Dynamic Process Discovery, Modeling, and Recovery:

Managing Knowledge Intensive Distributed Systems

Supplemental Award
Final Report

Walt Scacchi and John Noll
Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3425
wscacchi@uci.edu, jnoll@scu.edu
June 2005

The research results documented in this final report benefited from a
supplemental award to grant #0205679 from the National Science
Foundation. No endorsement implied.

Summary

This report documents the results, findings, and research methods employed in examining
issues in the management of knowledge-intensive distributed systems in a research
project funded by through the National Science Foundation during the period of April
2003- June 2005. The project was based at the University of California, Irvine Institute of
Software Research (www.isr.uci.edu), though the research effort was performed through
collaborative studies conducted at ISR and at the Santa Clara University. The project was
directed by Dr. Walt Scacchi at ISR in collaboration with Dr. John Noll at SCU and ISR.

This project focused on examining concepts, techniques, and tools that could be used to
discover, model, analyze and repair hidden workflows that operate within or across
multiple dispersed organizations, or multi-site enterprises. The initial results indicate that
our approach are promising and can in fact be used to discover hidden workflows and
processes operating within or across globally dispersed virtual enterprises, as
demonstrated through our empirical studies examining large-scale open source software
development projects as the distributed enterprise domain. Our results appear to offer a
basis that could serve as part of an overall scheme for managing knowledge-intensive
distributed systems (MKIDS).

The report is organized into five major sections, following a brief introduction. Each
section contains at least two chapters that represent and document our approach and the
results we produced. The first section provides an overview that starts from our proposed
effort, followed by an example study that utilizes the various concepts, techniques, and
tools that we investigated throughout the project. The second section examines our
approach to discovering processes from examination of hidden workflows at play within
large-scale, globally dispersed virtual enterprises, specifically those associated with large,
corporate-sponsored open source software development projects. The third section
examines our approach to developing tools and techniques for computationally modeling
the processes or hidden workflows that have been discovered. The fourth section
described techniques for analyzing and re-enacting modeled processes so as to verify or
validate their form and substance through mechanisms separate from process discovery
and modeling. The fifth and final section examines studies of how hidden workflows or
processes can breakdown or fail due to unmanaged conflicts, lack of appropriate
leadership and coordination mechanisms that rely on internal or external communication
systems, discourse artifacts, and other objects that span the boundaries that separate the
distributed and hidden workflows of people doing knowledge-intensive software
development tasks.

Finally, this report closes with whom to contact for access or further information
regarding the software tools and techniques developed or enhanced through this project.

Introduction

OSSD projects are knowledge-intensive efforts that are dispersed across participants in
multiple locations working at different times in a loosely-coupled or mostly autonomous
manner. OSSD projects are typically self-organizing and are at best weakly coordinated
by a corporate sponsor, when such a sponsor exists. But in projects like NetBeans.org,
Apache.org, Eclipse.org, and Mozilla.org, they can involve the active contribution of
hundreds or thousands of knowledge workers who collectively act to develop complex
software systems and related development documents or artifacts. Global OSSD projects
are thus quintessential endeavors that are poorly understood, yet produce complex
knowledge-intensive products (OSSD systems and development artifacts) through unseen
or hidden workflows that are potentially globally dispersed. Thus we believe they are an
ideal candidate for which to study MKIDS related phenomena, as well as potentially
benefiting from a resulting MKIDS information infrastructure.

The materials in this report start from what we initially proposed as our approach for how
to conduct this study. This is described in a chapter titled, Dynamic Process Enactment,
Discovery and Recovery. The vision outlined proscribes an ambitious multi-year study,
though the actual effort was limited to a two year effort. Thus, some aspects of the
proposed effort were not fully examined or resolved, particularly in the area of how to
diagnose, repair, and recover from processes or hidden workflows that breakdown or fail
during enactment. Nonetheless, we were able to study process breakdowns or conflicts
that arise in our chosen problem domain. Thus a foundation for further study in this area
has been established.

The second chapter provides an overall summary of our research methods and results for
how to discover, model, analyze, and enact (or re-enact) distributed processes (derived
from hidden workflows) that span a globally dispersed, large-scale, corporate-sponsored
open source software development project like NetBeans.org. Emphasis here is directed
at the example case of that proposes a multi-modal approach to modeling the previously
hidden process that determines how the NetBeans.org enterprise conducts its
"requirements and release" activities associated with the periodic release of a new version
of the NetBeans software system. These results are found in a chapter titled, Multi-Modal
Modeling, Analysis and Validation of Open Source Software Requirements Processes.
This chapter and the one that precedes it thus provide an overview of where the project
started and the kind of empirical results that we could document and demonstrate by the
end of the project period.

The next section focuses on process discovery. The third chapter provides an introduction
to the use of a process meta-model that can serve as a reference framework that can guide
the discovery of processes associated with hidden workflows. It is titled, Applying a
Reference Framework to Open Source Software Process Discovery. The fourth chapter
titled, Data Mining for Software Process Discovery in Open Source Software
Development Communities, examines the result of data mining of Web-based online
artifacts associated with the knowledge-intensive development of large OSSD projects.

The third section examines issues arising from the modeling of processes, whether these
processes are independently constructed, or else derived via process discovery. The fifth
chapter, Flexible Process Enactment Using Low-Fidelity Models, examines the
development of process models for automated workflows using a technique called, "low-
fidelity" models. This technique embraces and encourages the modeling of processes in
generic terms that eschew all but the minimum of technical detail needed to create a
computer-based navigatible specification of a process that can be re-enacted using a
Web-compatible process execution operating environment. This technique in turns helped
to refine our concept of The Design of Evolutionary Process Modeling Languages,
which is the subject of the next chapter. The seventh chapter then employs these
modeling languages and techniques to examine the application of an experimental
approach to Modeling Recruitment and Role Migration Processes in OSSD Projects.
These languages and techniques are similarly applied in another related effort that
focuses on Process Modeling Across the Web Information Infrastructure in the eighth
chapter. This paper represents a significant research result in being the first such model
that accounts for the ongoing development and evolution of a complex knowledge-
intensive virtual enterprise of autonomous projects that collectively are responsible for
the much of the core information infrastructure of the World Wide Web.

The fourth section examines the development of concepts and automatable techniques for
analyzing constructed or derived models of processes so as to help determine their
completeness, consistency, traceability and overall (internal) correctness. The ninth
chapter presents and demonstrates an approach to the Automated Validation and
Verification of Software Process Models. This method in turn gave rise to the need to
further refine the scheme and computational methods needed for Process State Inference
for Support of Knowledge Intensive Work, which Is the subject of the tenth chapter.

The fifth and last section begins to explore how knowledge-intensive processes and
hidden workflows can breakdown, fail, or other disarticulate in the course of their
enactment. One reason processes can fail is when the details and understanding of the
roles people play in their enactment, the tools and resources they employ in performing
the enactment, are hidden or unclear to others either upstream or downstream of the
process workflow. The eleventh chapter examines these issues using a case study of Free
Software Development: Cooperation and Conflict in A Virtual Organizational Culture.
The ethnographic results from this empirical study help lay the foundation for
recognizing how beliefs, values, and norms that people do (or do not) share in the course
of their knowledge work shapes the actions they take in accomplishing their work and
workflow, in ways that subsequently may be visible or invisible (i.e., hidden) from the
perspective of others. This insight in turn was then examined in a follow-up case study of
a large-scale multi-site OSSD project, in chapter 12, in a paper titled, Collaboration,
Leadership, Control, and Conflict Negotiation in the NetBeans.org Software
Development Community.

Overall, these twelve chapters provide a thorough documentation of the research project
we engaged from Spring 2003 through Spring 2005. Our assessment is that the research
effort met and exceeded what was originally proposed, given the resources provided to

conduct the proposed effort. However, it is also our view that much work remains to be
performed and completed before we would consider this line of research and
development of an approach to managing knowledge-intensive distributed systems of
work that span multiple organizations or project sites finished. Thus, this report serves to
document the overall state of a significant work in progress, with further research and
support needed to achieve its full potential.

Overview

This section contains the following two chapters. The first is a simplified version of the
original proposal that gave rise to this research effort, while the second provides a
condensed demonstration of the kinds of results that can be attained at present, when
applied in a sample domain of knowledge-intensive work that is performed across a
distributed multi-site enterprise.

Walt Scacchi and John Noll, Dynamic Process Enactment, Discovery and
Recovery, MKIDS Proposal, November 2002.

Walt Scacchi, Chris Jensen, John Noll, and Margaret Elliott, Multi-
Modal Modeling, Analysis and Validation of Open Source Software
Requirements Processes, Proc. First Intern. Conf. Open Source Software,
Genoa, Italy, July 2005.

Dynamic Process Enactment, Discovery, and Recovery

Walt Scacchi, Institute for Software Research, University of California, Irvine
Irvine, CA 92697-3425 USA, 949-824-4130, Wscacchi@uci.edu

John Noll, Computer Engineering Dept., Santa Clara University
Santa Clara, CA 95053 USA, 408-554-2760, Jnoll@cse.scu.edu
November 2002

Research Goal

Our interest is in understanding three aspects of complex, online knowledge work processes.
First is how to provide model-driven process enactment support and event data capture for
globally dispersed enterprise processes, resources and users. Second is how to discover process
structures and resource usage patterns from emergent and dynamic process enactments. Third is
how to recover or repair knowledge work processes that breakdown or fail during enactment.
Our goal is to develop and demonstrate concepts, techniques, mechanisms, system architectures,
and tools that incorporate these three aspects to enable the subsequent construction of task
scheduling and resource allocation/control strategies for coordinating the knowledge work of a
distributed complex of people and computing systems.

Problem

The research area addressed here is: how to most effectively and efficiently deploy, monitor,
learn, and repair the rules, objects, contexts, and teamwork structures that emerge during the
enactment of globally distributed knowledge work processes. The management issue addressed
here is: how to most effectively and efficiently enable flexible process modeling, enactment,
reconfiguration and rescheduling of human and computational resources that enables intelligent
management response to external change affecting routine, dynamic, or hidden process
enactments'. Our investigation of these problems is targeted at analysis, design, and prototyping
of software system mechanisms, data representations, and system architectures in an iterative and
incremental manner, so as to ensure the production and delivery of research results.

Anticipated Results, Deliverables and Transition

We expect to develop and demonstrate concepts, techniques, mechanisms, system architectures
and tools that enable the modeling, enactment, discovery, and recovery of complex, online
knowledge work processes. The concepts will help specify the requirements and design of the
tools, techniques, and information infrastructure mechanisms needed to acquire, represent, enact
and repair models of dynamic, online knowledge work processes. The techniques and system
architectures will provide the guiding heuristics and rules of application that coordinate and

"In our view, a "process" denotes a set or class of workflows. A computer-based "workflow" specification is an
enactable instance of a process. Both entail one or more agents (human or computational) that perform a partially
ordered set of tasks using tools that consume resources to produce intermediate or final products.

mailto:Jnoll@carbon.cu.edu

control the use of the concepts and tools for modeling, enacting, discovering, and recovering
knowledge work processes. The mechanisms and tools will embody and support these concepts
and techniques.

In addition, these results lay the foundation for a comprehensive, integrated knowledge work
environment that integrates process modeling, enactment, discovery, and recovery with emerging
capabilities for process/resource simulation, visualization, scheduling and allocation/deployment
being investigated elsewhere. The design and demonstration of such an environment is an
appropriate candidate for a follow-on research investigation. Beyond this, many of our prior
research results have been transferred into products that have been commercialized by a variety
of firms. Thus, we expect to transition our results to future research investigations and eventually
to commercial applications.

Research Approach

We have been involved in systematically observing, modeling, scheduling, integrating, and
enacting complex organizational processes for more than 10 years [cf. MS90, SM97, NS91,
NS99, NSO01, S98, S02b, SN97]. Most of this prior effort has focused on examining and
engineering the processes involved in large-scale software system development for commercial,
military, or academic applications. For example, we have recently focused on software
development processes within globally dispersed virtual enterprises [NS99], particularly those
developing open source software [S02a] with centralized corporate sponsorship or control®.
These processes can be characterized as entailing:

e The production and consumption of knowledge based products (e.g., software programs,
development artifacts, documentation, project management reports, and MIME object types)

e The acquisition of information (end-user requirements, software test case evaluation,
bug/defect reports from end-users, etc.) from which knowledge products are built

e Having customers with a high level of urgency for these knowledge products

e Reliance on worldwide information sources and repositories that may not be owned or
readily controlled

? Examples of large projects of this kind include the OpenOffice.org and NetBeans projects sponsored by SUN
Microsystems Inc., and the Mozilla.org project sponsored by Netscape and AOL. Models of selected processes for
these projects have already been captured and coded using traditional methods [CLC02, ONHJ02]. Another dozen or
so small/mid-size open source software projects with centralized corporate sponsors are identified elsewhere [S02c].
Beyond these, organizations like infoDev, the Information for Development Program of the World Bank, appear
interested in encouraging research, development, and policy studies of open source software for centrally controlled
electronic government applications. Finally, large international financial institutions like Barclays Global Investors
(BGI) and Dresdner Kleinwort and Wasserstein (DKW) are also centrally controlled enterprises that have invested
in and rely on open source software development processes and collaborative development environments to support
their global enterprise information systems development projects and operations [S02c].

e A high level of dependence on personnel (software developers) with specialized (application
domain specific) expertise and expensive skills

e Access to a worldwide IT infrastructure (Internet, Web, SourceForge.net, etc.) to support
product development.

We have also focused attention on the /ife cycle engineering of complex organizational processes
[S98, SM97, SN97] for corporate financial operations, telecommunications systems design,
military procurement and system acquisition, research grants management, feature film
production, interactive teleradiology, and others. Thus we bring an extensive history of prior
research results and experience in approaching the problem managing distributed enterprise
processes associated with knowledge intensive dynamic systems.

Our approach to the overall problem of how to manage knowledge intensive dynamic systems is
process centered. Problems of modeling, analyzing, simulating, integrating, and enacting routine
enterprise processes with dynamic or hidden workflows, and how they may be associated with
(semantic) hypertext webs of knowledge products, information assets and other repositories, are
well known to us [NS91, NS99, NS01, S00, SN97] and others [e.g., HW99, LRS02, SHCO1].

One thing we have learned is that explicit models of complex processes can directly contribute to
continuous process improvement, process redesign, mitigate common process breakdowns,
automate Web-based process enactment, and more [cf. NS99, NS01, S98, S00, SO1b, S02b,
SN97]. These capabilities in turn can lead to dramatic improvements (4X-20X reductions in
process cycle time) in process efficiency and effectiveness, as well as cost savings [SO1a].
However, acquiring the requisite organizational and process domain knowledge needed to create
an explicit high quality process model is a slow, labor intensive endeavor. As a result, we have
come to find that it is often nearly as effective to develop and engineer low-fidelity models® of
routine and dynamic knowledge work processes. These simpler models serve as the "seed" from
which adaptive process descriptions, proscriptions, or prescriptions can be modeled, grown,
repaired, redesigned, and continuously improved.

