

(1) XY ->Wz given
(2) XY -> XY by the reflexivity axiom
(3) XY -> XYWZ by the union axiom

(4) XY uniquely determines every attributein table R, as shown in (3)
(5) XY uniquely defines table R, by the definition of atable as having no duplicate rows
(6) XY istherefore a super-key, by the definition of a super-key.

Super-key Rule 2. Any attribute that functionally determines a
Super-key of atable, is also a super-key for that table.

Given: Attribute A is a super-key for table R(A,B,C,D,E), and E -> A.
Proof:
(2) Attribute A uniquely defines each row in table R, by the def. of a super-key

(2) A -> ABCDE by the definition of a super-key and arelational table
(3) E-> A given
(4) E-> ABCDE by the transitivity axiom

(5) E isasuper-key for table R, by the definition of a super-key.

41

3NF Synthesis Algorithm (Bernstein)

Basic definitions
geH setof FDs

Ht closure of H - set of al FDs derivable from H using al the FD inference rules

H’ cover of H - any set of FDs from which every FD in H* can be derived

H’ (non-redundant) — non-redundant cover of H, i.e. a cover which contains no proper subset which is also a cover.
Can be determined with quadratic complexity O(n?).

Example
Given a set of FDs H, determine aminimal set of tablesin 3NF,
while preserving all FDs and maintaining only lossless decomposition/joins.

H: AB->C DM->NP D->KL
A->DEFG D->M
E->G L->D
F->DJ PR->S
G->DI PQR->ST

Step 1: Eliminate any extraneous attributes in the left hand
sides of the FDs. We want to reduce the left hand sides of as many FDs as possible. Ingeneral: XY->Z and X->Z
=> Y isextraneous (Reduction Rule 1)
XYZ->W and X->Y => Y isextraneous (Reduction Rule 2)
For this example we mix left side reduction with the union and decomposition axioms:

DM->NP => D->NP=>D -> MNP

D->M D->M

PQR->ST => PQR->S, PQR->T => PQR->.T
PR->S PR->S PR->S

Step 2: Find a non-redundant cover H’ of H, i.e. eliminate any FD

derivable from othersin H using the inference rules (most frequently the transitivity axiom).
A->E->G => diminate A->G from the cover
A->F->D =>eliminate A->D from the cover

Step 3. Partition H’ into tables such that all FDs with the
same |eft side are in one table, thus eliminating any non-fully functional FDs. (Note: creating tables at this point
would be afeasible solution for 3NF, but not necessarily minimal.)

R1: AB->C R4: G->DlI R7: L->D
R2: A->EF R5: F->DJ R8: PQR->T
R3: E->G R6: D->KLMNP R9: PR->S

42

Step 4. Merge equivalent keys, i.e. merge tableswhere all FD’s satisfy 3NF.

4.1 Write out the closure of all LHS attributes resulting from Step 3, based on transitivities.

4.2 Using the closures, find tables that are subsets of other groups and try to merge them. Use Rule 1 and Rule 2 to
establish if the merge will result in FDs with super-keys on the LHS. If not, try using the axioms to modify the FDs
to fit the definition of super-keys.

4.3 After the subsets are exhausted, ook for any overlaps among tables and apply Rules 1 and 2 (and the axioms)
again.

In this example, notethat R7 (L->D) has a subset of the attributes of R6 (D->KLMNP). Therefore we mergeto a

single table with FDs D->KLMNP, L->D because it satisfies 3NF: D is a super-key by Rule 1 and L is a super-key
by Rule 2.

Final 3NF (and BCNF) table attributes, FDs, and candidate keys:

R1: ABC (AB->C with key AB) R5: DFJ (F->DJ with key F)

R2: AEF (A->EF with key A) R6: DKLMNP (D->KLMNP, L->D, w/keysD, L)
R3: EG (E->G with key E) R7: PQRT (PQR->T with key PQR)

R4: DGI (G->DI with key G) R8: PRS (PR->S with key PR)

Step 4a. Check to see whether all tables are also BCNF. For any table that is not BCNF, add the
appropriate partially redundant table to eliminate the delete anomaly.

43

Maier’'s Example using 3NF Synthesis

[Maier,D. The Theory of Relational Databases, Computer Science Press, 1983]
R={AB,CD,EFGH,IJIK}
Functional dependencies (FDs):

() E->ABCDFGHIJK (NHI1-->]
(2)ABC-->EDFGHIJK (8)1J-->H
(3)ABD-->ECFGHIJK Q) HJI--> I
@) G->HIJ
(5) CF-->K
(6) DF-->K

Step 1 - No reduction of determinants necessary.
Step 2 - Find nonredundant cover.
(4) G->HIJ => eliminate HIJ from (1), (2), and (3)
(7) HI->J =>reduce (4) to G->HI, eliminating Jfrom (4)
(5) CF -> K => édiminate K from (1) and (3)
(6) DF->K => eliminate K from (2)
(1) E->DFG => eliminate DFG from (2)
(1) E->CFG => eliminate CFG from (3)

Step 3 - Partition into groups with the same left side.

Gl: E->ABCDFG G6: DF->K
G2: ABC->E G7: HI->J
G3: ABD->E G8: 1J3>H
G4: G->HI GO: HJ->I
G5: CF->K

Step 4 - Merge equivalent keys, forming new groups. Construct final set of tables, attributes, FDs, and candidate keys.
R1: ABCDEFG (E->ABCDFG, ABC->E, ABD->E with keys E, ABC, ABD)
R2: GHI (G->HI with key G)
R3: CFK (CF->K with key CF)
R4: DFK (DF->K with key DF
R5: HIJ (HI->J, 13>H, HJ->l with keysHI, 1], HJ)

Example of a 3NF table that isnot BCNF,

i.e. it has further anomalies:

S = student, C = course, | = instructor

SC->1 For each course, each student is taught by only one instructor. A course may be taught by more than one
instructor.

| ->C Eachinstructor teaches only one course.

Thistableis 3NF with a candidate key SC:

SCI student course instructor
Sutton Math Von Neumann
Sutton Journalism Murrow
Niven Math Von Neumann
Niven Physics Fermi
Wilson Physics Einstein

Delete anomaly: If Sutton drops Journalism, then we have no record of Murrow teaching Journalism.
How can we decompose this table into BCNF?

