Game-Based Virtual Worlds for the Internet of VR/AR Things

Walt Scacchi
Institute for Virtual Environments and Computer Games
And
California Institute for Telecommunications and Information Technology (Calit2)
Donald Bren School Information and Computer Sciences
University of California, Irvine
Irvine, CA 92697-3445
USA
The Virtual/Augmented Reality Legacy

- Imagined physical, everyday socio-cultural worlds
- Symbolic worlds: literary, cosmological, musical, gustatory, etc.
- Dreams and lucid dreaming
- Hallucinations via brain injury or psychoactive drugs
- Cinema, theater, concert venues
- Panorama, cyclorama, dome venues (“circlevision”)
- CAVE room, wall, or table-top interactive visualization
- Head-Mounted Displays (audio, haptics?) for PCs, mobile devices
- Physical fantasy worlds (Disneyland, *Burning Man*)
The Virtual/Augmented Reality Legacy

• What is a virtual (augmented) reality?
 – Computer-mediated immersive presentation that encapsulates one or more senses that renders (overlays) a virtual world (objects) for play, work, or learning activities
 – VR/AR is:
 • Embodied as technological mechanisms
 • Engaged and rendered as interactive content
 • Recognized as immersive and present experience (“it's like being there”)
 – VR is not one technology, content, or experience
Games, Virtual Worlds, Virtual Reality/Augmented Reality Projects

- Game-based virtual worlds (GBVW) for research, education, and training applications [Sca12].

- Networked AR and body-worn sensors for Smart Workers (Advanced Manufacturing).

- Massively multi-user virtual worlds for STEM research/education using *hypergrids* (multi-VR world interoperation platform) [DVL15, Lop11].
Embedded sensor network-based science learning game environment for K-6th students and families

Online science learning game research labs for informal life science education for K-6th grade students and families [Sca10]
FabLab: Semiconductor/nanotechnology fabrication operations and diagnostics training game world [Sca10]
Planetary science data visualization and “spherecasting” support for *NOAA Science on a Sphere* interoperation in a networked GBVW platform (OpenSim).
DECENT: GBVW for experimentation in secure decentralized command and control
Informal Classical Music Learning Game Environment: SFSKids.org (STEM+Arts=STEAM)
UCI Game-Based *Stroke TeleRehabilitation* workstation and AR Telerehabilitation Testbed

UI devices: Game console buttons (large, small), continuous dial, Myo armband, touchpad, joystick, WiiMote, PS Eye, finger pressure force sensor.

All devices integrated to act like PC mouse/keyboard inputs.

Workstations currently deployed in nationwide clinical trial.

Images: Cramer Group, UCI Med.
Future: IoT-based AR for Smart Workers in Advanced Manufacturing (Calit2)
Large Group Virtual Research Conferences

Image credit: C. Lopes/Diva Canto
Future: GBVWs transforming undergraduate science/STEM education (e.g., personal virtual labs)
Conclusions: Into the Future

- Game-based virtual worlds, virtual reality and augmented reality concepts, techniques, and technologies will *transform* STEM research and education.
 - More personal, more participatory, more open.
- IoT-based industrial internet will further extend the reach of GBVW and VR/AR applications to *transform* manufacturing and health care.
Research Collaborators

Faculty

Research Staff

– Craig Brown (NomNom Games), Yuzo Kanomata (IGB), Kari Nies (ISR), Alex Szeto (American Honda, ISR), and others.

Students

– UCI Video Game Developers Club
Acknowledgements

- National Science Foundation: grants #0808783 (*Decentralized Virtual Activity Systems*), #1041918 (*Workshop on The Future of Research on Computer Games and Virtual Worlds*) and #125659 (*Creating a Framework for Prototyping Science Missions*).

- Naval Postgraduate School grant #N00244-12-1-0004 (*Streamlining the Process of Acquiring Secure Open Architecture Software Systems*).

- No review, approval or endorsement implied.

References