Our focus in the proposed research effort is to investigate how to configure and rapidly
reconfigure process control structures and resources when employing low-fidelity process
models. This leads to three lines of study.

e We need to develop scaleable techniques for modeling, enacting, and capturing globally
dispersed complex enterprise processes that use low-fidelity process models to coordinate
and deploy (allocate) access to distributed resources by process users. Our focus is to
develop mechanisms and system architectures that can enact low-fidelity process models,
together with a capability to capture process and resource event histories in a form suitable

3 Process models and process enactment instances are similar to abstract plans and instantiated plans found in
knowledge-based systems [cf. MS99, SM96]. Low-fidelity process models are thus similar to abstract (or reusable)
plans. Process models much like plans, are typically associated with resource allocation and scheduling system
capabilities that support complex enterprise activities [MS93, MS99, SHCO1, SM97].

for use in process discovery and recovery tasks.

e We need to develop scaleable techniques for discovering process control structures within
emergent or hidden workflows that can serve as low fidelity process models. These models
are created by transparently capturing and generalizing the history of events, conditions, and
contexts associated with process enactment activities that create, update, delete, or associate
(i.e., hyperlink) online object types or knowledge-based products.

e We need to develop scaleable techniques for recovering and articulating the process control
structures that breakdown or fail during a routine or dynamic process enactment. Prior
research has shown that weakly structured or constraint-relaxed process control structures are
prone to breakdown or fail during enactment [BS89, MS93, SM97].

Each of these three investigations is envisioned to leverage and expand the process modeling and
enactment framework that we have been investigating for the past few years [NS90, NS99,
NSO01, SN97]. This entails a collaborative research project (via subcontract) lead by Walt
Scacchi (PI, UCI) and John Noll (Co-PI, SCU). Scacchi is leading the effort on process
discovery and recovery techniques, while Noll is leading the effort on new techniques and
mechanisms for modeling, coordinating, enacting and monitoring (for capture of enactment
event histories of) complex enterprise processes.

The following sections briefly elaborate each of the three lines of study identified above.

Modeling, enacting, and capture of globally dispersed enterprise processes

Prior research has investigated how best to specify enterprise processes in sufficient detail to
provide some form of active or Web-based process management support [e.g., HW99, LRS02].
In general, Web-based approaches focus effort on encoding work processes as programs that
access and manipulate Web-based resources and services. Unfortunately, the power and
adaptation of these programs is outside the realm of experience, skill set, or emergent needs of
the users who must work with such systems. Instead, we envision a globally dispersed
knowledge work environment where dynamic enterprise processes are more transparent, easy to
modify, and adaptable by users, whether with or without the support of process programmers.
This requires processes that can be both described and interpreted as high-level models [NSO01],
rather than lower-level workflow programs, middleware, or Web services [LRS02].

This leads us to propose a system to facilitate communication and collaboration among
knowledge workers to disseminate process expertise as widely as possible. In this approach,
users in different process roles are given high-level guidance (or generalized plans) about what
activities to perform or what objectives to achieve, and how to perform them. Users should thus
be free to carry out the details of those activities through process enactments that are consistent
with or adapt to their expertise. Achieving this entails development of a globally dispersed,
model-driven process enactment environment that integrates:

o A distributed process deployment and execution mechanism for enacting low fidelity process
models. Our prior research experience [BEF02, NB02, NS99, NS01, SN97] suggests that

these models can be easily specified or generated. Since low fidelity process models specify
the minimal aspects of a work process (e.g., required and/or provided resources, appropriate
tools, user roles, and proscribed activities), these models also tend to be stable, reusable, and
reconfigurable, as well as enactable via navigational browsing [NB02, NS99, NSO1].

o Avirtual repository of artifacts [cf. NS91, NS99] providing access to distributed collections,
repositories, and databases of information objects related to the work to be performed.
Information resources (documents, images, diagrams, databases, etc.) will be found in
globally dispersed repositories of different types with locally autonomous access and update
procedures, that users will want to browse, manipulate, or hyperlink [BEF02, NS91, HW99,
NS99, NSO1].

e A data capture facility for monitoring, collecting, recording, and replaying resource and
process enactment event histories [cf. CW98, SM97], that supports process discovery and
recovery analyses. Continuous process improvement or emergent process redesign requires
knowledge about who did what in a process enactment and shared resource space, when,
where, how and why. Getting users to provide this information is too much effort, but
providing an automated mechanism to capture (and replay) the data/events would alleviate
such effort.

Overall, the model-driven approach to process modeling, enactment, and event capture provides
a foundation for process discovery and recovery investigations. In addition, this approach
establishes a foundation and dispersed process work environment that can subsequently integrate
simulation, visualization, resource allocation/deployment, and scheduling mechanisms into a
comprehensive Web-based environment in a follow-on study. As such, our approach to model-
driven process enactment and event capture is a significant departure from existing approaches to
workflow automation or Web-based services for process automation [cf. LRS02].

Discovering processes from routine, dynamic, or hidden workflow instances

As already noted, acquiring the requisite organizational and process domain knowledge to
construct high fidelity process models is valuable, but costly and time-consuming. We need to be
able to rapidly construct or (re)configure process models in a less costly, less time consuming,
and more transparent manner. In a complex enterprise setting where routine, dynamic or hidden
knowledge work processes occur, process enactments will be emergent and reactive, rather than
procedural and planned in detail. Furthermore, when process enactments are physically
distributed but logically centralized for scheduling and control purposes [NS99], then we need a
more innovative technique than traditional for process modeling, analysis or simulation [cf.
MS90, S98, SMI7].

Prior research in this area has applied grammatical inference, Markov modeling, or temporal
constraint ordering techniques to identify process fragments from partially ordered or time-
stamped event records to identify or generate process models [CW98, HY03]. Use of Web-based
resource usage or process enactment [HW99, LRS02, NS99] event streams has not been
explored for discovery purposes, nor have other techniques from knowledge discovery
approaches [FPS92]. However, our approach is to employ, evaluate, and refine these kinds of

capabilities. For example, in our work, we have experimented with the creation of Web-based
process modeling and enactment mechanisms [NS99, NSO1, SM97, SN97] that capture process
enactment events associated with the manipulation of globally distributed information resources
and computing services. Figure 1 displays a screenshot of a step in a procurement process that
reveals contextual information and process enactment event history, which is not found in
command shell histories [NSO1].

We will investigate, evaluate, and develop new techniques for discovering patterns of local-to-
global resource and process enactment events, actions, and conditions that manipulate
information resources or artifacts (e.g., creating, updating, deleting, or hyperlinking information
objects, diagrams, messages, files, Web sites, or reports). This will also require automatically
capturing aspects of the process enactment context (e.g., human roles, tools invoked, repositories
accessed, network host addresses, and event timestamps) that are attributes of the activities or
artifacts involved. We anticipate that we will be able to automatically find process control
fragments that are interspersed among a longer set of situated but coincidental (i.e., not process
related) actions. Process resource usage events and process execution event histories will be
evaluated as one direction for determining what process information can be gathered
automatically and transparently.

PHL Engine - Nelscape
File Edt Mew G

LCommunicator Help

Reload Home Search Metscape Print Security Shop

wt'Bookmarks &, Location:]http:.-".-"www.ics.uci.edux’Z?Ewscacchi.-"DAU-DemofﬂCQ-F’rocess-Demo;"pmposalx’top.html _:_]

Action submit certs

Submmit electromcally signed certifications. .

File contaming signed certifications: 1 Browse... i

User ID of signature: jjanetm}c@ izs.uci.edn

done i clear!

Exec: executing root

Exec: executing proposalsubtnit

Exec: executing submit proposal
submitF ot subtmitting subtmit froposal
Exec: executing submit budget

Mext: submitting subimnit budget

submitF ot submitting subimit budget
Exec: executing submit certs

= == Document: Done =l e R AE Eal A _: o

Figure 1. Enactment of a Web-based procurement process with captured history
(lower right frame) [Noll and Scacchi 2001, Scacchi 2001a].

Recovering and articulating processes that breakdown or fail during their
enactment

Process control structures both shape, and are shaped by, teamwork structures [BS89]. Low-
fidelity process models can specify what a process needs to accomplish, but the exigencies of
resources, knowledge products, and team membership at hand, give rise to unanticipated
conditions or events that must be resolved for work to proceed. These exigencies and
unanticipated conditions help characterize how the process enactment at hand is breaking down
or failing [MS93, SM97]. These process breakdowns or failures are a primary, recurring cause of
business process dynamics [SM97].

In related research, we have developed an approach for diagnosing, replanning, and rescheduling
process enactments that breakdown or fail during enactment. This approach is called
"articulation" [MS93], and Figure 2 below provides an overview of process enactment repair
and recovery control scheme that employs articulation.

Our prior effort with articulation was focused on reasoning about how centralized software
engineering processes could be repaired and recovered once they failed. In the proposed effort,
we will focus attention on physically distributed but logically centralized processes for
knowledge work that utilize globally distributed resources and IT infrastructure. This approach
stands in contrast to related efforts that seek to provide Web-based process enactment support
[HW99, LRS02] under the assumption that those processes will neither fail in practice, nor need
to be adapted, reconfigured, or redesigned on demand. Nonetheless, our approach to articulation
appears to be more closely aligned to those efforts that embrace more of a mixed initiative of
system provided guidance and user-driven adaptation (e.g., for process enactment planning,
resource allocation and task scheduling) that supports a globally dispersed community of
knowledge workers through a Web-based environment [cf., BEF02, NS99, MS93, SCHO1,
SM97].

priginal Plan original Plan

MNew Plan

Plan Repair

Inzraciacion

Repair Suggastion

Diagnosis Recovery

Scheadule Exacution

C T M H G

Inatance

Failurs Exacution

]

Finished Instance

Reaources

Figure 2. An overview of a knowledge-based approach to diagnosing, replanning and rescheduling
process plans that breakdown or fail during enactment [Mi and Scacchi 1993].

References

[BS&9] S. Bendifallah and W. Scacchi, Work Structures and Shifts: An Empirical Analysis of
Software Specification Teamwork, Proc. 11th. Intern. Conf. Sofiware Engineering, IEEE
Computer Society Press, Pittsburgh, PA. 260-270, (May 1989).

[BEF02] M. Beiber, D. Engelbart, R. Furuta, S.R. Hiltz, J. Noll, J. Preece, E. Stohr, M. Turoff,
and B. Van De Walle, Towards virtual community knowledge evolution, J. Management
Information Systems, 18(4), 11-36, 2002.

[CLCO02] B. Carder, B. Le, and Z. Chen, The Process of Quality Assurance and in the Mozilla
Project Release Cycle, Internal project report, Institute for Software Research, June 2002.

[CWI8] J.E. Cook and A.L. Wolf, Discovering Models of Software Processes from Event-Based
Data, ACM Trans. Software Engineering and Methodology, 7(3), 215-249, July 1998,

[FPM92] W.J. Frawley, G. Piatetsky-Shapiro, C.J. Matheus, Knowledge Discovery in Databases:
an Overview, AI Magazine, 13, 57-70, 1992.

[HW99] J.M. Haake and W. Wang, Flexible support for business processes: extending
cooperative hypermedia with process support, Information and Software Technology, 41, 355-
366, 1999.

[HY03] S.-Y. Hwang and W.-S. Yang, On the discovery of process models from their instances,
Decision Support Systems, 34(1), 41-57, 2003.

http://www.ics.uci.edu/%7Ewscacchi/Software-Process/Readings/ieee89-icse-work-strux-01.pdf
http://www.ics.uci.edu/%7Ewscacchi/Software-Process/Readings/ieee89-icse-work-strux-01.pdf
http://rmm-java.stern.nyu.edu/jmis/articles/v18_n4_p11/index.html
http://www.ics.uci.edu/%7Eacarder/225/report.htm
http://www.ics.uci.edu/%7Eacarder/225/report.htm

[LRS02] F. Leymann, D. Roller, and M.-T. Schmidt, Web services and business process
management, /BM Systems J., 41(2), 198-211, 2002.

[MS90] P. Mi and W. Scacchi, A Knowledge-Based Environment for Modeling and Simulating
Software Engineering Processes, IEEE Trans. Data and Knowledge Engineering, 2(3), 283-294,
September 1990. Reprinted in Nikkei Artificial Intelligence, 20(1), 176-191, January 1991, (in
Japanese). Reprinted in Process-Centered Software Engineering Environments, P.K. Garg and
M. Jazayeri (eds.), IEEE Computer Society, 119-130, 1996.

[MS93] P. Mi and W. Scacchi, Articulation: An Integrated Approach to the Diagnosis,
Replanning, and Rescheduling of Software Process Failures, Proc. 8th. Knowledge-Based
Software Engineering Conference, Chicago, IL, IEEE Computer Society, 77-85, 1993.

[MS96] P. Mi and W. Scacchi, A Meta-Model for Formulating Knowledge-Based Models of
Software Development, Decision Support Systems, 17(4), 313-330, 1996.

[MS99] K. Myers and S. Smith, Issues in the Integration of Planning and Scheduling for
Enterprise Control, Proc. DARPA Symposium on Advances in Enterprise Control, 1999.

[NBO02] J. Noll and B. Billinger, Modeling coordination as resource flow: An object-based
approach, Proc. 2002 IASTED Conf- Software Engineering Applications, Cambridge, MA,
November 2002.

[NS91] J. Noll and W. Scacchi, Integrating Diverse Information Repositories: A Distributed
Hypertext Approach, Computer, 24(12), 38-45, December 1991.

[NS99] J. Noll and W. Scacchi, Supporting Software Development in Virtual Enterprises,
Journal of Digital Information, 1(4), February 1999.

[NSO1] J. Noll and W. Scacchi, Specifying Process-Oriented Hypertext for Organizational
Computing, J. Network and Computer Applications, 24(1), 39-61, 2001.

[ONHJ02] M. Oza, E. Nistor, S. Hu, and C. Jensen, NetBeans Requirements and Release
Processes, Internal project report, Institute for Software Research, June 2002.

[S98] W. Scacchi, Modeling, Integrating, and Enacting Complex Organizational Processes,
appears in K. Carley, L. Gasser, and M. Prietula (eds.), Simulating Organizations:
Computational Models of Institutions and Groups, 153-168, MIT Press, 1998.

[SO00] W. Scacchi, Understanding Software Process Redesign using Modeling, Analysis and
Simulation, Software Process--Improvement and Practice, 5(2/3), 183-195, 2000.

[SO1a] W. Scacchi, Redesigning Contracted Service Procurement for Internet-based Electronic
Commerce: A Case Study, J. Information Technology and Management, 2(3), 313-334, 2001a.

[SO1b] W. Scacchi, Modeling and Simulating Software Acquisition Process Architectures, J.
Systems and Software, 59(3), 343-354, 15 December 2001b.

[S02a] W. Scacchi, Understanding the Requirements for Developing Open Source Software

http://www.ics.uci.edu/%7Ewscacchi/Software-Process/Readings/ieee90-articulator.pdf
http://www.ics.uci.edu/%7Ewscacchi/Software-Process/Readings/ieee90-articulator.pdf
http://www.ics.uci.edu/%7Ewscacchi/Software-Process/Readings/ieee93-kbse-articulation.pdf
http://www.ics.uci.edu/%7Ewscacchi/Software-Process/Readings/ieee93-kbse-articulation.pdf
http://www.ics.uci.edu/%7Ewscacchi/Papers/Vintage/Process-Meta-Model.pdf
http://www.ics.uci.edu/%7Ewscacchi/Papers/Vintage/Process-Meta-Model.pdf
http://www.cse.scu.edu/~jnoll/sea-02.pdf
http://www.cse.scu.edu/~jnoll/sea-02.pdf
http://www.ics.uci.edu/%7Ewscacchi/Papers/Vintage/ieee90-dht.pdf
http://www.ics.uci.edu/%7Ewscacchi/Papers/Vintage/ieee90-dht.pdf
http://www.ics.uci.edu/%7Ewscacchi/Software-Process/Readings/JODI-1999.pdf
http://journals.ecs.soton.ac.uk/jodi/
http://www.ics.uci.edu/%7Ewscacchi/Software-Process/Readings/Process-Hypertext.pdf
http://www.ics.uci.edu/%7Ewscacchi/Software-Process/Readings/Process-Hypertext.pdf
http://www.ics.uci.edu/%7Ecjensen/grad/225/deliverables/Project_Home_Page_rc-1.html
http://www.ics.uci.edu/%7Ecjensen/grad/225/deliverables/Project_Home_Page_rc-1.html
http://www.ics.uci.edu/~wscacchi/Papers/Vintage/Business_Process_Modeling.pdf
http://www.ics.uci.edu/%7Ewscacchi/Software-Process/Readings/SPIP-ProSim99.pdf
http://www.ics.uci.edu/%7Ewscacchi/Software-Process/Readings/SPIP-ProSim99.pdf
http://www.ics.uci.edu/%7Ewscacchi/Papers/Internet-Procurement/internet-procurement.pdf
http://www.ics.uci.edu/%7Ewscacchi/Papers/Internet-Procurement/internet-procurement.pdf
http://www.ics.uci.edu/%7Ewscacchi/Papers/ProSim-2K/ProSim-2K-Paper.pdf
http://www.ics.uci.edu/%7Ewscacchi/Software-Process/Readings/Requirements-Developing-Open-Source-Software.pdf

Systems, IEE Proceedings--Software, 149(1), 2002a.