Decomposition 1 (bad)........ eliminates the delete anomaly
SC (no FDs) and | -> C (two tables)
Problems - 1. lossy join

2. dependency SC->1 isnot preserved

SC student course IC instructor course
Sutton Math Von Neumann Math
Sutton Journalism Murrow Journalism
Niven Math Fermi Physics
Niven Physics Einstein Physics
Wilson Physics
———————————————— join SC and | C ------------------
Scr student course instructor
Sutton Math Von Neumann
Sutton Journalism Murrow
Niven Math Von Neumann

Niven Physics Fermi

Niven Physics Einstein (spuriousrow)
Wilson Physics Fermi (spuriousrow)
Wilson Physics Einstein

45

Decomposition 2 (better).....eliminates the delete anomaly
Sl (noFD) and | ->C

Advantages — eliminates the delete anomaly, lossless

Disadvantage - dependency SC -> | isnot preserved

Sl student instructor IC instructor course
Sutton Von Neumann Von Neumann Math
Sutton Murrow Murrow Journalism
Niven VVon Neumann Fermi Physics
Niven Fermi Einstein Physics
Wilson Einstein Dantzig Math (new)
Sutton Dantzig (new)

The new row isallowed in S| using unique(student,instructor) in the create table command, and the join of Sl and IC is
lossless. However, ajoin of Sl and IC now produces the following two rows:

student course instructor
Sutton Math Von Neumann
Sutton Math Dantzig which violatesthe FD SC -> 1.

Oracle, for instance, has no way to automatically check SC->I, although you could write a procedure to do this at the
expense of alot of overhead.

Decomposition 3 (tradeoff between integrity and perfor mance)

SC->1 and |->C (two tableswith redundant data)
Problems -extra updates and storage cost

46

Fourth Normal Form (4NF)

Fourth normal form (4NF) -- atable Risin 4NF iff itisin BCNF and whenever there exists a nontrivial multi-val ue
dependency (MVD) in R, say X-->>Y, X isasuper-key for R.

Multi-valued dependency (MVD)
X -->>Y holds whenever avalid instance of R(X,Y,Z) containsapair of rows that contain duplicate values of X,
then the instance also contains the pair of rows obtained by interchanging the Y valuesin the original pair.

Multi-valued Dependency Inference rules

(Berri, Fagin, Howard...1977 ACM SIGMOD Proc.)

1. Reflexivity X -->>X

2. Augmentation If X -->>Y, then XZ-->>Y.

3. Transitivity If X -->>Y and Y -->>Z then X -->> (Z-Y).

4. Pseudo-transitivity If X-->>Y and YW -->>Z then
XW -->> (Z-YW).
(transitivity is a special case of pseudo-transitivity when W is null)
5. Union If X-->>Y and X -->>Z then X -->>YZ,
6. Decomposition If X-->>Y and X -->>7Z,

then X -->>Y nZ and X -->>(Z-Y)

7. Complement If X -->>Y and Z=R-X-Y, then X -->>Z,

8. FD=>MVD If X->Y,then X -->>Y.

9. FD, MVD mix If X-->>Y and Z-->>W (where W is contained
inY and Y nZ isnot empty), then X->W.

Note: n = intersect

Why is 4NF useful?
Avoids certain update anomalies/inefficiencies.

1. delete anomaly - two independent facts get tied together unnaturally so there may be bad side effects of certain
deletes, e.g. in “skills required” the last record of a skill may be lost if employee istemporarily not working on any
projects).

2. update inefficiency - adding anew project in “skills required” requires insertions for many records (rows) that to
include all required skills for that new project. Likewise, loss of a project requires many deletes.

3. 4ANF maintains smaller pieces of information with less redundancy.

47

Example of a ternary relationship (many-to-many-to-many) that can be BCNF or 4NF depending on
the semantics associated with it.

Table NF 2-way 3-way Nontrivial
name decomp. decomp. MVDs
skill_available BCNF yes yes 6
skill_required BCNF yes yes 2
skill_in_common ANF no yes 0

Semantics and analysis of each relationship
skill_required—an employee must have all the required skills for a project to work on that project.

skill_required empno projec skill Nontrivial MVDs
101 3 A project->>skill
101 3 B project->>empno
101 4 A
101 4 C
102 3 A
102 3 B
103 5 D
empno project empno skill project skill
101 3 101 A 3 A
101 4 101 B 3 B
102 3 101 C 4 A
103 5 102 A 4 C
102 B 5 D
103 D

2-way lossless join occurs when skill_required is projected over { empno, project} and { project, skill}. Projection over
{empno, project} and { empno, skill}, and over {empno, skill} and { project, skill}, however, are not lossless. 3-way
lossless join occurs when skill_required is projected over { empno, project}, { empno, skill}, { project, skill}.

48

skill _in_common—an employee must apply the intersection of available skills to the skills needed for different project
In other words if an employee has a certain skill and he or she works on a given project that requires that skill, then he or
she must provide that skill for that project (thisis lessrestrictive than skill_required because the employee need not supply
all the required skills, but only those in common).

skill _in_common empno project skill
101 3 A
101 3 B
101 4 A
101 4 B
102 3 A
102 3 B
103 3 A
103 4 A
103 5 A
103 5 C
empno__ project empno skill project skill
101 3 101 A 3 A
101 4 101 B 3 B
102 3 102 A 4 A
103 3 102 B 4 B
103 4 103 A 5 A
103 5 103 C 5 C

This has a 3-way |ossless decomposition. There are no 2-way lossless decompositions and no MV Ds, thusthe tableisin
ANF.

49

V. Access Methods
Types of Queries

Query type 1: access all records of a given type
“Increase everyone' s salary by 10%”
access method: sequentia processing

Query type 2: access at most one record
“Find the address of John Smith,
whose id number is 333-44-5555"

access methods: hashing, B* treeindex
Query type 3: access a subset of records of a given type

“Find all employees who have C programming experience and over three years with the company”
access method: secondary indexing (Oracle uses B+trees for this)

Sequential Access Methods

Ira=n logical record accesses
sha = ceil(n/bf) sequential block accesses
rba=0 random block accesses

iotime = sha*Tsba+ rba*Trba seconds

where Tshaisthe average disk i/o service time for a sequential
block and Trbais the average disk i/o service time for arandom block
access

Disk servicetimein a dedicated environment
sequential block access:
Tsba =rot/2 + bks/tr
where rot is the disk rotation time (for afull rotation),
bksisthe block size in bytes (bf*record size), and
tristhe disk transfer rate in bytes per second.

Trba = seek(avg) + rot/2 + bks/tr
where seek(avg) isthe average seek time over the extent of the file on disk

50

ihterblock gap

/ y
RES N

“— block —r W

logical records

blocking factor = 4

Disk servicetime in a shared environment

Tsba = Trba = seek(avg) + rot/2 + bks/tr
where seek(avg) isthe average disk seek time over the extent of the entire disk.

Batch processing of k sequentially stored records
read the transaction file:

Ira=k where k = number of transaction records
sha = ceil (k/tfbf) where tfbf is the transaction file blocking factor

read the master file:
Ira=n
sbha = ceil (n/bf) where bf is the master file blocking factor

write anew master file:

Ira =n+ adds - deletes

sha = call((n+adds-ddl etes)/bf)
where adds isthe number of records added or inserted,
and deletes is the number of records deleted.

k. 1
LITATITRIT

transaction file

rrierge

h+adds-deletes

ald master file new master file

51

Random Access M ethods

Hashing

Basic mechanism — transformation of a primary key directly to a physical address, called a bucket (or
indirectly viaalogical address)

Collisions— handled by variations of chained overflow techniques
random access to a hashed file

Ira=1 + overflow(avg)
rba= 1 + overflow(avg)

insertion into a hashed file
Ira=1 + overflow(avg) + rewrite
rba=1 + overflow(avg)

rba=1 for the rewrite

overflow
primary data aresa area
prirfmary 1]
, 1 11 25 73 121
key physical —
| f hashing | 8ddress [y [27
-5 | function 5 4| 16 78
2125
key mod 12 61 15| 30 42 | 66
7 T 19 67
g
9 9 &1
10] 10
11| 23| 35 119(&

\Llngical record
“— block = <— block =

+—— bucket ———

52

Extendible Hashing
* number of buckets grow or contracts

* bucket splits when it becomes full (based on first i bits of hash value)

* collisions are resolved immediately, no long overflow chains
* primary key transformed to an entry in the Bucket Address Table (BAT), typicaly in RAM
* BAT has pointers to disk buckets that hold the actual data

* Retrieve asingle record = 1 rba (access the bucket in one step)

buckets
Bucket Address _ _118
Table (BAT)
Frimary
alely]
kel value hash
dd
\ hash | address 001 &\i‘
function i 121
o1 9
key Mod S 73
o g1
oo 2 42
7 66
101 10
15
110
111 19
35
=
125
20
7
15
23
119

Figure 6.5 Extendible hashing table for example in Figure 6.3

* Cost (servicetime) of 1/0O for updates, inserts, and deletesis the same as for B+-trees

53

B-trees and B*-trees

B-tree index basic characteristics

* each node contains p pointers and p-1 records

* each pointer at level i is for adataand pointer block at level i+1

* =1 denotes the root level (single node or block)

-0 can beinefficient for searching because of the overhead in each search level

o= le[z___]el

e T~

’l g |,| 15 |’ ’| 45 |’| 61 |’ L JEL JEIEH
Y [1

)& EE|EE | v gz

] e

]

(a) B-tree with embedded records at each node

eFEEile[m [ca]e.

OCEIO[[E®| |O=EOE e | PED®[osE®
RN B A A B
11?5 Na[lzg| (170|22p| |250|270| [46a|52 0| |730|79a| |2eg|a7ol |200|23 0| [1080[112
T A T

(b} B-tree with key-data pointer pairs in each node

1 E

® tree pointer

[data pointer

B+-tree index basic characteristics

* giminates data pointers from all nodes except the leaf nodes

* each non-leaf index node has p pointers and p-1 key values

* each pointer at level i isfor an index block (of key/pointer pairs) at level i+1

* each leaf index has a key value/pointer pair to point to the actual data block (and record) containing
that primary key value

* |eaf index nodes can be logically connected via pointers for ordered sequence search

* hybrid method for efficient random access and sequential search

a0, JEBL]

o[c o[jo[17® (ozz8[:7@[]® @@ [|(s]e o6 jo |e

)

- —M53E56R 57 i 590643 710 ?2 80g 83 85 8589 -

A A A A A Al

To determine the order of aB™*-tree, let us assume that the database has 500,000 records of 200 bytes
each, the search key is 15 bytes, the tree and data pointers are 5 bytes, and the index node (and data
block size) is 1024 bytes. For this configuration we have

non-leaf index node size = 1024 bytes = p*5 + (p-1)* 15 bytes

p = floor((1024+15)/20) = floor(51.95) = 51

number of search key valuesin the leaf nodes = floor ((1024-5)/(15+5))=50

h = height of the B+-tree (number of index levels, including the leaf index nodes

n = number of records in the database (or file); all must be pointed at from the next to last level, h-1

pM1(p-1) > n

(h-1)log p + log(p-1) > log n

(h-1)log p > log n-log(p-1)

h>1+ (log n-log(p-1)) / log p

h > 1+ (log 500,000-10g 49)/log 50 = 3.34, h=4 (nearest higher integer)

A good approximation can be made by assuming that the leaf index nodes are implemented with p
pointers and p key values:

ph>n

hlogp>logn

h>log n/log p
In this case, the result above becomesh > 3.35 or h = 4.

55

B+-tree performance
read asinglerecord (B*-tree) = h+1 rba

update asingle record (B*-tree) = search cost + rewrite data block
= (h+1) rba+ 1rba

general update cost for insertion (B*-tree)
=search cost (i.e., h+1 reads)
+simple rewrite of datablock and leaf index node pointing to the data block (i.e., 2
rewrites)
+nos* (write of new split index node
+ rewrite of the index node pointer to the new index node)
+ nosb* (write of new split data block)

= (h+1) rba+ 2 rba+ nos* (2 rba) + nosb* (1 rba)

where nosis the number of index split node operations required and nosb is the number of data split
block operations required

general update cost for deletion (B -tree)
= search cost (i.e., h+1 reads)
+ simple rewrite of data block and leaf index node pointing to the data block (i.e.,
2 rewrites)
+ noc* (rewrite of the node pointer to the remaining node)

= (h+1) rba+ 2 rba + noc* (1 rba)
where noc is the number of consolidations of index nodes required.