[S02b] W. Scacchi, Process Models in Software Engineering, in J. Marciniak (ed.), Encyclopedia
of Software Engineering (Second Edition), 993-1005, Wiley, New York, 2002b.

[S02c] W. Scacchi, Open EC/B: A Case Study in Electronic Commerce and Open Source
Software Development, Final Report, NSF CRITO University-Industry Consortium, July 2002c.

[SM97] W. Scacchi and P. Mi, Process Life Cycle Engineering: A Knowledge-Based Approach

and Environment, /ntern. J. Intelligent Systems in Accounting, Finance, and Management, 6(1),
83-107, 1997.

[SN97] W. Scacchi and J. Noll, Process-Driven Intranets: Life Cycle Support for Process
Reengineering, IEEE Internet Computing, 1(5), 42-49, 1997.

[SHCO1] S. Smith, D. Hildum, and D.R. Crimm, Toward the Design of Web-Based Planning and
Scheduling Services, Proc. ECP-01 / Planet Workshop on Automated Planning and Scheduling
Technologies in New Methods for Electronic, Mobile and Collaborative Work, September, 2001.

[VS99] A. Valente and W. Scacchi, Developing a Knowledge Web for Business Process
Redesign, Presented at the 1999 Knowledge Acquisition Workshop, Banff, Canada, October
1999.

10

http://www.ics.uci.edu/%7Ewscacchi/Software-Process/Readings/Requirements-Developing-Open-Source-Software.pdf
http://www.ics.uci.edu/%7Ewscacchi/Software-Process/Readings/Process-Models-SE-Encyc.pdf
http://www.ics.uci.edu/~wscacchi/ProjectReports/CRITO-Final-Report-2002.pdf
http://www.ics.uci.edu/~wscacchi/ProjectReports/CRITO-Final-Report-2002.pdf
http://www.ics.uci.edu/%7Ewscacchi/Software-Process/Readings/Process_Life_Cycle.pdf
http://www.ics.uci.edu/%7Ewscacchi/Software-Process/Readings/Process_Life_Cycle.pdf
http://www.usc.edu/dept/ATRIUM/Papers/PDI.pdf
http://www.usc.edu/dept/ATRIUM/Papers/PDI.pdf
http://www.ics.uci.edu/%7Ewscacchi/Papers/KnowledgeWeb/KnowledgeWeb.pdf
http://www.ics.uci.edu/%7Ewscacchi/Papers/KnowledgeWeb/KnowledgeWeb.pdf

Multi-Modal Modeling, Analysis and Validation of Open Source Software
Requirements Processes

Walt Scacchi®, Chris Jensen', John Noll*?, and Margaret Elliott!
YInstitute for Software Research
University of California, Irvine
Irvine, CA, USA 92697-3425
%Santa Clara University
Santa Clara, CA
Wscacchi@uci.edu

Abstract

Understanding the context, structure, activities, and content of software development processes
found in practice has been and remains a challenging problem. In the world of free/open source
software development, discovering and understanding what processes are used in particular
projects is important in determining how they are similar to or different from those advocated by
the software engineering community. Prior studies however have revealed that the requirements
processes in OSSD projects are different in a number of ways, including the general lack of
explicit software requirements specifications. In this paper, we describe how a variety of
modeling perspectives and techniques are used to elicit, analyze, and validate software
requirements processes found in OSSD projects, with examples drawn from studies of the
NetBeans.org project.

Keywords: software process, process modeling, software requirements, open source software
development, empirical studies of software engineering

1. Introduction

In the world of globally dispersed, free/open source software development (OSSD), discovering
and understanding what processes are used in particular projects is important in determining how
they are similar to or different from those advocated by the software engineering community. For
example, in our studies of software requirements engineering processes in OSSD projects across
domains like Internet infrastructure, astrophysics, networked computer games, and software
design systems [25,26], we generally find there are no explicit software requirements
specifications or documents. However, we readily find numerous examples of sustained
successful and apparently high-quality OSS systems being deployed on a world-wide basis.
Thus, the process of software requirements engineering in OSSD projects must be different that
the standard model of requirements elicitation, specification, modeling, analysis,
communication, and management [22]. But if the process is different, how is it different, or more
directly, how can we best observe and discover the context, structure, activities, and content
software requirements processes in OSSD projects? This is the question addressed here.

Our approach to answering this question uses multi-modal modeling of the observed processes,
artifacts, and other evidence composed as an ethnographic hypermedia that provides a set of
informal and formal models of the requirements processes we observe, codify, and document.
Why? First, our research question spans two realms of activity in software engineering, namely,

software process modeling and software requirements engineering. So we will need to address
multiple perspectives or viewpoints, yet provide a traceable basis of evidence and analysis that
supports model validation. Second, given there are already thousands of self-declared OSSD
projects affiliated with OSS portals like SourceForge.net and Freshmeat.net, then our answer
will be constrained and limited in scope to the particular OSSD project(s) examined. Producing a
more generalized model of the OSS requirements process requires multiple, comparative project
case studies, so our approach should be compatible with such a goal [25]. Last, we want an
approach to process modeling that is open to independent analysis, validation, communication,
and evolution, yet be traceable to the source data materials that serve as evidence of the
discovered process in the OSSD projects examined [cf. 15].

Accordingly, to reveal how we use our proposed multi-model approach to model requirements
processes in OSSD projects, we first review related research to provide the foundational basis for
our approach. Second, we describe and provide examples of the modeling modes we use to elicit
and analyze the processes under study. Last, we examine what each modeling mode is good for,
and what kind of analysis and reasoning it supports.

2. Related Research and Approach

There is growing recognition that software requirements engineering can effectively incorporate
multi-viewpoint [7,16,22] and ethnographic techniques [22,31] for eliciting, analyzing, and
validating functional and non-functional software system product requirements. However, it
appears that many in the software engineering community treat the process of requirements
engineering as transparent and prescriptive, though perhaps difficult to practice successfully.
However, we do not know how large distributed OSSD projects perform their development
processes [cf. 3].

Initial studies of requirements development across multiple types of OSSD projects [25,26] find
that OSS product requirements are continuously emerging [8,9,30] and asserted after they have
been implemented, rather than relatively stable and elicited before being implemented. Similarly,
these findings reveal requirements practice centers about reading and writing many types of
communications and development artifacts as “informalisms” [25], as well as addressing new
kinds of non-functional requirements like project community development, freedom of
expression and choice, and ease of information space navigation. Elsewhere, there is widespread
recognition that OSSD projects differ from their traditional software engineering counterparts in
that OSSD projects do not in general operate under the constraints of budget, schedule, and
project management constraints. In addition, OSS developers are also end-users or
administrators of the software products they develop, rather than conventionally separated as
developers and/versus users. Consequently, it appears that OSSD projects create different types
of software requirements using a different kind of requirements engineering process, than
compared to what the software engineering community has addressed. Thus, there is a
fundamental need to discover and understand the process of requirements development in
different types of OSSD projects.

We need an appropriate mix of concepts, techniques, and tools to discover and understand OSSD
processes. We and others have found that process ethnographies must be empirically grounded,
evidence-based, and subject to comparative, multi-perspective analysis [3,7,10,15,22,25,28].

However, we also recognize that our effort to discover and understand OSSD processes should
reveal the experience of software development newcomers who want to join and figure out how
things get done in the project [27].

As participant observers in such a project, we find that it is common practice for newcomers to
navigate and browse the project’s Web site, development artifacts, and computer-mediated
communication systems (e.g., discussion forums, online chat, project Wikis), as well as to
download and try out the current software product release. Such traversal and engagement with
multiple types of hyperlinked information provide a basis for making modest contributions (e.g.,
bug reports) before more substantial contributions (code patches, new modules) are offered, with
the eventual possibility of proposing changing or sustaining the OSS system’s architecture.
These interactive experiences reflect a progressive validation of a participant’s understanding of
current OSSD process and product requirements [1,19]. Thus, we seek a process discovery and
modeling scheme that elicits, analyzes, and validates multi-mode, hypertext descriptions of a
OSSD project’s requirements process. Furthermore, these process descriptions we construct
should span informal through formal process models, and accommodate graphic, textual, and
computationally enactable process media. Finally, our results should be in a form open to
independent analysis, validation, extension, and redistribution by the project’s participants.

3. Multi-Mode Process Modeling, Analysis and Validation using Ethnographic Hypermedia
An ethnographic hypermedia [4] is a hypertext that supports comparative, cross-linked analysis
of multiple types of qualitative ethnographic data [cf. 28]. They are a kind of semantic hypertext
used in coding, modeling, documenting, and explaining patterns of social interaction data and
analysis arising in contemporary anthropological, sociological, and distributed cognition studies.
The media can include discourse records, indigenous texts, interview transcripts, graphic or
photographic images, audio/video recordings, and other related information artifacts. Ideally,
they also preserve the form and some of the context in which the data appear, which is important
for subsequent (re)analysis, documentation, explanation, and presentation.

Ethnographic studies of software development processes within Web-based OSSD projects are
the focus here. Ethnographic studies that observe and explain social action through online
participant observation and data collection have come to be called “virtual ethnography” [12].
Virtual ethnography techniques have been used to observe the work practices, compare the
artifacts produced, and discover the processes of OSSD projects found on and across the Web
[5,6,13,14,23,25,26,27]. In particular, an important source of data that is examined in such
studies of OSSD projects is the interrelated web of online documents and artifacts that embody
and characterize the medium and continuously emerging outcomes of OSSD work. These
documents and artifacts constitute a particular narrative/textual genre ecology [29] that situate
the work practices and characterize the problem solving media found within OSSD projects.

We have employed ethnographic hypermedia in our virtual ethnographic studies of OSSD
projects. What does this mean, and what challenges or opportunities for requirements elicitation,
analysis, and validation have emerged along the way? These questions are addressed below
through examples drawn from case studies of OSSD projects, such as the NetBeans.org project
[13,14], which is one of the largest OSSD projects we have studied.

As noted, the OSSD projects we study are found on the Web. Web sites for these projects
consist of a network of hyperlinked documents or artifacts. Samples of sites we have studied
include NetBeans.org, Mozilla.org, pache.org, and GNUenterprise.org among dozens of others.
The artifacts we examine include Web pages, email discussion lists, bug reports, project to-do

lists, source code files and directories, site maps, and more. These artifacts are an
important part of the data we collect, examine, study, code, and analyze in order to identify
OSSD work practices and development processes that arise in a given project.

We create a hypermedia of these artifacts in ways that allow us to locate the originating source(s)
of data within the focal project’s Web site. This allows us to maintain links to the source data
materials that we observe as evidence of the process at hand, as well as to allow us to detect
when these data sources have been updated or removed. (We also archive a local copy of all such
data). However, we create codings, annotations, and assembled artifacts that embed hyperlinks to
these documents as part of our ethnographic hypermedia. As a result, multiple kinds of
ethnographic records are created including annotated artifacts, rich hypermedia pictures, and
ethnographic narratives. Juxtaposed about these records are other kinds of models including a
process meta-model, attributed directed graph model, process domain ontology, and a formal,
computationally enactable process model. Each is described next, and each is hyperlinked into
an overall ethnographic hypermedia that provides cross-cutting evidence for the observed OSS
requirements processes.

Annotated artifacts

Annotated artifacts represent original software development artifacts like (publicly available)
online chat transcripts that record the dialogue, discussions, and debate that emerge between
OSS developers. These artifacts record basic design rationale in an online conversation form.
The textual content of these artifacts can be tagged, analyzed, hyperlinked, and categorized
manually or automatically [24]. However, these conversational contents also reveal much about
how OSS developers interact at a distance to articulate, debate, and refine the continuously
emerging requirements for the software system they are developing. For example, Elliott and
Scacchi [5,6] provide conversational transcripts among developers engaged in a debate over
what the most important properties of software development tools and components to use when
building free software. They provide annotations that identify and bracket how ideological
beliefs, social values, and community building norms constrain and ultimately determine the
technical choices for what tools to use and what components to reuse when developing OSS.

Navigational rich pictures

Rich pictures [18] provide an informal graphical scheme for identifying and modeling
stakeholders, their concerns, objects and patterns of interaction. We extend this scheme to form
navigational rich pictures constructed as an Web-compatible hypertext image map that denotes
the overall context as the composition and relationships observed among the stakeholder-roles,
activities, tools, and document types (resources) found in a OSSD project. Figure 1 displays
such a rich picture constructed for NetBeans.org. Associated with each relationship is a
hyperlink to a use case [2] that we have constructed to denote an observable activity performed
by an actor-role using a tool that consumes or produces a document type. An example use case is
shown in Figure 2. Each other type of data also is hyperlinked to either a descriptive annotation
or to a Web site/page where further information on the object type can be found.

—— """" Funds, support, S
o< netBeans: o e e v V in
17 Microsystems] source

Download and

use free CHoUTEALE) =31
software netheans communitsy J-', 4
iz heing run in a fair O’
-
L] and open matner Q i
" s
e make decisions for
*+— release :
— @ the community, on release phase, Release
= The Board el P
figh lewel propose Manager
report bugs zchedule/pla

Eelease proposal, Belease
updates, branch for current

release, release post
/mortem review Belease
Candidates & decide final

release

“ Maihng Listx

Tools

Website

download
development

Builds

decide features for

Site th : 4 builds and test, \‘i 1
S & project an) 731%5&
Administrato merge patches/bu Eelease Q-

Zelect feature to builds

fizes, create module e —— fix- S Te—— OQA teatn

welb page Ei download ne tbeans Ei
St =

ol commit code

@ o
=~ OO e Cotitribute to

o ooy grant CV3 community,
l _.l" manage comimit Ileet time
group of privilege to constraints for
Maintainer developers developers % Developers/ Contributors
Link to all Uge cas?é)\-/ Link to Tools Links to all Agents

Figure 1. A rlch picture image map of the requirements and release process in the NetBeans.org

ﬂ Test Builds

& The QA team tests the latest nightly builds
every Friday
e QA team executes a set of manual tests on
the builds as well as some sanity checks
e Test results are categorized as
— Bug Types
e User Constraint:
— The tests depend on the manual tests
specification
e System Constraint:
- Not all bugs may be identified

Figure 2. A hyperlink selection within a rich hypermedia presentation that reveals a corresponding use case.

Directed resource flow graph

A directed resource flow graph denotes a recurring workflow pattern that has been discovered in
an OSSD project. These workflows order the dependencies among the activities that actor-roles
perform on a recurring basis to the objects/resources within their project work. These resources
appear as or within Web pages on an OSSD project’s Web site. For example, in the
NetBeans.org project, we found that software product requirements are intertwined with
software build and release management. Thus, the “requirements and release process” entails
identifying and programming new/updated system functions or features in the course of
compiling, integrating, testing, and progressively releasing a stable composition of source code
files as an executable software build version for evaluation or use by other NetBeans.org
developers [5,6,23]. An example flow graph for this appears in Figure 3. The code files,
executable software, updated directories, and associated email postings announcing the
completion and posting the results of the testing are among the types of resources that are
involved. Last, the rendering of the flow graph can serve as an image map to the online (i.e., on
the NetBeans.org Web site) data sources from where they are observed.

Board member Release Manager Module maintainer
Decide future Start a new Determine main Determine Create module
release daies | 4 release phase a| features ,t project features weh page Wlze e
g (Maﬂmg hst) e (Ma.l.l.l.ng].lst) (Ma.l].mg list) (Web site) el [Pl

|
L 4

Site administrator

Release Module Build
Ro adma; -
‘P - $ Q L (CVS scripis)
' Source

Download links e ——— Final i Check 1 "L Development Developer
(SourceCast) ™ release 1h Mailing list [——t——- buﬂd
| Yy (Ne ea]ls.:') | : / Write Ilug
| N - : ! // / ' \ e
| A | fl 3\
| - : : J 4 I Test \ (Me the ans)
[\
| | [(Me the ans) iy
Netb eans L] /{’/ ! \ \
Web site REIEaSe | Check B QA Team
candmate 2 (Metheans, Mailing lisp | |/ @
- / \
- . \
=1 | '\._\
Release nl.fnrmimn '.I " i 7 Use
\ f —» s .
(SO‘:::l?ast) .' ‘——— Check ; (]fetbemn;, D:mdet\.:gh
candidate 1 14 : SUET ugs
(Methe ans, Mailing list) (Issuezilla)

T \\
~, P
User . List of
bugs

Figure 3. An attributed directed graph of the resource flow for the NetBeans.org requirement and
release process. Boxes denote tasks/actions, ellipses denote resources/objects, dashed lines denote
resource flows, and solid lines and labels denote agent/stakeholder roles performing tasks that
transform input resources into output resources.

Release Manager

Process domain ontology

A process ontology represents the underlying process meta-model [17,20] that defines the
semantics and syntax of the process modeling constructs we use to model discovered processes.
It provides the base object classes for constructing the requirements process (domain)
taxonomies of the object classes for all of the resource and relation types found in the rich
picture and directed resource flow graph. However, each discovered process is specific to an
OSSD project, and knowledge about this domain is also needed to help contextualize the
possible meanings of the processes being modeled. This means that a process domain entails
objects, resources or relations that may or may not be have been previously observed and
modeled, so that it may be necessary to extend to process modeling constructs to accommodate
new types of objects, resources, and relations, as well as the attributes and (instance) values that
characterize them, and attached methods that operationalize them.

We use an ontology modeling and editing tool, Protégé-2000 [21] to maintain and update our
domain ontology for OSS requirements processes. Using Protégé-2000, we can also visualize the
structure of dependencies and relations [11] among the objects or resources in a semantic web
manner. An example view can be seen in Figure 4. Furthermore, we can create translators that
can transform syntactic form of the modeling representations into XML forms or SQL schema
definitions, which enables further process modeling and tool integration options [cf. 14].

F-Netbeans_requirements_release Protégé-2000 (H:public_html:papers: —1O] =l
Project Edit Window Help

EYEIT= IR Y

| [s][Isiots | CJlForms | I3 Instances | @ Queries |

config | 4= =] ~[[sK] op| €
frame %ﬂ%% =2 iﬂ F{e‘tbeans Fequirements and Rele%se
Metbeans .| [| 1] el | [l |]

flow scenario

ablizh releaze managir

v a

Classes IT

KTl THING &

= (C) SYSTEM-CLASS A
@F‘rocess Maodel (1)
(S) Agent (@)

Resource (17

(S Tool (10 2,]
(E) Action (23 2 T

- (C) Control Flow (13
@Script

b e |
d/
- " MRt action ¢
T
end message reques|

pa—

—

J"“‘h-.h_h_q_uhsed by
—

|
I
il

[4a] []

Figure 4. A view of the process domain ontology for the NetBeans.org software requirements and
release process.

Formal process model and its enactment

A formal process model denotes a syntactically precise and semantically typed specification of
the resource objects, flow dependencies, actor-roles, and associated tools that specifies an
enactable (via interactive process-guided user navigation) hypertext representation we call an
organizational process hypertext [20]. This semantic hypertext, and its supporting run-time
environment, enables the ability to walkthrough or simulate enactment of the modeled OSSD
process as a process-guided, navigational traversal across a set of process linked Web pages. The
semantic hypertext is automatically rendered through compilation of the process models that are
output from the ontology editor in a process modeling language called PML [20]. A PML-based
model specification enables automated consistency checking at compile-time, and detection of
inconsistencies at compile-time or run-time. An example of an excerpt from such a model is
shown in Figure 5. The compiled version of the PML produced a non-linear sequence of process-
linked Web pages, each one of which corresponds to one step in the modeled process. An
example showing the result of enacting a process (action) step specified at the bottom of Figure 5
appears in Figure 6.

sequence Test {
action Execute automatic test scripts {
requires { Test scripts, release binaries }
provides { Test results }
tool { Automated test suite (xtest, others) }
agent { Sun ONE Studio QA team }
script { /* Executed off-site */ } }
action Execute manual test scripts {
requires { Release binaries }
provides { Test results }
tool { NetBeans IDE }
agent { users, developers, Sun ONE Studio QA team, Sun ONE Studio developers }
script { /* Executed off-site */ } }
iteration Update Issuezilla {
action Report issues to Issuezilla {
requires { Test results }
provides { Issuezilla entry }
tool { Web browser }
agent { users, developers, Sun ONE Studio QA team, Sun ONE Studio developers }
script {

Navigate to Issuezilla

Query lIssuezilla

Enter issue } }

Figure 5. An excerpt of the formal model of the Netbeans.org requirements and release process
coded in PML.

Ethnographic hypermedia narrative

An ethnographic narrative denotes the final view ethnographic hypermedia. This is an analytical
research narrative that is structured as a document that is (ideally) suitable for dissemination and
publication in Web-based and printed forms. It is a composite derived from selections of the
preceding representations in the form of a narrative with embedded hyperlinked objects, and
hyperlinks to related materials. It embodies and explains the work practices, development
processes, resource types and relations, and overall project context as a narrative, hyperlinked
ethnographic account that discovered at play within a given OSSD project, such as we

documented for the NetBeans requirements and release process [23]. In printed form, the
narratives we have produced so far are somewhere between 1/4 to 1/15 the number of pages
compared to the overall set of project-specific data (documents) at the first two levels of
hyperlink connectivity; said differently, if the ethnographic report is 30 or so printed pages (i.e.,
suitable for journal publication), the underlying ethnographic hypermedia will correspond to a
hypermedia equivalent to 120-450 printed pages.

[EE 1ssuezilla - Mozilla i =] 4|
EEiIe Edit Miew Go EBookmarks Tools Window Help

Back. = Forward Reload Skop I\& http: e, netbeans. orgfissuesiquery .cqi j {’__,Searchl Print =
b

c |
2 nelBoans; N Y R V00

FRINTRELE LERSION E

HOME > Community

Project Issue Tracking: netbeans.org
Issue Mew | Query | Reports

Tracking: Jump to Issue ||
Query This page lets you search the database for recorded issues.
Issue type: Component: Subcomponent: Subimit gquery |
[Derecr ————pfEmm = [B
EMHAMCEMENT archivesupport 1 | documentation
FEATURE autoupdate raphics
TaSK T a—
PATCH beriltest ui
—| | briobletest12132003 [=
x| | brobtest ;I hd
Status: Resolution: Priority:
|UNCDNFIF|MED A | |FI<ED F1 =
IMNVALID P2
STARTED WOMNTFI P2
REOFEMED LATER P4

RESOLYED
WERIFIED (-
CLOSED =

DUPLICATE
WORKSFORME x| B

Platform OpSys Version: Target Milestone:
mor |~ | 331
BSDI 332
HF FreeBSD 34 x|

Figure 6. A screenshot displaying the result of the PML-based re-enactment of one step (“Action
Report issues to Issuezilla—Query Issuezilla”) in the NetBeans,org requirements and release
process.

»

4. Discussion

We have learned a number of things based on applying our approach to requirements processes
in different OSSD projects. First, no single mode of process description adequately subsumes the
others, so there is no best process description scheme. Instead, different informal and formal
descriptions respectively account for the shortcomings in the other, as do textual, graphic, and
computationally enactable process representations. Second, incremental and progressive
elicitation, analysis, and validation occur in the course of developing multi-mode requirements
process models. Third, multi-mode process models are well-suited for discovery and
understanding of complex software processes found in OSSD projects. However, it may not be a
suitable approach for other software projects that do not organize, discuss, and perform software
development activities in an online, persistent, open, free, and publicly accessible manner.
Fourth, multi-mode process modeling has the potential to be applicable to the discovery and

modeling of software product requirements, although the motivation for investing such effort
may not be clear or easily justified. Process discovery is a different kind of problem than product
development, so different kinds of approaches are likely to be most effective.

Last, we observed that the software product requirements in OSSD projects are continually
emerging and evolving. Thus, it seems likely that the requirements process in such projects is
also continuously. Thus, supporting the evolution of multi-mode models of OSS requirements
processes will require either automated techniques for process discovery and multi-mode update
propagation techniques, or else the participation of the project community to treat these models
as open source software process models, that can be continuously elicited, analyzed, and
validated along with other OSSD project assets, as suggested in Figure 7, which are concepts we
are currently investigating. However, it seems fair to note that ethnographic accounts are situated
in time, and are not intended for evolution.

[uCT Institute for Software Research - Mozilla =10l

:File Edit Miew Go Bookmarks Tools Window Help

=

Back = Forward Reload Stop I@ hittp:] fuman . netbeans . orgfoommunityfarticles UCT_papers. html ‘a,jearchl Prink = .

|

I .
gl “etBea“s*‘ Downloads Docs & Support | community

FRINTAELE VERSION E

HOME > Community > Articles

. . Search > G0
Community UCl Institute for Software Research
Listed on this page are two papers that are part of a larger
+ News research project at the University of California Irvine (UCI) | —
Institu.te for Software Reasearch directed by Walt Scacchi. The
+ Mailing Lists collective research project focuses on freefopen source software Passvord

development processes, practices, and communities that are
funded by grants from the Mational Science Foundation, The web

+ Releases & Planning site for this project is
http: / fwwweisr.uci.edufresearch-open-source.html. Part of the
> Issue Tracking goal of this research is to identify new concepts, techniques, and

tools that can further advance the efficiency, effectiveness, and
cost advantages of freefopen source software development in
scientific, industrial, government, and academic application
domains.

+ Teams

+ Knowledge Base

Chris Jensen is 3 Ph.0. student in the School of Infarmation and
+ Guidelines Computer Science at the University of California Irvine working
with Walt Scacchi who is the Sr. Research Scientist, Research
Faculty for Software. Chris's research is currently focused on
issues and approaches for discovering free/open source software
development processes in projects like NetBeans.,

— Articles

+ Contribute

e ., Jensen and W, Scacchi, Simulating an Automated
+ Sources Approach to Discovery and Modeling of Open Source
Software Development Processes, froc, SroSin 0.3
Warkshop on Software Process Simulation and Modaling,

EReaturedibinks Portland, OR May 2003,

+ Projects Also performed was a research study which helped motivate this
recent paper, "4 First Look at the NetBeans Requirements and
> My Account Release Process” by M. Oza, E. Mistar, 5. Hu, C. Jensen, and Y.

Scacchi, June 2002,
http: f fvwiveics.uci.eduf ~cjensenfpapers fFirstLookMNetBeans f

MORE INFO: | HOME | SHOP | REFORT & BUG | JOIN | SITE MAP | LEGAL | CONTACT BY USE OF THIS WEBSITE, ¥OU AGREETO THE NETEESHS POLICIES AHD TERMS OF USE

% £l 2 B3 o8 | | Ep-|=a[

Figure 7. Getting captured and analyzed process models out for validation and possible evolution
by NetBeans.org project participants.

10

5. Conclusion

Ethnographic hypermedia are an important type of semantic hypertext that are well-suited to
support the navigation, elicitation, modeling, analysis and report writing found in ethnographic
studies of OSSD processes. We have described our approach to developing and using
ethnographic hypermedia in support of our studies of requirements processes in OSSD projects
like NetBeans.org, where multiple modes of informal to formal representations are involved. We
find that this hypermedia is well-suited for supporting qualitative research methods that
associated different type of project data, with process descriptions rendered in graphic, textual
and computationally enactable descriptions. We provided examples of the various kinds of
hypertext-based process descriptions and linkages that we constructed in moving from abstract,
informal representations of the data through a series of ever more formalized process models
resulting from our studies.

6. Acknowledgements

The research described in this report is supported by grants #0083075, #0205679, #0205724, and
#0350754 from the National Science Foundation. No endorsement implied. Mark Ackerman at
University of Michigan, Ann Arbor; Les Gasser at University of Illinois, Urbana-Champaign;
and others at ISR are collaborators on the research described in this paper.

7. References

1. Bolchini, D. and Paolini, P., Goal-Driven Requirements Analysis for Hypermedia-Intensive
Web Applications, Requirements Engineering, 9, 85-103, 2004.

2. Cockburn, A., Writing Effective Use Cases, Addison-Wesley, New York, 2001.

3. Curtis, B., Krasner, H., and Iscoe, N., A Field Study of the Software Design Process for Large
Systems, Communications ACM, 31(11), 1268-1287, 1998.

4. Dicks, B. and Mason, B., Hypermedia and Ethnography: Reflections on the Construction of a
Research Approach, Sociological Research Online, 3(3), 1998. www.socresonline.org.uk

5. Elliott, M. and Scacchi, W., Free Software Developers as an Occupational Community:
Resolving Conflicts and Fostering Collaboration, Proc. ACM Int. Conf. Supporting Group Work,
21-30, Sanibel Island, FL, November 2003.

6. Elliott, M. and Scacchi, W., Free Software Development: Cooperation and Conflict in A
Virtual Organizational Culture, in S. Koch (ed.), Free/Open Source Software Development, Idea
Group Publishing, Hershey, PA, 152-172, 2004.

7. Finkelstein, A.C.W., Gabbay, D., Hunter, A., Nuseibeh, B., Inconsistency Handling in Multi-
perspective Specifications, IEEE Trans. Software Engineering, 20(8), 569-578, 1994.

8. Gans, G., Jarke, M., Kethers, S., and Lakemeyer, G., Continuous Requirements Management

for Organisation Networks: A (Dis)Trust-Based Approach, Requirements Engineering, 8, 4-22,
2003.

11

9. Gasser, L., Scacchi, W., Penne, B., and Sandusky, R., Understanding Continuous Design in
OSS Projects, Proc. 16th. Int. Conf. Software & Systems Engineering and their Applications,
Paris, December 2003.

10. Glaser, B. and Strauss, A., The Discovery of Grounded Theory: Strategies for Qualitative
Research, Aldine Publishing Co., Chicago, 1, 1967.

11. Grinter, R.E., Recomposition: Coordinating a Web of Software Dependencies, Computer
Supported Cooperative Work, 12(3), 297-327, 2003.

12. Hine, C., Virtual Ethnography, Sage Publications, Newbury Park, CA, 2000.

13. Jensen, C. and Scacchi, W., Collaboration, Leadership, Control, and Conflict Management in
the NetBeans.Org Community, Proc. 5" Open Source Software Engineering Workshop,
Edinburgh, May 2004a.

14. Jensen, C. and Scacchi, W., Process Modeling Across the Web Information Infrastructure,
Proc. 5" Software Process Simulation and Modeling Workshop, Edinburgh, Scotland, May
2004b.