As an example, consider the insertion of a node (with key value 77) to the B*-tree shown in Fig.
6.6. Thisinsertion reguires a search (query) phase and an insertion phase with one split node. The
total insertion cost for height 3is

insertion cost = (3 + 1) rbasearch cost + (2 rba) rewrite cost

+ 1 split *(2 rbarewrite cost)
=8rba

56

--—)53@55@5?@1 59@5@?1@;—)‘?2@80@830‘%---
R R IR

{a) B*-tree before the insertion of record with key value 77

b
LA JEL)

"

—>‘53$56E95?q3l—)‘59 B4p 71 'I-—)|?El;3??E;J Hauﬁnaa Bl — - -
S s e A i

(b) B -tree after the insertion and split block operation

57

Secondary Indexes

Basic characteristics of secondary indexes
* based on Boolean search criteria (AND, OR, NOT) of attributes that are not the primary key

* attribute type index islevel 1 (usually in RAM)
* attribute value index islevel 2 (usually in RAM)

* accession list islevel 3 (ordered list of pointers to blocks containing records with the given
attribute value)

* one accession list per attribute value; pointers have block address and record offset typically

* accession lists can be merged to satisfy the intersection (AND) of records that satisfy more than
one condition

Boolean query cost (secondary index)

= search attribute type index + search attribute value index
+ search and merge m accession lists + accesst target records

= (0 + 0 + sum of m accession list accesses) sha+t rba

= (sum of m accession list cost) sba+t rba
where m is the number of accession lists to be merged and t is the number of target records
to be accessed after the merge operation.

accession list cost (for accession list j) = ceil(pj/bfac) sba
where pj isthe number of pointer entriesin the jth accession list and bfac is the blocking
factor for all accession lists

bfac = block _size/pointer_size

* assume all accessesto the accession list are sequential

* ignore the error incurred by assuming the first record access is sequential

-0 usethe 1% rule
(any variable affecting the result by lessthan 1% is ignored)

58

attribute type attribute value accession

— e liots data blocks
city ®——» [chicago[@ > o}— chicago
job_title detroit | @, O P chicagp
credit_rat | @ tucson | @ tucson
tot_purch | @ : L los angeles
date_last |
ctate Y pilot [] L detroit
zipcode & analyst |@ ® detroit
painter (@ chicago
engineer|d chicago
excell | @ toronto
gqood L] ‘ chicago
fair |@ & new york
no_vray| @ detroit
& &
& & london
@ @ detroit
sao paulo
chicago
&
L
&

Example: Mail Order Business

Assume we have afile of 10,000,000 records of mail order customers for alarge commercial
business. Customer records have attributes for customer name, customer number, street address, city,
state, zip code, phone number, employer, job title, credit rating, date of last purchase, and total
amount of purchases. Assume that the record size is 250 bytes; block size is 5000 bytes (bf=20); and
pointer size, including record offset, is 5 bytes (bfac=1000). The query to be analyzed is“Find all
customers whose job title is ‘engineer’, city is‘chicago’, and total amount of purchasesis greater
than $1,000.” For each AND condition we have the following hit rates, that is, records that satisfy
each condition:

jobtitleis ‘engineer’: 84,000 records

city is‘chicago’: 210,000 records

total amount of purchases > $1000: 350,000 records

total number of target records that satisfy all three conditions = 750

query cost (inverted file)
= merge of 3 accession lists + access 750 target records

59

= [cell(nl/bfac) + ceil(n2/bfac) + ceil(n3/bfac)] sba+ 750 rba

= [ceil (84,000/1000) + ceil(210,000/1000) + ceil(350,000/1000] sha
+ 750 rba

= (84+210+350) sha+ 750 rba

=644 sha+ 750 rba

If we assume Tsbhais 10 milliseconds and Trbais 25 milliseconds, we obtain
query iotime (secondary index)

= 644 sha*10 ms + 750 rba*25 ms

=25190 ms

=25.19 sec (much more efficient than sequential scan, see below)

guery iotime (sequential scan)
= ceil(n/bf) sha*Tsha
= ceil(10,000,000/20)*10 ms
= 5,000,000 ms
=5000 sec

60

Secondary Indexes using B*-trees
* used by Oracle and many others for non-unique indexes
* index nodes contain key/pointer pairs in the same way as a primary key index using a B+-tree

* key at each level, leaf and non-leaf, is the concatenation of attributes used in the query , e.g.
jobtitle, city, total _purchases (as attributes of consumer)

* |eaf node pointers are to the blocks containing records with the given combination of attribute
valuesindicated in the concatenated keys

* analysis of queries and updates for thistype of index proceeds in the same way as a primary key
(unique) index, keeping in mind that the key formats are different in the two cases

Monleaf nodes

’jnl:u_tmelcitgltutal_puri *jl:nl:n_tme | city | tntal__purjﬂ*

/

Leaf nodes

pointers to the next level of the B*-tree

jnb_titlelcitgltntal_purj *]nh_tiﬂe | city | tntﬁﬂ__purj , > —
link to

next Teaf

node

pointers to two records having the same
set of concatenated key values

Figure 6.10 Using a B¥-tree for a secondary index

61

Table Denormalization Algorithm

1. Select the dominant processes based on such criteria as high frequency of execution, high volume
of data accessed, response time constraints, or explicit high priority.

2. Definejoin tables, when appropriate, for the dominant processes.

3. Evaluate total cost for storage, query, and update for the database schema, with and without the
extended table, and determine which configuration minimizestotal cost.

4. Consider also the possibility of denormalization dueto ajoin table and its side effects. If ajoin
table schema appears to have lower storage and processing cost and insignificant side effects, then
consider using that schemafor physical designin addition to the original candidate table schema.
Otherwise use only the original schema.

63

Join Strategies

1. nested loop: complexity O(mn)

2. merge-join: complexity O(n logy n)
3. indexed join: complexity O(2m)

4. hash-join: complexity O(m+n)

where m and n are the rows of the two tables to be joined
Assume

* assigned_to table has 50,000 rows

* project table has 250 rows

* let the blocking factors for the assigned_to and pr oj ect tables be 100 and 50, respectively, and
the block sizeis equal for the two tables.

* the common join column is project_name.

select project_name, emp_id
from project asp, assigned_to asa
where p.project_name = a.project_name;

Nested Loop Case 1: assigned_to isthe outer loop table.
join cost = m/bfm + m*n/bfn
= 50,000/100 + 50,000* 250/50
= 500 + 250,000
= 250,500 sequentia block accesses (sha)

If asequential block access requires an average of 10 ms, the total time required is 2505 seconds.

Nested Loop Case 2: proj ect is the outer loop table.
joincost = 250/50 + 250*50,000/100
= 5+ 125,000
= 125,005 sequentia block accesses (or 1250 seconds)

Note that this strategy does not take advantage of row order for these tables
Merge-Join Case 1: Both project andassigned_to are aready ordered by project_name.
join cost = merge time (to scan both tables)
= 50,000/100 + 250/50
=505 sequentia block accesses (or 5 seconds)

Merge-Join Case 2: Only project isordered by project_name.
join cost = sort timefor assigned_to + merge time (to scan both sorted tables)
= (50,000*log2 50,000)/100 + 50,000/100 + 250/50
= (50,000* 16)/100 + 500 + 5
= 8505 sequential block accesses (or 85 seconds)

Merge-Join Case 3: Neither project nor assigned_to are ordered by project name.
join cost = sort time for both tables + merge time for both tables
= (50,000*log2 50,000)/100 +(250*1og2 250)/50 + 50,000/100
+ 250/50
=8000 + 40+ 500 + 5
= 8545 sequential block accesses (or 85 seconds)

select project_name, emp_id
from project asp, assigned_to asa
where p.project_name = a.project_name
and p.project_name = ‘financial analysis’;

Indexed join basic agorithm:
join cost = scan entirefirst table (assigned _to)
+ access second table (pr oj ect) qualifying rows = 50,000/100 sba + 100 rba =
500 sba + 100 rba

If Tsba=10 ms and Trba=40 ms, then the total iotimeis 9 seconds.
Asin the indexed join example above, let mt=100 and nt=5 qualifying rows for the first and second
tables, respectively.
Hash join basic algorithm:
join cost = scan first table (assigned_to) + scan second table (pr oj ect)
+ access qualifying rows in the two tables = 50,000/100 sha + 250/50 sba +
100 rba+ 5rba
=505 sha + 105 rba
Thus we get iotime of 9.25 seconds for this case when Tsba=10 ms and Trba=40 ms.