15. Kitchenham, B.A., Dyba, T., and Jorgensen, M., Evidence-based Software Engineering,
Proc. 26" Int. Conf. Software Engineering, 273-281, Edinburgh, Scotland, IEEE Computer
Society, 2004.

16. Leite, J.C.S.P. and Freeman, P.A., Requirements Validation through Viewpoint Resolution,
IEEE Trans. Software Engineering, 17(12), 1253-1269, 1991.

17. Mi, P. and Scacchi, W., A Meta-Model for Formulating Knowledge-Based Models of
Software Development, Decision Support Systems, 17(4), 313-330, 1996.

18. Monk, A. and Howard, S., The Rich Picture: A Tool for Reasoning about Work Context,
Interactions, March-April 1998.

19. Narayanan, N.H. and Hegarty, M., Multimedia Design for Communication of Dynamic
Information, Int. J. Human-Computer Studies, 57, 279-315, 2002.

20. Noll, J. and Scacchi, W., Specifying Process-Oriented Hypertext for Organizational
Computing, J. Network & Computer Applications, 24(1), 39-61, 2001.

21. Noy, N.F., Sintek, M., Decker, S., Crubezy, M., Fergerson, R.W., and Musen, M.A.,
Creating Semantic Web Contents with Protégé-2000, IEEE Intelligent Systems, 16(2), 60-71,
March/April 2001.

22. Nuseibeh, B. and Easterbrook, S., Requirements Engineering: A Roadmap, in Finkelstein, A.
(ed.), The Future of Software Engineering, ACM and IEEE Computer Society Press, 2000.

12

23. Oza, M., Nistor, E., Hu, S. Jensen, C., and Scacchi, W. A First Look at the NetBeans
Requirements and Release Process, http://www.ics.uci.edu/cjensen/papers/FirstLook
NetBeans/, February 2004 (Original May 2002).

24. Rao, R., From Unstructured Data to Actionable Intelligence, IT Pro, 29-35, November 2003.

25. Scacchi, W., Understanding the Requirements for Developing Open Source Software
Systems, IEE Proceedings—Software, 149(1), 24-39, February 2002.

26. Scacchi, W., Free/Open Source Software Development Practices in the Computer Game
Community, IEEE Software, 21(1), 59-67, Jan. 2004a.

27. Scacchi, W., Socio-Technical Interaction Networks in Free/Open Source Software
Development Processes, in S.T. Acufia and N. Juristo (eds.), Peopleware and the Software
Process, World Scientific Press, to appear, 2004b.

28. Seaman, C.B., Qualitative Methods in Empirical Studies of Software Engineering, IEEE
Trans. Software Engineering, 25(4), 557-572, 1999.

29. Spinuzzi, C. and Zachry, M., Genre Ecologies: An Open System Approach to Understanding
and Constructing Documentation, ACM J. Computer Documentation, 24(3), 169-181, August
2000.

30. Truex, D., Baskerville, R., and Klein, H., Growing Systems in an Emergent Organization,
Communications ACM, 42(8), 117-123, 1999.

31. Viller, S. and Sommerville, 1., Ethnographically Informed Analysis for Software Engineers,
Int. J. Human-Computer Studies, 53, 169-196, 2000.

13

Process Discovery

This section contains the following two chapters. The first proposes a scheme using a
process meta-model guided scheme to facilitate manual, semi-automated, or automated
discovery of processes from hidden workflows. The second employs the reference model
scheme together with textual data mining tools used in analyzing large textual corpora to
determine the overall efficacy of such an approach to semi-automated process discovery.

Chris Jensen and Walt Scacchi, Applying a Reference Framework to
Open Source Software Process Discovery. In Proceedings of the First
Workshop on Open Source in an Industrial Context, OOPSLA-OSICO03,
Anaheim, CA October 2003.

Chris Jensen and Walt Scacchi, Data Mining for Software Process
Discovery in Open Source Software Development Communities, Proc.
Workshop on Mining Software Repositories, 96-100, Edinburgh, Scotland,
May 2004.

Applying a Reference Framework to Open Source
Software Process Discovery

Chris Jensen, Walt Scacchi
Institute for Software Research
University of California, Irvine
Irvine, CA, USA 92697-3425
cjensen@ics.uci.edu,
wscacchi@ics.uci.edu

ABSTRACT

The successes of open source software development have inspired
commercial organizations to adopt similar techniques in hopes of
improving their own processes without regard to the software
process context that provided this success. This paper describes a
reference framework for software process discovery in open
source software development communities that provides this
context. The reference framework given here characterizes the
entities present in open source communities that interplay in the
form of software processes, discusses how these entities are
encoded in data found in community Web spaces, and
demonstrates how it can be applied in discovery.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management— /ifecycle, software
process models

General Terms
Management, Measurement, Documentation.

Keywords

Reference Framework, Process Discovery, Open Source

1. INTRODUCTION

Open source software development has existed for decades,
though only more recently has it piqued the curiosity of industry
and academia. While many, like Eric Raymond in his essay, “The
Cathedral and the Bazaar” and Garg [5], with his work on
corporate sourcing, have extolled the virtues of the open source
development paradigm, seeking methods of bringing the benefits
of open source to industry, we still lack an understanding of the
process context that enables such successes and in which these
techniques lie. With this understanding, we may analyze other
process activities and social and technical factors on which these

techniques depend, whether they are compatible with existing
processes and the larger organizational landscape, and how
process techniques may be configured to realize such benefits as
have been seen in an open source forum. However, process
engineering activities for such analysis and that guide redesign
and (continuous) improvement all require a process specification.
Thus motivates our interest in process discovery. In previous
work [7], we demonstrated the feasibility of automating process
discovery in open source software development communities by
first simulating what an automated approach might consist of
through a manual search of their online Web information spaces.
Here, we discuss an approach to constructing the open source
software development process reference framework that helps
make such automation possible. This framework is the means to
map evidence of an enacted process to a classification of agents,
resources, tools, and activities that characterize the process. In
traditional corporate development organizations, we may be able
to readily determine such things by examining artifacts such as
the org-chart and so forth. But open source communities often
lack such devices. While components of the framework may be
known, no such mapping framework exists that enables open
source process discovery.

2. RELATED WORK

Weske, et al. [17] describe what they refer to as a reference model
for workflow application development processes, though theirs is
more of a software development lifecycle model than a software
development reference model and provide no insight for mapping
the Web information space to a process.

Srivasta, et al. [16] details a framework for pattern discovery and
classification of Web data. The discussion relates site content,
topology, session information garnered from site files and logs
and applies association rules and pattern mining to obtain rules,
patterns, and statistics of Web usage. However, they offer no
help in constructing the pattern discovery techniques that process
the data to arrive at those usage rules.

Lowe, et al. [8] on the other hand, propose a reference model for
hypermedia development process assessment. This model,
however lacks their domain model does not reflect software
development and their process meta-model is awkwardly
configured. Nevertheless, the overlap between hypermedia
development and open source software development makes is
apparent in comparing their reference model with the one
presented here.

Commutity Web Information Space

Last Updated:
082452005

Process Entity T axonomy

Process Evidence Process Fragments

Databaze
Pmocess 1
— @ — 4@ Process 2a
Process b

Figure 1. The opensource sofiware development reference frameworls, mapping Web content, siruciure, and
usage/update data to process entities, which are assembled inio process fragmenis via association rules

3. ESSENTIAL ATTRIBUTES OF THE
FRAMEWORK

The job of the reference framework is to provide a mapping
between process evidence discovered by searching the community
Web and a classification scheme of process attributes. Software
lifecycle models in combination with probabilistic relational
modeling techniques then provide guidance for integrating these
relations together into a sequence of process fragments that can be
pieced together to form a meaningful model of the development
process as shown in Figure 1. Our reference framework is based
on the process meta-model of Noll and Scacchi [12]. This meta-
model consists of actions, tools, resources, and agents. Whereas
Lowe and associates adopted the Spearmint framework, the skill
level of the agent is unnecessary for the specification of the
software development process. The abstract resource entity is
likewise excessive as it caries little semantic benefit in software
development process specification. These ingredients are not
specific to software development processes, however the
reference framework is domain specific. Furthermore, some
variance is expected between communities based on the
community size, the extent of its maturity, and preferences of the
individuals in the community. Thus, while it is not possible to
assert that any given community uses a specific testing suite, it is
likewise impossible to say that they use a testing suite at all.
However, that is the purpose of process discovery, and not the
reference framework. With this in mind, we can discuss the
contents of the framework.

Surveys of Apache [1], Mozilla [3], and NetBeans [13] led to a
taxonomy [14, 15, 18] of tasks, tools, resources, and roles
common in open source development. The approach chosen
characterizes these process entities in two dimensions: breadth
(e.g. communication tools, code editing tools, etc.) and genericity
(e.g. an instant messaging client as a type of synchronous
communication tool subset of the larger category of all
communication tools). This classification scheme is necessary in
order to relate instances of process entities to their entity type,
which may then be associated with related entities (such as other
tasks, tools, resources, and roles).

4. PROCESS MAPPING OF OSSD WEB
INFORMATION SPACES

As noted elsewhere [7], there are three dimensions of the
information space that encode process evidence:

e Structure: how the Web of project-related software
development artifacts is organized

e Content: what types of artifacts exist and what information
they contain

e Usage Patterns: user interaction and content update patterns
within the community Web

The structure of the community Web is evident in two forms. The
physical form consists of the directory structure of the files of
which the site is composed. But, it is also apparent on a logical
level, in terms of the site layout, as might be given by a site map
or menu. These may or may not be equivalent. Nevertheless,
each layer in the hierarchy provides a clue to the types of agents,
resources, tools, and processes of the community. Structure
hierarchy names may be mapped to instances of tools, agents,
resources, and activities found in the open source software
development meta-model taxonomy, thus fulfilling the first role
of the reference framework. Additionally, directories with a high
amount of content, both due to file numbers and file size may
indicate a focus on activity in that area. Claims such as these may
then be reinforced or refuted based on additional information
gathered during discovery. Common to most open source
communities are mailing lists and discussion forums, source
repositories, community newsletters, issue repositories, and
binary release sections, among others. The mere presence of
these suggests certain activities in the development process.
These also signal what types of data may be contained therein. If
we just look at source repositories, we can obtain a process
specification of a limited set of activities- those that involve
changes to the code, just as issue and bug databases tell us that
some testing is done on which the issue reports are based. In
some communities, issue reports are also used to file feature
requests. Such information may also be found within discussion
forums or email lists.

The bulk of the process data is found within the content of Web
artifacts. Much of the mapping consists of text matching between

strings in artifacts such as web pages, and email messages and
process related keywords as was demonstrated for structure-based
data. In the case of web content, we are also looking for items
like date stamps on email messages to place the associated events
in time, document authors, and message recipients. In some
cases, it is possible to uncover “how-to” guides or partial process
prescriptions. Like other content, these may not accurately reflect
the process as it is currently enacted, if they ever did. Therefore,
each datum must be verified by others.

Usage patterns, like content size, are indicators of which areas of
the Web space are most active, which reinforces the validity of
the data found therein and also what activities in the process may
be occurring at a given time. Web access logs, if available,
provide a rich source of data. Page hit counters and last update
statistics are also useful for this purpose. Work by Cadez [4] and
Hong, et al [6] demonstrate two techniques for capturing Web
navigation patterns, however neither can be done in a strictly
noninvasive manner. The first cannot provide tours of the Web
space and the latter requires members to access the community
Web through a proxy server used to track trips.

OSSD artifacts vary along these three dimensions over time, and
this variance is the source of process events. To effectively
discover processes, our reference framework must be able to
relate artifacts in the community Web space with process actions,
tools, resources, and roles.

S. RESULTS

Our experiences in process discovery have shown this framework
to be adequate and effective for use in discovering software
development processes in OSSD communities. Nevertheless,
open source communities vary drastically in size and process due
to factors such as degrees of openness, product, motivations,
authority structure, and more. These all affect the development
paradigm and, in turn, the process and the landscape of the
community Web space. The challenge in process discovery is
then, determining relationships between entity instances
discovered. A directory such as “x-test results” is positive
evidence that some sort of testing is conducted. It is likely that
the files in this directory relate to this testing. Additionally,
hyperlinks in the content of these artifacts may point to other
sources of testing-related evidence as indicated by the context of
the reference. Detecting relationships between unlinked or
indirectly linked artifacts is more challenging. These connections
may be established by analyzing the context of the data collected
in light of a priori knowledge of software development practices
provided by the process entity classification scheme. For
example, the automated XTest results report summary found in
the “xtest-results/netbeans _dev/200308200100/development-unit”
[11] subdirectory of the NetBeans community Web may be linked
to the “Q-Build Verification Report” in the QA engineer build
test subdirectory “g-builds” [10] even though there is no
hyperlink to relate them by observing a match between the build
numbers found on each page, which can, in turn, be matched with
a binary file found on the “downloads” page [9]. This shows a
relation between automated testing, manual testing, and source
building efforts. Date stamps on each artifact give us a basis to
assert the duration of each activity. Whereas structure and
content can tell us what types of activities have been performed,
monitoring interaction patterns can tell us how often they are

performed and what activities the community views as more
essential to development and which are peripheral.

6. DISCUSSION

Edward Averill [2] states that reference models must be a set of
conceptual entities and their relationships, plus a set of rules that
govern their interactions. The reference framework described
above does this by defining a particular application domain, fully
classifying it without prescribing how particular roles, resources,
tools, and activities should be assembled, or which meta-model
entities are required for a process. In doing so, the reference
framework is therefore community and process model
independent. It is also discovery technique independent. Though
we have applied it to discovery through manual search of the
community Web information space, there is nothing in the
specification that restricts its application to a more automated
approach to process discovery as is our goal.

The reference framework is development process independent but
it is not independent of the classes of tools, agents, activities, and
resources. If a new role, for example, is incorporated into the
development process, it must be added to the framework in order
to be found through automated discovery techniques. It is worth
recalling that the resulting process model shows an example of a
process instance, which is subject to variation across executions.
The degree of variation between instances may indicate stability
and maturity in the process, as well as showing signs of a
direction of evolution.

Though we have outlined a framework for discovering software
development processes an abstract open source development
paradigm, it is a framework that may easily be tailored to
communities with commercial-corporate influences such as
NetBeans and Eclipse, as well as corporate source projects,
adjusting the meta-model taxonomy in terms of tool instances,
roles, etc. to suit the development paradigm.

7. ACKNOWLEDGMENTS

The research described in this report is supported by grants from
the National Science Foundation #IIS-0083075 and #ITR-
0205679 and #ITR-0205724. No endorsement implied.
Contributors to work described in this paper include Mark
Ackerman at the University of Michigan Ann Arbor; Les Gasser
at the University of Illinois, Urbana-Champaign; John Noll at
Santa Clara University; and Margaret Elliott and Walt Scacchi at
the UCI Institute for Software Research are also collaborators on
the research project described in this paper.

8. REFERENCES

[1] Ata, C., Gasca, V., Georgas, J., Lam, K., and Rousseau, M.
The Release Process of the Apache Software Foundation,
(2002). http://www.ics.uci.edu/~michele/SP/index.html

[2] Averill, E. Reference Models and Standards. Standardview
2,2,(1994) 96-109.

[3] Carder, B., Le, B., and Chen, Z. Mozilla SQA and
Release Process, (2002).
http://www.ics.uci.edu/~acarder/225/index.html

[4] Cadez, 1.V., Heckerman, D., Meek, C., Smyth, P., and
White, S. Visualization of Navigation Patterns on a Web Site

Using Model Based Clustering. In Proceedings of
Knowledge Discovery and Data Mining, (2000) 280-284.

[5] Dinkelacker, J., Garg, P. Corporate Source: Applying Open
Source Concepts to a Corporate Environment. In
Proceedings of the First ICSE Workshop on Open Source
Software Engineering, (Toronto, Canada May 2001).

[6] Hong, JI.I, Heer, J.,, Waterson, S., and Landay, J.A.
WebQuilt: A Proxy-based Approach to Remote Web
Usability Testing, ACM Trans. Information Systems, 19, 3,
(2001). 263-285.

[7] Jensen, C., Scacchi, W. Simulating an Automated Approach
to Discovery and Modeling of Open Source Software
Development Processes. In Proceedings of ProSim'03
Workshop on Software Process Simulation and Modeling,
(Portland, OR May 2003).

[8] Lowe, D., Bucknell, A., and Webby, R. Improving
hypermedia development: a reference model-based process
assessment method. In Proceedings of the tenth ACM
Conference on Hypertext and hypermedia (Darmstadt,
Germany, 1999), ACM Press, 139-146.

[9] NetBeans IDE Development Downloads Page,
http://www.netbeans.org/downloads/ide/development.html.

[10]NetBeans ~ Q-Build Quality Verification Report,
http://qa.netbeans.org/q-builds/Q-build-report-
200308200100.html.

[11]NetBeans Test Results for NetBeans dev Build
200308200100,
http://www.netbeans.org/download/xtest-
results/netbeans _dev/200308200100/development-
unit/index.html.

[12]Noll, J. and Scacchi, W. Specifying Process Oriented
Hypertext for Organizational Computing. Journal of
Network and Computer Applications 24, (2001). 39-61.

[13]0za, M., Nistor, E., Hu, S. Jensen, C., and Scacchi, W. A
First Look at the Netbeans Requirements and Release

Process, (2002).
http://www.ics.uci.edu/cjensen/papers/FirstLookNetBe
ans/

[14]Scacchi, W. Open Source Software Development
Process Model Taxonomy, (2002).
http://www.ics.uci.edu/~wscacchi/Software-Process/

[15]Scacchi, W. Understanding the Requirements for
Developing Open Source Software Systems, IEE
Proceedings- Software, 149, 1 (February 2002). 25-39.

[16] Srivasta, J., Cooley, R., Deshpande, M., Tan, P. Web
Usage Mining: Discovery and Applications of Usage
Patterns from Web Data, CM SIGKDD Explorations
Newsletter, 1, 2 (2000). ACM Press, 12-23.

[17] Weske, M., Goesmann, T., Holten, and R., Striemer, R. A
reference model for workflow application development
processes. In Proceedings of the international joint
conference on Work activities coordination and collaboration
(San Francisco, CA 1999). ACM Press, 1-10.

[18]Ye, Y. and Kishida, K. Toward an understanding of the
motivation Open Source Software developers In Proceedings
of the 25th International Conference on Software
Engineering (Portland, Oregon May 2003). 419-429.

Data Mining for Software Process Discovery in Open Source Software
Development Communities

Chris Jensen, Walt Scacchi
Institute for Software Research
University of California, Irvine

Irvine, CA, USA 92697-3425

{cjensen, wscacchi}@ics.uci.edu

Abstract

Software process discovery has historically been
an intensive task, either done through exhaustive
empirical studies or in an automated fashion using
techniques such as logging and analysis of command
shell operations. While empirical studies have been
Sfruitful, data collection has proven to be tedious and
time consuming. Existing automated approaches
have expedited collection of fine-grained data, but do
so at the cost of impinging on the developer's work
environment, few of who may be observed. In this
paper, we explore techniques for discovering
development processes from publicly available open
source software development repositories that exploit
advances in artificial intelligence. Our goal is to
facilitate process discovery in ways that are less
cumbersome than empirical techniques and offer a
more holistic, task-oriented view of the process than
current automated systems provide.

1. Introduction and Beginnings

Software process models represent a networked
sequence of activities, object transformations, and
events that embody strategies for accomplishing
software evolution [10]. Software process discovery
seeks to take artifacts of development (e.g. source
code, communication transcripts, and so forth), as its
input and elicit the networked sequence of events
characterizing the tasks that led to their development.
This process model may then be used as input to
other process engineering techniques such as
redesign and re-engineering.

Open source software development (OSSD)
communities are a rich opportunity for software
process discovery and analysis with the benefit that
so much of their process-relevant data is publicly
available. Though many researchers have sought
non-automated means of software process modeling,
often there is so much information that it becomes
intractable to subsume unaided, thus motivating the
push for tools to assist in process discovery. In our
past efforts [6], we have shown the feasibility of
automating the discovery of software process models
by using manual simulation of how such automated

techniques might operate as a basis to substantiate
that discovery and modeling of software development
processes in large OSSD communities such as
Mozilla, Apache, NetBeans, and Eclipse (consisting
of tens of thousands of developers continuously
contributing software artifacts to the community
repository) is both plausible and amenable to
automation. In this paper, we explore techniques for
searching OSSD Web repositories for process data,
relating these data in the form of process events, and
assigning them to meaningful orders as a process
model in an attempt to reduce the manual effort
necessary to discover and model software processes.

We take, as our process meta-model, that of Noll
and Scacchi [8]. Software processes are composed of
events: relations of agents, tools, resources, and
activities organized by control flow structures
dictating that sets of events execute in serial, parallel,
iteratively, or that one of the set is selectively
performed.

It has been shown [6] that OSSD community
Web repositories encode process data in terms of the
structure of the community repository, its content,
and its usage and update patterns. OSSD artifacts
vary along these three dimensions over time, and this
variance is the source of process events. To
effectively discover a software process, we must be
able capture these data and their changes. This may
be done through combined application of text and
link analysis techniques, as described below. We
propose the use of text analysis techniques for
extracting instances of process meta-model entities
from the content of the community repositories,
followed by link analysis to assert relationships
between the mined entities in the form of process
events. Next, we apply usage and update patterns to
guide integration of the results of text and link
analysis together in the form of a process model (see
Figure 1). Finally, we conclude with addressing the
knowable validity of discovered software process
models and future directions for continuing work.

Community Web
Information Space

Process Entity
Taxonomy

Process Entity
Instance Relational
Database

Process Fragment

Actions

[

Copyright @ 1995-2004 The
Maozilla Organization
Last maodified March 20, 2004

Document History
Edit this Page (or via C¥5)

I

Agents

g

Resources

Process Event A Action_1
Process Event B /;\
—> —> <i3ranch_i; >—p Action_2b
\\\I//
Process Event Action_2a

Time/Date

Figure 1: Web artifacts are filtered through a process entity taxonomy to extract atomic process action
events, sequenced using temporal indications within the artifacts and reconstructed into a process using PRM

2. Text Analysis

The bulk of the process data is found within the
content of Web artifacts. Much of the mapping
consists of text extraction, matching between text
strings in artifacts such as web pages and email
messages and a taxonomy of process related
keywords [5]. In the case of web content, we are
especially looking for items like date stamps on email
messages to place the associated events in time,
document authors, and message recipients. This
matching is done using a name recognizer.

An inherent challenge to name recognition is that
many classes of lexical items we desire to recognize
are open sets since we cannot enumerate all possible
proper names they contain. Further, name
classification suffers from synonymy and polysemy-
the same concept represented using different terms,
and different concepts represented using the same
term, respectively. This frequently occurs between
OSSD communities, using terms such as release
manager rather than release coordinator to describe
the same role. Fortunately, these are well known
problems in text analysis and most text analysis
systems provide some support for managing them.
The SENSUS ontology system [3] is one such system
that attempts to automate much of the domain
modeling work allegedly covering most areas of
human expertise. This automation is critical
considering lexicographical differences across and
evolution within communities.

Different types of content yield different
opportunities for gathering data. Common to most

open source communities are mailing lists and
discussion forums, source repositories, community
newsletters, issue repositories, and binary release
sections, among others. The mere presence of these
suggests certain activities in the development
process. They also signal what types of data may be
contained within. If we just look at source code
repositories, we can derive a process specification of
a limited set of activities- those that involve changes
to the code. Similarly, issue and defect databases tell
us that some testing is done on which the issue
reports are based. In some communities, issue
reports are also used to file feature requests. Such
information may also be found within discussion
forums or email lists.

Although it may seem tempting to attempt to
tailor analysis of artifacts to their type (e.g. email
message, defect report, etc) to capitalize on the
structure of the artifact type thereby facilitating
analysis. While this approach would potentially lead
to increased performance in analysis of artifacts
conforming to the structure expected by the artifact
model, this structure varies widely between
communities. To achieve high performance using
artifact structure models requires development of
models, not only for each artifact type in a
community repository, but also for each artifact type
used by all repositories under study.

It is interesting to note that we may uncover
“how-to” guides or other partial process prescriptions
in examining the community repository. Like all
content, these may not accurately reflect the process
as it is currently enacted, if they ever did. This

suggests the need for probabilistic methods for
modeling software development processes to filter
noise within a process instance and accounting for
variance across instances.

By itself, the result of text extraction gives us the
raw ingredients of a process model. We look to link
analysis to put these ingredients together into atomic
process events.

3. Link Analysis

Text extraction allows us to ask questions such
as who is collaboration with whom. From this
information, we can construct a social network
[Madey, et al] for the community. Social networks
may identify developers that frequently collaborate,
but they do not tell us what the developers are doing,
and, more importantly, how they are doing it. One
way to associate what and how information is
through the use of probabilistic relational modeling
(PRM).

Probabilistic relational modeling [4] is somewhat
inspired by entity relationship modeling used to
describe databases. In the classical example, we
might have tables of movie actors, movies, and roles
actors have played in movies and want to learn
relationships between them. Conceptually, this is no
different from linking process agents playing a role to
complete an action (using various tools that consume
and produce resources). Probabilistic relational
modeling allows inference about individual process
entities while taking into account the relational
structure between them, unlike traditional approaches
that assume independence between entities. Why is
this the right approach? Software processes driven
by the choice of tools used in development. Tools
either dictate what and when activities are performed,
or tools are selected to support desired activities, and
to an extent, suggest methods of completing activities
(i.e. enforce process compliance). Developer roles
emerge to perform these activities and carry out
supplemental work not performed by development
tools. Further, process entity instances arising from
text analysis have other relationships. They are
related contextually to other entities in the artifacts in
which they are found. They are also related to
artifacts hyperlinked to those in which they are
present. Such contextual relationships arising from
the logical structure of the repository are also good
candidates for probabilistic relational modeling.
Indeed, doing so allows us to form process events
whose entities span multiple artifacts.

To learn relationships between process entities,
we must know the context of the entity with respect

to others. This context can be represented in two
ways. Extracting the URL of the artifact in which
each entity is located allows us to cross-reference that
entity with others in the same artifact, as well as other
artifacts in which that entity is located. Additionally,
if we look at the creation date of the artifact in which
it was located, we may be able to intuit that those
instances that are temporally distant may signal an
activity of lengthy duration multiple instances of the
same activity. This determination, however, is the
work of usage and update pattern analysis.

4. Usage and Update Patterns

Usage patterns, like content size, are indicators
of which areas of the Web space are most active,
which reinforces the validity of the data found therein
and also claims of what activities in the process may
be occurring at a given time. Web access logs, if
available, provide a rich source of data. Web page
hit counters and last update statistics are also useful
for this purpose.

Cadez [1] and Hong, et al [2] demonstrate two
techniques for capturing Web navigation patterns,
however neither can be done in a strictly noninvasive
manner. The first uses server logs and cannot provide
tours of the repository and the latter requires
members to access the community Web through a
proxy server used to track tours. Nevertheless, if we
can map tours of the community Web to process
events, we can get a sense of which activities are
dependent on which other activities, which can be
done in parallel, which sequences are done
iteratively.

Fortunately, most large OSSD communities use
content managing tools to perform versioning of not
only product source code, but of other artifacts in the
repository, as well. By analyzing changelogs we can
learn the frequency of Web updates, in addition to the
agent performing the update, and to some extent, the
tools used to create the artifact, given its type. Work
by Ripoche and Gasser [9] does this to an extent,
studying defect resolution status in open source
defect repositories. The approach may be
generalized, extended with using the text and link
analysis techniques given above, and applied to other
types of artifacts, though with somewhat less
precision due to the inferential nature of process
entity relationship construction.

Unfortunately, revision histories are not always
available. Since OSSD repositories are publicly
accessible, it is possible to spider the Web repository
periodically to track changes externally via diff tools,
though information regarding the precise time of

update and author would be lost. As an ethical
matter, periodic spidering increases the load on the
server that, for large repositories, is potentially
burdensome.

By examining usage and update patterns, it is
possible for us to detect process control flow
structures. If we merely order then by time, the set of
process events discovered is sequential. Iterations
can be teased out of the sequence by considering
patterns of repeated tours and updates of and to the
Web. Activities being performed in parallel may also
be discerned by examining non-intersecting
concurrent usage and update patterns. Further, by
analyzing the variance between iterations of the same
task, we can identify sets of alternate activities, if the
variance is small.

5. Process Model Verification

A critical question of software process discovery,
regardless of automation, is how we may discern if
the process discovered is a correct reflection of the
process enacted by the community. The likelihood of
arriving at an accurate model increases with the
amount of data examined, within the limitations of
the techniques applied. This is because the
confidence of an asserted relationship between
process entities increases with more positive
instances of those relationships. Likewise, weak
relationships are rejected due to insufficient evidence.
At the same time, relationships between entities
cannot be discovered if the entities are not in the list
of process-relevant terms we look for during text
extraction. Thus, the process model obtained is only
as good as the taxonomy.

6. Conclusion

In this paper, we have presented a novel
approach to discovering software processes from
OSSD Web repositories, combining techniques for
text analysis, link analysis, and of repository usage
and update patterns. Though we have focused our
discussion on open source repositories, given the
availability of the artifacts, we believe that these
techniques can be applied to closed source software
repositories, and given the appropriate domain
information, other types of processes, as well. Our
hope is that in doing so, we may increase
understanding of the process techniques that have led
to their success.

7. Acknowledgments

The research described in this report is supported
by grants from the National Science Foundation
#ITR-0083075 and #ITR-0205679 and #ITR-
0205724. No endorsement implied. Contributors to
work described in this paper include Mark Ackerman
at the University of Michigan Ann Arbor; Les Gasser
at the University of Illinois, Urbana-Champaign;
John Noll at Santa Clara University; and Margaret
Elliott at the UCI Institute for Software Research.

8. References

[1] Cadez, 1.V., Heckerman, D., Meek, C., Smyth, P.,
and White, S. Visualization of Navigation Patterns on
a Web Site Using Model Based Clustering. In Proc.
2000 Knowledge Discovery and Data Mining
Conference, 280-284. (2000).

[2] Hong, J. Heer, S. Waterson, and J. Landay,
WebQuilt: A proxy-based approach to remote web
usability testing, ACM Transactions on Information
Systems, 19(3), 263-285. (2001).

[3] Hovy, E.H., A. Philpot, J.-L. Ambite, Y. Arens,
J.L. Klavans, W. Bourne, and D. Saroz. 2001. Data
Acquisition and Integration in the DGRC's Energy
Data Collection Project. In Proceedings of the dg.o
2001 Conference. Los Angeles, CA.

[4] Getoor, L., Friedman, N., Koller, D., Taskar B.
Learning Probabilistic Models of Link Structure,
Journal of Machine Learning Research, 2002.

[5] Jensen, C. Applying a Reference Framework to
Open Source Software Process Discovery. In
Proceedings of the First Workshop on Open Source
in an Industrial Context OOPSLA-OSICO03,
Anaheim, CA October 2003.

[6] Jensen, C. and Scacchi W. Simulating an
Automated Approach to Discovery and Modeling of
Open Source Software Development Processes. In
Proceedings of ProSim'03 Workshop on Software
Process Simulation and Modeling, Portland, OR May
2003.