65

V1. Database Distribution Strategies
Overview of Distributed Databases

Distributed database - acollection of multiple, logically interrelated databases distributed over a computer network
[OzVa9]].

Distributed Database Management System (DDBM S) - asoftware system that permits the management of a
distributed database and makes the distribution transparent to the users. If heterogeneous, it may allow transparent
simultaneous access to data on multiple dissimilar systems.

Advantages

1. Improves performance, e.g. it saves communication costs and reduces query delays by providing data at the sites where it
is most frequently accessed.

2. Improves the reliability and availability of a system by providing alternate sites from where the information can be
accessad.

3. Increases the capacity of a system by increasing the number of sites where the data can be located.

4. Allows users to exercise control over their own data while allowing others to share some of the data from other sites.
5. Helps solve more complex database problems.

Disadvantages

1. Increases the complexity of the system and introduces several technical as
well as management challenges especialy when geographical and organizational boundaries are crossed.

2. Makes central control more difficult and raises several security issues because a dataitem stored at aremote site can be
always accessed by the users at the remote site.

3. Makes performance evaluation difficult because a process running at one node may impact the entire network.

66

Cost

update time (communications)

_w+ Storage cost

4 1ocal
processing time

query time {comrm.)
""""" : and query optimiz.
wWiite

availability

I [
1 e 3 4 2]

Mumber of copies of the fragment

67

Requirements of a Generalized DDBMS: Date’s 12 Rules

Rule 1. Local Autonomy. Local dataislocally owned and managed, even when it is accessible by aremote site.
Security, integrity, and storage remain under control of the local system. Local users should not be hampered when their
systemis part of adistributed system.

Rule 2. No Central Site. There must be no central point of failure or bottleneck. Therefore the following must be
distributed: dictionary management, query processing, concurrency control, and recovery control.

Rule 3. Continuous Operation. The system should not require a shutdown to add or remove a node from the
network. User applications should not have to change when anew network is added, provided they do not need information
from the added node.

Rule 4. Location Independence (or Transparency). A common global user view of the database should be
supported so that users need not know where the datais located. This allows data to be moved for performance
considerations or in response to storage constraints without affecting the user applications.

Rule 5. Fragmentation Independence (or Transparency). Thisallowstablesto be split among several sites,
transparent to user applications. For example, we can store New Y ork employee records at the New Y ork site and Boston
employees at the Boston site, but allow the user to refer to the separated data as EMPLOY EES, independent of their
locations.

Rule 6. Replication Independence (or Transparency). Thisalows several copiesof atable (or portions therec
to reside at different nodes. Query performance can be improved since applications can work with alocal copy instead of a
remote one. Update performance, however, may be degraded due to the additional copies. Availability can improve.

Rule 7. Distributed Query Processing. No central site should perform optimization; but the submitting site,
which receives the query from the user, should decide the overall strategy. Other participants perform optimization at their
own levels.

Rule 8. Distributed Transaction Processing. The system should process a transaction across multiple databases
exactly asif al of the datawerelocal. Each node should be capable of acting as a coordinator for distributed updates, and a
aparticipant in other transactions. Concurrency control must occur at the local level (Rule 2), but there must also be
cooperation between individual systemsto ensure that a“global deadlock” does not occur.

Rule 9. Hardware Independence. The concept of a single database system must be presented regardless of the
underlying hardware used to implement the individual systems.

Rule 10. Operating System Independence. The concept of asingle database system must be presented regardless
of the underlying operating systems used.

Rule 11. Network Independence. Thedistributed system must be capable of communicating over awide variety of
networks, often different ones in the same configuration. Standard network protocols must be adhered to.

Rule 12. DBMS Independence (Heter ogeneity). Thedistributed system should be able to be made up of
individual sites running different database management systems.

68

What are the basic issues in the design and implementation of
distributed database systems?

* Data Distribution Strategies
- Fragmentation
- Data allocation
- Replication
- Network data directory distribution

* Query Processing and Optimization

* Distribution Transparency
- location, fragmentation, replication, update

* |ntegrity
- Transaction management
- Concurrency control
- Recovery and availability
- Integrity constraint checking

* Privacy and Security
- Database administrators

* Data Manipulation Languages

- SQL isthe standard
- Forms coming into common use

69

Modified Life Cycle for Data Distribution

V.1 Fragmentation (or partitioning). Define afragmentation schema of the database based on dominant
applications “select” predicates (set of conditions for retrieval specified in a select statement). A fragmentation schema
describes the one-to-many mapping used to partition each global table into fragments. Fragments are logical portions of
global tables which are physically located at one or several sites of the network.

IV.2 Data allocation. Create adataalocation schemathat indicates

where each copy of each fragment isto be stored. The allocation schema defines at which site(s) afragment is located. A
one-to-one mapping in the allocation schema results in non-redundancy, while a one-to-many mapping defines a redundant
distributed database. The set of fragments of a global table, located at a given site, constitutes its physical image at that
site.

Fragmentation
A tabler is fragmented by partitioning it into anumber of disjoint sub-tables (fragments) rq1, ro, ..., rp. These fragments

contain sufficient information to reconstruct the origina tabler.

Horizontal fragmentation partitions the rows of aglobal table into subsets. A fragment rq is a selection on the
global table r using a predicate P;, its qualification. The reconstruction of r is obtained by taking the union of all
fragments.

Vertical fragmentation subdivides the attributes of the global table into groups. The simplest form of vertical
fragmentation is decomposition. A unique row-id may be included in each fragment to guarantee that the reconstruction
through ajoin operation is possible.

Mixed fragmentation isthe result of the successive application of both fragmentation techniques.