[7] Madey, G., Freeh, V., and Tynan, R. “Modeling
the F/OSS Community: A Quantitative
Investigation,” in ~ Free/Open Source Software
Development, ed., Stephan Koch, Idea Publishing,
forthcoming.

[8] Noll, J. and Scacchi, W. Specifying Process
Oriented Hypertext for Organizational Computing.
Journal of Network and Computer Applications 24,
(2001). 39-61.

[9] Ripoche, G. and Gasser, L. "Scalable Automatic
Extraction of Process Models for Understanding
F/OSS Bug Repair", submitted to the 2003
International Conference on Software & Systems
Engineering and their Applications (ICSSEA'03),
CNAM, Paris, France, December 2003.

[10] Scacchi, W. Process Models in Software
Engineering, in J. J. Marciniak (ed.), Encyclopedia of
Software Engineering, 2nd. Edition, 2002.

Process Modeling

This section contains the following four chapters. The first proposes a scheme for
modeling processes using low-fidelity process specifications in a form that is amenable to
automated enactment. The second paper extends and elaborates the evolving structure
and design of low fidelity process models. The third examines the modeling of a new
class of hidden and knowledge-intensive processes associated with the recruitment and
migration of people within a large OSSD project. The last provides a comprehensive
examination of a multi-enterprise project network that spans and interconnects the
processes of each project, as well as processes that can communicate and share
knowledge-intensive work artifacts across project boundaries.

John Noll, Flexible Process Enactment Using Low-Fidelity Models.
Proceedings SEA '03, Marina Del Rey, CA, USA, November, 2003.

Darren Atkinson, Daniel Weeks, and John Noll, The Design of
Evolutionary Process Modeling Languages. Proceedings of the 11th
Asia-Pacific Software Engineering Conference, Korea, December 2004.

Chris Jensen and Walt Scacchi, Modeling Recruitment and Role
Migration Processes in OSSD Projects, Proc. 6th Intern. Workshop on
Software Process Simulation and Modeling, St. Louis, MO, May 2005.

Chris Jensen and Walt Scacchi, Process Modeling Across the Web
Information Infrastructure, to appear in Software Process--Improvement
and Practice, 2005.

Flexible Process Enactment Using L ow-Fidelity Models

JohnNoll
ComputerEngineering Departnent
SantaClaraUniversity
500El CaminoReal
SantaClara,CA 95063-0666
emailj nol | @se. scu. edu

ABSTRACT

Attemptsto extendprocessenactmento suppaet dynamc,
knowledge intensive actiities have not beenas success-
ful as workflow for routine businessprocesses. In part
this is dueto the dynanic natureof knowledge-inensie
work: the tasksperiormedchang continually in respmse
to the knowledgedevelopedby thosetasks. Also, knowl-
edgework involves significantinformal communications,
which aredifficult to captue.

This paper proposes an apprach to suppeting
knowledge-intensive proessesthat embacesthesediffi-
culties; ratherthan attemptimg to captue every nuane of
individual actvities, we seekto facilitate commurication
andcoadinationamorg knowledgeworkersto disseminate
knowledgeandprocessexpertisethroughou the organiza-
tion.

KEY WORDS
Workflow Modding, Coopeative Work Suppot

1 Introduction

The corventioral workflow appoachemplags a sener or
execution enginethatexeaitesworkflow specificationgnd
storesdocunents produced by the workflows. Process
participats (actors)interactwith the engire through web
browses, environments, or task-specifictools, receving
guidanceonwhatactiitiesto perfom, andhow to perform
them.

This apprach has beensuccessfulfor automatig
repetitve, routine processesput attemptsto exterd it to
suppot dynanic, knowledge intensive actiities have not
beenassuccessfull].

In part,thisis dueto thedynamicnatue of suchactiv-
ities: actorsin knowledge-int@sive ervironmerts continu
ally adap theiractvitiesto reflectincreasingincerstandig
of the prodem at hand which resultsfrom perfoming the
knowledge-iiensve actiities. Thus, the performanceor
enactmebhof knowledge-intersive work processesnvolves
a cycle of planring, action, review, andrefinemen This
presentseveralproblamsfor processmanagerant:

1. The actiities performedin ary cycle are difficult to
describein sufiicient detail to be useful for conven-
tional workflow enactmen

Edit HCompileH Test HDebug

Figurel. Edit-conpile-delug process.

2. Expets perfam theseactvities in afluid, almostun-
conscios manneyfratherthanasdiscretesteps;

3. Thecycleis repeatedapidly andcontiruously sothe
set of actwities evolves rapidy; therefoe, ary de-
scriptionof the processs immediatelyout of date.

Therefore, we propse an appoachtametedto en-
courging developmentof processexpertiseamongknowl-
edgeworkers.In this appoach,actorsaregivenhigh-level
guidanceabaut whatactuities to perfam, andhow to per
form them,throudh the useof low-fidelity processmodels.
Thesemodelsspecifya nomind order of tasks,but leave
actorsfreeto carryouttheir actvities astheir expertiseand
thesituationdictates.

Theappoachcompisesthreekey compments:

1. Processspecificationsbasedon the notion of low fi-
delity processnodds;

2. A distributed process degoyment and execution
mechaism for enactiry low fidelity processmockls;

3. A Virtual Repaitory of artifactsproviding accesdo
distributed collectiors, repositoies, anddatabasesf
information objectsrelatedto the work to be per
formed;

The following sectionsdiscuss,in turn, the mocel-
ing apprach basedon low-fidelity models; coordnation
amorg concurent processes;enactmat basedon low-
fidelity models;relatedwork; and,someconclusioss.

2 ProcessModeling

Our previous work with processmockeling demanstrates
the value of low-fidelity modds for doaumentingand an-
alyzing knowvledge-inensve work [2, 3]. A low-fidelity

Edit HCompileH Test HDebug

Figure2. Edit-conpile-delug processaugmated.

modéd doesnot seekto captue every detail and nuarce
of a knowledge-intersive process;rather it docunentsthe
major actiities of a processandthe primary sequencén
whichthey areperfamed.

An examge of a mockl depictingsoftware develop-
mentis shavn in Figure1. This mocdel shavs the nom-
nal sequencef activities involvedin turning a designinto
working code:the progammerenterssour@ codetext us-
ing an editor, thencornpiles the coce, iteratingover these
stepsuntil the code compilessuccessfully Then, he or
sheproceed to testand dehug, iterating over the whole
sequeneto fix thefailuresuncoreredduring testing.

This mocel captues both the important actiities in
codedevdlopmen, andthemainsequene,andis thususe-
ful for discussinghe programmirg process.But it doesnot
begin to captureall of the possibletransitiors betweerac-
tivities. Many experiencedprogrammes switchfrequently
betweendeluggingand editing, delayingthe compilation
stepuntil several faults have beenfixed. Occasionallyit
iS necessaryo iterate over the comple-test-delg cycle;
sometimesaprogramme will skipdehuggingandproceel
directly backto editing. Figure 2 shavs theseadditioral
transitionsyepresentetly dashededges.

While thisdepictian is morecompletejn thatit repre-
sentsall of the plausibletransitionshetweertasksiit is not
entirely accuate. For exanple, althowgh the grapgh showvs
a transitionfrom “Edit” to “Debug’, it is not possibleto
take this transitionuntil the “Compile” stephasbeensuc-
cessfullycompletedatleastonce:“Debug’ requiresanexe-
cutableprogram,whichis theoutput of the“Compile” step.
Figure3 shavs theseconditiors aslabelsontheedges.

However, it'snot clearthatthemodeldepictedn Fig-
ure 3 is moreusefulthanthatin Figure1; asa guidarce
tool, anovice progammemight find thenumepustransi-
tions confusing, while an expet would alreadyknow that
theseadditiona transitionsarepossible.

Ourmodelirg apprachis basednthenotionof low-
fidelity processmodels.A low-fidelity modé seekgo cap-
ture the essenceof a process,while abstractig away as
mary detailsas possible. The moceling language allows
the mocklerto captue boththe nomiral cortrol flow (the
solid edgesin Figure 1), andthe condtions that constrén
transitionsoutsidethe nomiral flow (the dashedines in
Figures2 and3).

problems identified

fa|lure
su cess dlfflcul errors
Edit HComplleH Test H Debug
Lok 1 BRI

| ’Irnk’p’rébl’em’ !\ more dafa needed
I
I

Figure3. Edit-conpile-delug process augmated.

Figure4 shaws a specificatiorof the pracessof Fig-
urel, writtenin the PML processmodelirg languge. The
nomiral cortrol flow is representedxplicitly by theitera-
tion construts andthe ordeing of actionsin the specifica-
tions. Theconstrainton othertransitionsareexpressedy
the providesandrequiresstatementsThesearepredicates
thatexpressthe inputs andoutputs of eachstep(action) in
theprocessandthusthepre-andpost-coulitionsthatexist
at eachstepin the proess.Notethatthis simplespecifica-
tion captuesthe constrainthattestinganddehuggingcan-
not proceeduntil compilationis successfulthe“Test” and
“Debug” actionsrequire aresouce called“exec”, whichis
produced(provided) by the “Compile” action. Thus, until
this actionsucceeds;Test” and“Debug” arenot possible.

Modding proesseausinglow-fidelity modelsyields
severalberefits:

o Low-fidelity mockls are easyto specify andcanbe
geneatedrapidy.

o A low-fidelity modelstill captures theessentiafacets
of a process, especiallythe resoures corsumedand
artifactsprodicedby a givensetof actiities.

e Becausehey seekto repesentonly high4evel detail,
low-fidelity mocels arerelatively stable;thatis, they
continte to be accuratedescripions of the high-level
process,evenasthedetailsof processactiities evolve
in resposeto knowledge andexperiencegainedwith
theprodem.

2.1 Modeling Coordinated Activities

Thedevdopmern proessof Figurel doesnotexist in iso-
lation. Theinput to theprocesss asetof requiementsand
the outpu is dehuggedsourcecode. Otherproessepro-
duceandconsumeheseresouces,asdepictedn Figure5.
This figure shavs two coopeating proessesthe develop-
mentprocessof Figurel, anda paralleltestdevelopment
processthatultimately appliesa testsuiteto the delugged
code.

Theseprocessescoopeateto prodicea testedprod
uct: bothstartwith requiementgo developtheirrespectie

process edit-code {
iteration {

}

teration {

action Edit {
requires { design }
provi des { code }

}

action Conpile {
requires { code }
provides { exec }

}

action Test {

}

requires { exec }
provi des {

code.status == "unit tested"

}

action Debug {

}

requires { exec }

Figure4. SoftwareDevelopmert Procesd-ragnent.

l]

= Edit ﬂ Compile H Test k Debug
o Write Write Run
Test Cases Tests Tests

Figure5. Coordnatedproesses.

DESIGN

> Edit HCompiIeH Test HDebug
' '

Figure6. Resourcdlow betweerprocesses.

artifacts. In addition the testprocessneedsthe output of
the developmen procesgthe executableobject)to run the
tests.This depedeny couldberepresentedoy anexplicit
link betweerthe“Debug” and“Run Tests"actions(repie-
sentedy thesolid edgein Figure5). But thisappoachhas
severaldifficulties.

First, it createsan explicit connetion betweenthe
specificdevelopmen processandthetestprocesghatdoes
notalwaysexist: developerscodd employ arny of anumkber
of differentdevdlopmen processes(cleanrroom test-first,
even“chadic” developmen) thatcould provide the object
for testing.

Second it requiles both proessedo be maintainel
asa single model, which is often not the case: different
organizatiors areresponsibldor their respectie proesses
whichthey develop andmaintainindepeidently.

Finally, it doesnt captue the true relatiorship be-
tweenthe processestypically, testersrequile a compled
product to test, so that the actualrelatiorship is between
“Compile” and “Run Tests” as oppesedto “Debug’ and
“Run Tests. Butthecompled productmustalsohavebeen
dehugged andtested. The essentiakelationshipbetween
thetwo proessess thatthedevelopmert procesgprodices
anexecuableproductfor thetestprocesgo test(Figure 6).
It's notimportantto the testprocesshow this product was
developed,only thatit existsin a statesuitablefor testing.

This relationshipis easyto represehin PML, as
shavnin Figure?. This specificatiorshavs thatthe begin-
ning of the testprocessdepemls on the availability of the
designdocument(“DESIGN"). More importar, the “Run
Tests” action canrot begin until the three condtions are
met: the “Write Tests”actionmustcomplete,theremust
beanexecuableto run,andthe codemustbe unit tested.

Note that becausehe processesare indirectly cou-
pled, it is not necessaryor all actiity to be modeled or
enacted;enactedproessescan be coordnatedthrough a
sharedresourcewith ad-ha@ work or activities in anotter
organization Thus, the “Run Tests” task can begin as
soonasthe “exec” and“code” resoucesareavailable;but
theseresoucescanbe producedby ary process,including
acompetely spontaneusad-toc process.

3 Flexible Enactment

Enactmatis driven by everts, whichareclassifiedaseither
processeventsor resouce events. Theseare summarizd
in Table1l. A predicae in the processdescripion speci-
fiesthestatethattherequiredresoucesmustsatisfybefae
theactiity canproceedthe mechaismis describd fully

in [4]).

Processevents signal action initiation and comge-
tion, andaregeneateddirectly by actorsasa consegence
of performingtasks.Resourceventsreflectchamgesin the
ervironmen, suchascreation,deletion and modificatian
of resouces,andtime everts suchasdeadlinesor alarms.

Theenactmat mechaismenableglexible enactmat
through the way it handes proessand resoure events.

process test-code {

action WiteTestPlan {
requires { design }
provides { test_plan }

}

action WiteTests {
requires { test_plan }
provides { test_suite }

}

action RunTests {

requires { test_suite && exec
&& code.status == "unit tested" }
provi des { code.status == "tested" }

Figure7. CoordiratedTestProcess.

TaskComplete

TaskAbort

Proces£verts

Createprocess An actorrequestsinstantiation
of anew processinstance.

TaskStart An actorhasbegun atask.

TaskSuspend The actor has suspendd an

active task.

The actor has comgeted a
task.

The actor aborts a task that
cant becompleted

Resourcdeverts

ObjectCreation
ObjectMoadification
ObjectDeletion

Deadline

A new resoure hasbeencre-
ated(or detectedl

An existing resouice hasbeen
changd.

An existing resouice hasbeen
destryed or removed.

A time event (deadlire, mile-
stonealarm)haspassed.

Tablel. ProcessindResourcevents

Everts affect processtatein severalways:

1. Activationof thenext taskin thenominal controlflow.
The processdescriptionspecifiesthe orderin which
tasksshoud be perfamed. A processeventcantrig-
gerthetransitionfrom onetaskto the next; for exam
ple,the competion of the Edit taskin Figurel causes
transitionto the Compiletask.

2. Activationof otheractionsin the processlin Figure4,
compldion of the “Compile” task may causeTest”
and“Debug’ to becone ready if the“exec’ objectis
successfullycreated

3. Activation of actionsin otherproesses. For exam
ple,whenboththe“Compile” and“T est” tasksof Fig-
ure4 aresuccessfullgompeted,resultingin products
in the correct state,the “Run Tests”taskin Figure7
beconesready

The completion of an actioncanmake a nurmber of
additioral actionsavailablefor theactorto perform: a pro-
cessventsignalgheconpletionof anaction,whichmakes
thenext actionin thenominalcontrd flow available.In ad-
dition, the completian of an action may include the cre-
ation or modfication of one or more resourcesas side-
effects,generéing resouice everts thatmake additional ac-
tionsavailable. Theenactmehengire canthenrecomnend
that the next availableactionin the nomind contiol flow
shouldbe perfomed,andalsoshav othe actionsavailable
astheresultof resourcesvents.