Rules for Fragmentation

1. Fragments are formed by the select predicates associated with
dominant database transactions. The predicates specify attribute
values used in the conjunctive (AND) and disjunctive (OR) form of
select commands, and rows (records) containing the same values form
fragments.

2. Fragments must be disjoint and their union must become the whole
table. Overlapping fragments are too difficult to analyze and
implement.

3. Thelargest fragment isthe whole table. The smallest fragment isa

single record. Fragments should be designed to maintain a
balance between these extremes.

70

Data Distribution
Data distribution defines the constraints under which data allocation strategies may operate. They are determined by the
system architecture and the available network database management software. The four basic data distribution approaches
are:
* Centralized

In the centralized database approach, all the data are located at a single site. The implementation of this approachis
simple. However, the size of the database is limited by the availability of the secondary storage at the central site.
Furthermore, the database may become unavailable from any of the remote sites when communication failures occur, and t
database system fails totally when the central site fails.
* Partitioned

In this approach, the database is partitioned into disjoint fragments, and each fragment is assigned to a particular sit
This strategy is particularly appropriate where either local secondary storage is limited compared to the database size, the
reliability of the centralized database is not sufficient, or operating efficiencies can be gained through the exploitation of the
locality of references in database accesses.
* Replicated

The replicated data distribution strategy allocates a complete copy of the database to each site in the network. This
completely redundant distributed data strategy is particularly appropriate when reliability is critical, the database is small, ar
update inefficiency can be tolerated.
* Hybrid

The hybrid data distribution strategy partitions the database into critical and non-critical fragments. Non-critical
fragments need only be stored once, while critical fragments are duplicated as desired to meet the required level of reiability

71

Distributed Database Requirements
Database Description

1. Conceptual schema (ER diagram)

2. Transactions: functions and data accessed
Configuration Information

1. Sources of data—where data can be |located.

2. Sinks of data—where user transactions can be initiated and
datatransferred.

3. Transaction rate (frequency) and volume (data flow).

4. Processing capability at each site—CPU and /O capability
(speed).

5. Security—data ownership (who can update) and access
authorization (who can query) for each transaction.

6. Recovery—estimated frequency and volume of backup
operations.

7. Integrity—referential integrity, concurrency control, journaling
overhead, etc.

Constraints

1. Network topology: ring, star, bus, etc.
2. Processing capability needed at each site.
3. Channel (link) transmission capacity.

4., Availability—related to mean-time-between-failures (MTBF) and
mean-time-to-repair (MTTR).

Objective Functions
1. Response time as a function of transaction size.

2. Total system cost—communications, local 1/O, cpu time, disk space.

72

The General Data Allocation Problem

Given
1. the application system specifications
- A database global schema and fragmentation schema.
- A set of user transactions and their frequencies.
- Security, i.e. data ownership (who can update) and access authorization (who can query) for each transaction.
- Recovery, estimated frequency and volume of backup operations.

2. The distributed system configuration and software:
- The network topology, network channel capacities, and network control mechanism.
- The site locations and their processing capacity (CPU and 1/O processing).
- Sources of data (where data can be located), and sinks of data (where user transactions can be initiated and data
transferred).
- The transaction processing options and synchronization algorithms.
- The unit costs for data storage, local site processing, and communications.

Find
the allocation of programs and database fragments to sites which minimizes C, the total cost:
C = Ccomm * Cproc * Cstor
where:
Ccomm = communications cost for message and data.
Cproc = site processing cost (CPU and 1/0).
Cgor = Storage cost for dataand programs at sites.
subject to possible additional constraints on:
* Transaction response time which is the sum of communication delays, local processing, and all resource queuing
delays.
¥ * Transaction availability which is the percentage of time the transaction executes with all components available.

73

The Non-Redundant “Best Fit” Method

A general rule for data alocation states that data should be placed as close as possible to where it will be used, and then
load balancing should be considered to find a global optimization of system performance.

The non-redundant “best fit” method determines the single most likely site to allocate a fragment (which may be afile,
table, or subset of atable) based on maximum benefit, where benefit is interpreted to mean total query and update

references. In particular, place fragment F; at the site s" where the number of local query and update references by all the
user transactions are maximized.

Example
System Parameters
Avg. Service Time Avg. Service Time
Fragment Size Local Query(Update) Remote Query(Update)
F1 300 KBytes 100 ms (150 ms) 500 ms (600 ms)
F2 500 KBytes 150 ms (200 ms) 650 ms (700 ms)
F3 1.0 Mbytes 200 ms (250 ms) 1000 ms (1100 ms)

User transactions are described in terms of their frequency of occurrence, which fragments they access, and whether the
accesses are reads or writes.

Transact Site(s) Frequency Fragment Accesses (Reads,Writes)
T1 S1,54,S5 1 F1 (3 reads, 1 write), F2 (2 reads)
T2 S2,54 2 F1 (2 reads), F3 (3 reads, 1 write)
T3 S3,S5 3 F2 (3 reads, 1 write), F3 (2 reads)
Security: User transactions T1,T2,T3 can either query or update (no
restrictions).

Sources of data: All sites S1 - Sb.
Sinks of data (possible locations of transactions): All sites S1 - S5.

74

Local Reference Computations

Our goal isto compute the number of local references to each fragment residing at each site, one by one. The site that
maximizes the local references to a given fragment is chosen as the site where that fragment should reside.

Fragment Site Trans. T1(freq) T2(freq) T3(freq) Total local refs
F1 S1 3read,1 write(1) 0 0 4
2 0 2read(2) 0 4
S3 0 0 0 0
A 3read,1 write(1) 2read(2) 0 8 (max.)
S5 3read,1 write(1) 0 0 4
F2 S1 2read(1) 0 0 2
2 0 0 0 0
S3 0 0 3read,1 write(3) 12
S 2read(1) 0 0 2
S5 2read(1) 0 3 read,1 write(3) 14 (max.)
F3 S1 0 0 0 0
S2 0 3read,1 write(2) 0 8 (max.)
S3 0 0 2read(3) 6
A 0 3read,1 write(2) 0 8 (max.)
S5 0 0 2read(3) 6

Table. Local references for each fragment at each of five possible sites.
Allocation Decision

Allocate F1 at site S4.
Allocate F2 at site S5.
Allocate F3 at either site S2 or S4

Additional information is needed to choose this allocation. For instance, if maximum availability of dataisa
major consideration, then choose site S2 because site $4 already has fragment F1 allocated to it and putting F3 there as
well would decrease the potential availability of data should site $4 crash.

Advantages
- simple algorithm

Disadvantages

- number of local references may not accurately characterize time or cost (reads and writes given equal weights)
- no insights regarding replication

75

rread B2

Felations (tables) R1, R2, B3
Sites: 51,52, 53, 54, 55
Transactions: T1, T2, T3

76

The Redundant “ All Beneficial Sites” Method

This method can be used for either the redundant or non-redundant case. It selects al sites for afragment allocation where
the benefit is greater than the cost for one additional copy of that fragment. Y ou are assumed to start with zero copies.

Thebenefit for fragment F at site Sis measured by the difference in elapsed time to do a remote query to fragment F
from site S (i.e. no replicated copy available locally) and alocal query to fragment F at site S (i.e. replicated copy
available locally).

Total benefit for fragment F at site Sis the weighted sum of benefit for each query times the frequency of queries.

The cost for fragment F at site Sisthe total elapsed time for all the local updates of fragment F, plus the total elapsed
time for all the remote updates for the given fragment at that site.

Total cost for fragment F at site Sisweighted sum of cost for each update transaction times the frequency of update
transactions.

Example
Cost/Benefit Computations for “ All Beneficial Sites”

Fragment Site Remote updates (local updates) No. of writes*freg*time Cost

F1 S1 T1 from S4 and S5 (T1 from S1) 2*1*600 ms +(1*1* 150) 1350 ms
2 T1 from S1, $4, S5 3*1*600 ms 1800 ms
S3 T1 from S1, $4, S5 3*1*600 ms 1800 ms
A T1from S1 and S5 (T1 from $4) 2*1*600 ms +(1*1*150) 1350 ms
S5 T1from S1 and $4 (T1 from S5) 2*1*600 ms +(1*1*150) 1350 ms

F2 S1 T3 from S3 and S5 2*3*700 ms 4200 ms
S2 T3 from S3 and S5 2*3*700 ms 4200 ms
S3 T3fromS5 (T3 from S3) 1*3*700 ms +(1*3*200) 2700 ms
A T3 from S3 and S5 2*3*700 ms 4200 ms
S5 T3fromS3 (T3 from S5) 1*3*700 ms +(1*3*200) 2700 ms

F3 S1 T2 from S2 and $4 2*2*1100 ms 4400 ms
2 T2fromS4 (T2 from S2) 1%2*1100 ms +(1*2*250) 2700 ms
S3 T2 from S2 and $4 2*2*1100 ms 4400 ms
4 T2fromS2 (T2 from $4) 1%2*1100 ms +(1*2*250) 2700 ms
S5 T2 from S2 and $4 2*2*1100 ms 4400 ms

Fragment Site Query (read) sources No. of reads*freg* (remote-local time) Benefit

F1 S1 TlatSl 3*1*(500 - 100) 1200 ms
S2 T2at S2 2*2*(500 - 100) 1600 ms
S3 None 0 0
Y1 Tland T2 a A4 (3*1 + 2*2)*(500 - 100) 2800 ms**
S5 Tlat S5 3*1*(500 - 100) 1200 ms

77

F2 S1 TlatSl 2*1*(650 - 150) 1000 ms
2 None 0 0
S3 T3 at S3 3*3*(650 - 150) 4500 ms**
A Tlat A4 2*1*(650 - 150) 1000 ms
S5 Tland T3 at S5 (2*1 + 3*3)*(650 - 150) 5500 ms**
F3 Sl None 0 0
S2 T2 at S2 3*2*(1000 - 200) 4800 ms**
S3 T3 at S3 2*3*(1000 - 200) 4800 ms**
A T2at A4 3*2*(1000 - 200) 4800 ms**
S5 T3at Sb 2*3*(1000 - 200) 4800 ms**

**gites where benefit > cost
Table. Cost and benefit for each fragment located at five possible sites.

Advantages

- simple algorithm

- can be applied to either redundant or nonredundant case
- reads and writes given appropriate weights

Disadvantages
- global averages of query and update time may not be realistic
- network topology and protocols not taken into account

read B2

read, write B 1

Relations (tables) R1, R2, RE
Sites: 51, 52, 53, 54, 55
Transactions: T1, T2, T3

78

VIl. Data Warehousing, OLAP, and Data Mining

Data war ehouse — alarge repository of historical datathat can be integrated for decision support

dpplications &pplications Applications

Data reconciliation
* gaxtraction
* transformation

* loading
DSSAEIS Data
| ‘wWarehouse
Figure 9.1 Data warehouse architecture
OLTP Data Warehouse
Transaction oriented Subject oriented
Thousands of users Few users (typically under 100)
Small (MB up to several GB) Large (100s of GB up to several TB)
Current data Historical data
Normalized data (many tables, Denormalized data (few tables,
few columns per table) many columns per table)
Continuous updates Batch updates
Simple to complex queries Usually very complex queries

Table9 1 Comparison between OLTP and Data Warehouse databases

79

Core Requirements for Data Warehousing

1. DWs are organized around subject areas.

2. DWs should have some integration capability.

3. The datais considered to be nonvolatile and should be mass | oaded.

4. Datatends to exist at multiple levels of granularity.

5. The DW should be flexible enough to meet changing requirements rapidly. .

6. The DW should have a capability for rewriting history, that is, allowing “what-if” analysis.
7. A usable DW user interface should be selected.

8. Data should be either centralized or distributed physically.

80

Data Warehouse Life Cycle
I. Requirements analysis and specification

1.1 Analyze the end-user requirements and devel op a requirements specification. This step follows the practice used by
conventional relational databases (see Chapter 1).

1.2 Define the DW architecture and do some initial capacity planning for servers and tools. Integrate the servers, storage
elements, and client tools.

1.3 Use enterprise data modeling

Il. Logical database design
2.1 Design the enterprise DW schemaand views.
2.2 Star schema is the most often used format — good performance, ease of use

Fact table (one) — very large table containing numeric and/or non numeric attributes, including the primary keys
from the dimension tables; similar to intersection tables between entities with many-to-many relationships

Dimension tables (several) - smaller tables containing mostly non numeric attributes; similar to relational
tables based on entities

2.3 Snowflake schema— similar to star schema, except dimension tables are normalized

2.4 Fact table family (constellation) — multiple fact tables interact with dimension tables

81

Region

reg-no
reg-name
mgr-name
addr
phone

Fact Table

Order

order—-no

M | reg-no

cust-id

Customer

cust-id
cust-name
addr
phone
campany

Figure 9.4 Star schema for the "order” data warehouse

M |sales-id

prod-no

guantity
total-price

order—-no
ord-date
shipping-date
date-filled

Salesperson

sales-id
zales-hamme
addr

phone

Product

82

prod-no

| prod-type
prod-name
price

Order

! order-no
ard-date
shipping-date
date-filled

Reqgion
reg—-no 1 Salesperson
reg-name 1 sales—id
mgr-name Fact Table cales-name
addr M addr
phone order—-no
M |reg-no 1
cust-id N
m | sales-id
prod-no
quantity A Sales-addr |[
total-price
addr
phone
Customer
cust-id
cust-name 1
addr Product
phone prod-no
M 1| prod-type
prod-natme
price
Company 1
addr
company-id
company-name

Figure 9.6 Snowflake schemafor the “order” datawarehouse
IIl. Physical database design
3.1 Indexing (access methods)

join indexes — used to map dimension tablesto the fact table efficiently

bit map indexes — used for low selectivity queries

3.2 View materialization — associated with aggregation of data by one or more dimensions such as time or location

3.3 Partitioning — horizontal or vertical subsets of tables to enhance performance

83

reg-name bit maps

narthwest | o[1|4 ololololilolol1 |0
farwest Tjofol (oot (ojof1|0]0
southwest | O[O OO 1 [T (O Q1 [0 [0O]1
sales-id bit maps
410 ol o (oot afofd] 1|00
411 oo (1 fofajaltfofofl [0
412 Tjo (oot (o1 (o1 {00 [0
413 olo[1]ololo|ololo]|o o]

southwest | O[O O(O T [1@ jof1 001
AMD
412 (o (o (o1t o 1o 1o |o

intersection bit map

RESULT | oo (o |01 |0 (oo 1|00 |0

Figure 9.7 Bit maps and guery processing

84

IV. Data distribution

4.1 Define data placement, partitioning, and replication.

V. Database implementation, monitoring, and modification
5.1 Connect the data sources using gateways, ODBC drivers, etc.
5.2 Design and implement scripts for data extraction, cleaning, transformation, load, and refresh.
5.3 Populate the repository with the schema and view definitions, scripts, and other metadata.

5.4 Design and implement end-user applications. Rollout the DW and applications.

85

On-Line Analytical Processing (OLAP)

Common Features of Multidimensional Databases (M DD)

1.0 Dimensions — perspectives or entities about the real world

2.0 Hypercubes — basic structure for multidimensional databases

3.0 Hierarchies— certain dimensions are hierarchical in nature

4.0 Formulas— derived data values can be defined by formulas (sum, average, etc.)

5.0 Links—links are needed to connect hypercubes and their data sources

OLAP Logical Design

Step 1 — Analyze the end-user requirements and environment

Step 2 — Define cubes, dimensions, hierarchies, and links (high level)
Step 3 — Define dimension members (low level)

Step 4 — Define aggregations and other formulas (derived data)

Aqggregation |ssues

1.0 Which datato aggregate

2.0 How to store aggregate data

3.0 When to pre-aggregate derived data
-0 Pre-aggregate nothing

-0 Pre-aggregate nothing, but save the materialized view (dynamic)

-0 Pre-aggregate everything (static)

-0 Pre-aggregate selectively, based on known statistics

86

Order

1
order-no
ord-date
shipping-date
date-filled
Region
1 1
— reg-no Salesperson
reg-name ! sales-id
mgr-name Fact Table sales-harme
adar N addr
phone order—no hona
M | reg-no P
cust-id "
N |sales-id
prod-no
period-id M
guantity
total-price
M
Customer Product
. prod-no
cust-id - | prod-type
cust-narme 1 orod-name
addr .
Y : price
phone Time-Period
COmpany | period-id
day
wWeek 1 M Month
month —<i:>}—rnunth !
year year
f/\\ Sales-summary
regq-no
\\// M| month //\\
revenue M
profit

Figure 9.8 Sales-summary as an example of aggregation

87

titmes-petiod

January 1995
February199g
March 1995
April 1995
May1993
Tune 1995
1st-qtr 1998
2nd-qtr 1995
Ard-gtr19935
vear1997
veatr 1995

region

Southwrest
Horthwest

MNorth-central
South-central

MNortheast
Elidwest
Sontheast

product

Ford-Mustang
Chrysler-Eagle
GM-Cameto

Toyota-Camry

variable

quantity-sold
total-revenue

(a) Linear sequence of sample members from each of four dimensions

Eegion:

Sonthwest

January 1993

Ford-Mustang
Chrysler-Eagle
GM-Cameto

Tovota-Camty

February199a

Ford-Mustang
Chrysler-Eagle
GM-Catneto

Tovota-Camtry

Quantity | Total
Sold Revenus
426 6317
179 3004
315 n261
299 4783
451 Bo42
192 3ll9
A56 EOOY
301 4936

{b) 2-dimensional layout of four dimensions of data

88

Figure 9.9 Display of multidimensional sales data

Feport for January 1295

Ford-Mustang
Chrysler-Eagls
Gh-Cateto

Towota-Camry

Total of products

southwest | Morthwest Total of regions
426 457 Gg3
1749 216 395
314 243 263
299 322 621
1222 1240 2462

{a) Pure operations computed the same in any order (sums)

Feport for January 1993, Southwest region

Ford-Mustang
Chrysler-Eagle
G -Catnero
Tovota-Camry
Total

[uota Ouantity-sold Ouantity-sold/quota
400 426 1.065
200 179 0.895
300 318 1.060
300 299 0997
1200 1222 Ratio of sums = 1.018
Sum of ratios = 4017

(b} Mixed sums and ratios give inconsistent results

Figure 2.10 Examples of mixing formulas for derived data values

89

Data Mining

Definition — data mining is the activity of sifting through large files and databases to discover useful, nonobvious, and
often unexpected trends and rel ationships

The Knowledge Discovery in Databases (KDD) Process

1.0 Datasdlection and cleaning

2.0 Datatransformation and reduction

3.0 Datamining

4.0 Interpretation and evaluation

5.0 Taking action on the discovery

Data Mining Methods

1.0 Predictive modeling

2.01 Database segmentation

3.0 Data summarization and link analysis
4.0 Dependency analysis or modeling

5.0 Change and deviation analysis

6.0 Optimization searching

90

Faw data
(relational databases, etc.)

data
warehaouse

data selection
and cleaning

target
data

data transformation
and reduction

reduced
data

data rmining

\

patierns
and/or
trends

Figure 9.11 The KDD Process

91

interpretation
and
evaluation

interesting
patterns

taking
action

—" oh yeah!

C Java

0 !
FPro*C ODBEC JDBC Web interfaces

web SOL

interfaces customized
EOLAF interfaces
data
mining MOLAF

\

Object- Object-

Relational Relational Oriented Specialized
(RDB) (ORDB) (0ODB) Databases
Active DB Active DB
Real-tims DB Real-time DB
Temporal DB Temporal DB
Multitnedia DE
sSpatial DE
Text DB

Figure 101 Advanced Database Architecture

92