As an exanple, supposean actorhasjust completel
the“Compile” actionin Figure6. Thisprocessevert causes
the “Test” action, which is the next actionin the noninal
contrd flow, to becomeavailable. The “Compile” action
alsocreatesan executalte object(“EXEC” in Figure6), a
resouce evert thatsatisfiesthe “Debug” actions requires
prediate (Figure 4). As a conseqence,the “Debug’ ac-
tion also becanesavailable. Finally, the creationof the
execuableobject satisfiegpartof the “Run Tests”actions
requirespredcate. This may causé€’‘Run Tests"to becone
availableaswell. The resultis several actionsreadyfor
theactorto perfom, repiesentingdifferert processperfa-
mancepaths.

The enactmentmechanismis depictedin Figure 8.
The User Interface allows actors to gererate process
everts, and invoke Tools to perfam tasks. The Process
Engire handes Processand Resourcesverts, respomuling
asdescribedabore. It includesa virtual machineto inter-
pretPML processspecificationso compue thestateof ac-
tionsin respomseto aproessor resouceevert. TheMirtual
Repositorys respasiblefor detectingesourcevents,and
translatingthem into a representatio-independeh form
suitablefor intergretationby the ProcessEngne.

The Virtual Repositoryprovides a logicdly central-
ized view of a setof distributed heterogneos informa-
tion repcsitories. Thisenablegheenactnentmechanismto
treata variety of resouces,suchasemail messagesyVeb

User Interface

— —
‘Tools ‘ ‘ Process U/l ‘

process events

Process Enginé
resour ce

Event - .
2 | Manager Virtual Machin
create/lpdate
Virtual Repos] " €S0urcg events
—

| — — ~
[DBMS || Email | Pl

— 1
| WWW _ | | File Sys |

resource @vent S
Resources @

. Active Process
e Repository

Figure8. Proces€nactnentArchitectue

pagesdocunents,etc. asinformationobjectswith a uni-
form forma andaccessnterface.

4 Related Work

Therearethreemainappoachedo enactirg dynanic pro-
cessedn aflexible manrer.

The first treatsdeviations from the specifiedprocess
asexceqions. This view supmsesthatthereis a usualor
“right” wayto dothings,fromwhich deviation is occasion
ally requred. For examge, Milano augnentsenactmat
of Petri-netbasedmodelswith the ability to jump forward
or backward acrossseveral transitionsin orde to hande
exceqions to the specifiedflow of contwol [5]. The phi-
losopty of Milano is similar to the PML apprach: use
simplemodelsto specifyprocessesandhande variationat
runtime. However, Milano treatsdeviations asexceptins,
ratherthanviewing themasalternatebut normal variations
asPML does.

The secondappoachmocels the processas a setof
constrais; aslong asthe constraits are met, actorsare
freeto performtasksasthey seefit, in theorderthatseems
mostappr@riate.For exampe, Glanceandcolleagiespro-
posea constrain specificatioanglagethatcanbeusedto
specify the goalsof a process,without specifyirg the or-
der[6].

This approachprovides a greatdegreeof flexibility:
aslong asthe gods are met, the actoris free to do ary
taskin ary order. However, the flexibility comes at the
costof guidance:it become difficult to advisethe novice
actorasto what stepto perfam at a given pointin time.
Dourish addessesghis issueby addingconstrénts abaut
theorderin whichtasksmustbeperfamed,if suchanorder
is necessary7].

Relatedto this appoach are process-caered pro-

gramming ernvironmentsthat employ rulesto specifypro-
cessessxampesincludeMerlin [8], whichis basednPro-
log, andMarvel [9].

The SPELL modelinglangwageincludes constraints
on task pre- and post-caditions that are interpeted by
the EPOS execuion environment’s plannirg mechaism
to develop a sequene of actiities to suit a specificsitu-
ation[10]. While SPELLSs constraits aresimilarto PML's
requiresandprovidespredcates,they areusedto develop
aspecificsequencef tasksatruntime In contrastPML's
prediatesallow the actorto deviate from the noninal se-
guercewhennecessary

Thethird appoachattemptso model the processus-
ing specificationghat inheently allow greatflexibility in
how tasksareperformed

For exampe, Bernsteinprgposesa hybrid modelthat
combines constraims when processesire not well unde-
stood with strongercortrol flow basedspecificationsvhen
theprocessmatues[11]. Thisappr@chassumeshatvari-
ation from the specificationis a matterof processmma-
turity thatwill deceaseover time asthe processecanes
betteruncderstood.

Jomensenargues for enactmentbasedon a dialog
with the actor at runtime [12]. In this apprach, pro-
cesseareinitially specifiedata high level, andenactmat
takesplaceasadialogbetweertheactorandtheenactmat
mechaism. Jogenseralsoviews variationasa sideeffect
of processmmatuity, so the goal of this dialogis grad
ual refinenent of the processspecificationinto a detailed
mode.

5 Conclusion

The apprachdescribedchereinhasseveral distinctive fea-
tures.

First, low-fidelity proeess models specified using
PML are both straightfaward and enableflexible enact-
ment.

Second becase the couging betweencoordnating
actorsis indirect, throudh a sharedresource thereis no
requiementfor trust (or even awarenas)betweencoord-
nating peers. This enablesextremely fluid, dynamic or-
garizationsin which participantscanjoin at will without
requiing administratve approval or action.

Finally, by relyingresourcevents proces&nactmat
canproceedin the backgourd, out of the way of expelii-
encedusersuntil they needexplicit advice.

Acknowledgements

This work is suppated in part by the National Science
Fourdation unde GrantNo. [1S-020567®, through sub-
contrat from the University of California, Irvine; andby
an IBM Faculty ResearchGrantawardeal by SantaClara
University. No endorserantis implied.

References

[1]

(2]

3]

[4]

[5]

[6]

[7]

(8]

9]

[10]

Paul Dourish. Processlescriptims asorganizatioral
accounting devices: The dual useof workflow tech-
nologies. In Proceedhgs of the 2001 Internaional
ACM SIGROUP Confeenceon Sugorting Group
Work, pages52-60, Boulder Coloradg USA, Octo-
ber200L. ACM Press.

Walt ScacchiandJohnNoll. Process-dvenintranets:
Life-cycle suppat for processngireering. IEEE In-
ternetComputing Septembr/Octoberl 997

John Noll and Walt Scacchi. Specifyng process-
orierted hypertext for organizatioml compuing.
Journal of Networkingand ComputerApplicatiins,
24(1), January2001

John Noll and Bryce Billinger. Modeling coord-
nationasresourceflow: An objectbasedapprach.
In Proceeding of the 2002 IASTED Confeenceon
Softwae Engineering Applications Cambridye,Mas-
sachusettd)SA, November2002

Alessandra\gostiniandGiorgio De Michelis. A light
workflov managmentsystemusing simple process
mockls. ComputeiSupprtedCoopeative\Work, 9(3
4):33-363, August2000.

Natalie S. Glance, Daniele S. Pagam, and Remo
Pareschi. Genealized processstructue gramnars
(GPSG) for flexible representationsof work. In
Proceedigs of the 199 ACM Confeenceon Com-
puter Sugported Coopeative Work, pages180-189
Boston,Massachusett§)SA, 1996 ACM Press.

P. Dourish J. Holmes, A. MacLean,P. Margvard-
sen,andA. Zbyslaw. Freeflav: Mediatingbetween
representationand action in workflow systems. In

Proceedigs of the 199 ACM Confeenceon Com-
puter Sugported Coopestive Work, pages190-198

Boston,Massachusett§)SA, 1996 ACM Press.

Burkhard Peuschebnd Wilhelm Schéafe. Concepts
andimplemeantationof arule-basegrocessengire.In

Proceedigs: 14thInternatioral Confeenceon Soft-
ware Engireering pages262-279. IEEE Compuer

SocietyPress/&AM Press 1992

IsraelZ. Ben-ShaulGail E. Kaiser andG. Heineman
An architectue for multi-usersoftware development
environmens. ComputingSystemshe Journd of the
USENIXAssociatio, 6(2):66—1@, 1993

R. ConradiM. L. JaccheriC. Mazzi,M. N. Nguyen
andA. Aarsten. Design,useandimplenmentationof
SPELL, a langwagefor software praocessmodelling
and evolution. In J.-C. Derniane, editor, Softwae
ProcessTechnolagy, nunber635in LectureNotesin
Compuer Sciencepagesl67-177. Springer-Verlag
1991.

[11]

[12]

AbrahamBernstein.How cancoqerative work tools
suppet dynamic groyp processBridging the speci-
ficity frontier. In Proceeding of the2000ACM Con-
ferenceon ComputerSupprted Coopeative Work,
pages279-288, Philadelphia Pennsylania, USA,
2000.ACM Press.

HavardD. Joigensen.Interaction asa framework for
flexible workflow modelling In Proceeding of the
2001 International ACM SIGROUP Confeene on
Supporting Group Work, pages32-41, Boulder Col-
ora, USA, October2001 ACM Press.

The Design of Evolutionary Process Modeling Languages

Darren C. Atkinson, Daniel C. Weeks, and John Noll
Department of Computer Engineering
Santa Clara University
Santa Clara, CA 95053-0566 USA
{datkinson,dweeks,jndl@scu.edu

Abstract is to be as expressive as an unstructured description, but

changing the representation so it is unambiguous [4]. The

To formalize a software process, its important aspects design of the language constrains how and where the pro-
must be extracted as a model. Many processes are used reecess model can be applied. If the language is too compli-
peatedly, and the ability to automate a process is also de-cated or strict, it may not be expressive or flexible enough
sired. One approach is to use a notation that already exists, to be useful in a broad range of applications. If the language
such as a programming language, and extend it. However,definition is too loose, it may not be amenable to meaning-

the intricacies and restrictions the programming language ful analysis or automation.

placeS on the ablllty to SUCCinCtly and Clearly describe a In addition to f|nd|ng prob|ems ina process, mode”ng
process can be problematic. An alternative approach is to ajlows the process designers to explore many different de-
develop a language specifically for describing processes. Asigns before enactment. Complex processes may be too
significant disadvantage of this approach, however, is the costly to actually implement and refine. Modeling allows
lack of tool support for ensuring model correctness. We the modeler to easily modify the process and determine if
discuss a high-level language that encourages evolution-the changes are effective. Furthermore, processes are typi-
ary model development and describe a tool for performing cally designed starting with abstract concepts and are itera-
model verification. We have used our language and tool ontjyely refined into detailed descriptions. Therefore, the lan-
the NetBeans model for distributed software development. guage used to describe a process needs to reflec\biis-
tionary development cycle, but still provide valuable infor-
mation about the process at every level of abstraction. Fi-
nally, if the conceptual and procedural aspects of a process
can be represented in a language, then tools can be designed

Process descriptions [12] characterize the important as-to automatically check the models before enactment [8].

pects of processes from which models can be derived. One One common paradigm for modeling processes is rule-
purpose of a model is to reflect the control-flow of the pro- Pased or logical modeling [10, 13]. This method relies on
cess without incorporating nonessential properties. The ob-Tules to describe the tasks and then generates a model from
jective of modeling is not to recreate every minute aspect the dependencies specified in the tasks. The main advan-
of the process, but instead to extract the meaningful proper-tage of this approach is that the modeler need only specify
ties of the process and imitate its behavior [1]. individual tasks, and the associated tools will automatically
In addition to disambiguating a complicated process, 9enerate a model with consistent dependencies.
having a written notation for process description provides = The most obvious problem with this method is that the
the ability both to analyze the process by checking for er- modeler has difficulty controlling the order of tasks in the
rors and to automate it. Validating a process before enact-process. If two steps are independent, but the modeler wants
ment increases quality and ensures correctness. Automatiothem to be performed in a sequence, then a false depen-
increases efficiency and provides the facility to guide the dency must be introduced in order to achieve the desired re-
process through its life-cycle, only stopping for human in- sults, which adds an unnecessary layer of complexity. We
teraction when necessary. feel this method is also counterintuitive to how people think
In order to effectively check models for errors and to au- about processes. The order in which tasks are performed is
tomate processes,farmal notation (i.e., language) is re- a primary concern when defining a process, and the mod-
quired to specify the model. The objective of the language eler should be able to control it.

1. Introduction

Copyright 2004 |IEEE. Published in the Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC-2004), November 30-December 3, 2004, Busan, Korea.
Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE.

The paradigm that we advocate is control-based [3, 19], ous advantages, there are some fundamental concerns raised
which resolves many of the problems inherent in the rule- by this language design approach.
based paradigm. In this approach, the control is specified by Though the use of an underlying programming language
the modeler, which allows her to describe the flow of control has obvious benefits, it compromises many of the goals of
in the process. This method can be used to model abstracinodeling languages. Ada 95 has a rich and varied syntax,
processes, detailed processes, and every layer of abstractio@sulting in a modeling language that is complex, not sim-
between the two [11]. Ata high level of abstraction, the con- ple as intended. A person modeling a process may not need
trol is sequential, which allows the modeler to imply the de- to know the meaning of each keyword in Ada, but they must
pendencies without actually having to specify them. If it is recognize them in order to avoid using them. Using a key-
later decided that the model should be more specific, the acword unintentionally could result in checking errors caused
tual dependencies can be introduced. This method is moreyy the lower level language that would confuse the mod-
intuitive and reflects the steps that humans normally take. eler because they have no relevance to problems in the ac-
tual model. This places an additional burden on the modeler

2. Modeling language design to understand aspects of both languages.
Building on a programming language also limits the ex-
2.1. Goals and motivation pressiveness of the modeling language. Process-related ac-

tivities may not be expressible in the underlying program-
Although there are many different approaches to processming language and therefore cannot be expressed in the
modeling, there is a general consensus about the goals ofodeling language. Ada has a requirement that concurrent
modeling languages [15]. These goals embody how a lan-tasks that need to communicate must synchronously meet,
guage should capture the aspects of a process in order tevhich is called arendezvousThis constrains the expres-
represent the process properly. The most common goals aresiveness of the modeling language (i.e., APPL/A) because
asynchronous activities exist in processes. The primary con-
cern with this limitation is that it is not a problem with the
modeling language. Instead, it is a limitation imposed by
the language on which it was developed. Additionally, how
o flexibility: the language can be applied to a variety of the process will be enacted depends on the underlying pro-
applications such as business processes, software programming language and how the process will execute once
cesses, or any other form of process equally compiled. What may seem intuitive at the modeling level,

e expressivenesshe ability to accurately reflect a pro- May not be reflected at the programming language level.
cess is essential in order to extract useful information EXisting tools that support the language can also be prob-
about the process lematic. The error checking capabilities of the Ada com-

plier are designed for checking errors in computer pro-

grams. However, the errors that can occur in a process are
based on a different criteria than those of programming lan-

Though these goals have been repeatedly defined and exanguages. While compilers are designed to examine programs

ined, many language implementations disregard these goalor static errors, processes are dynamic in nature and many

in an effort to achieve additional functionality [6]. of the useful features of static checking, such as type check-
The most common approach to designing a process moding, are not essential for process models. This limitation is
eling language is to build the language on top of an exist- not due to an oversight in the modeling language design, but
ing programming language, because of similar concepts and conceptual difference between processes and programs.
notations in both languages. A typical example of this ap- The primary concern of this style of language design
proach is the language APPL/A [17, 18], which is designed is that it relies on a language paradigm that is not ex-
as an extension to the programming language Ada. plicitly designed for process modeling. Programming lan-
There are many advantages to using tsotom-upap- guages are designed for computation, and their target appli-
proach to language design, most of which pertain to en-cations are not the same as those of process modeling lan-
actability. APPL/A was able to take advantage of features guages. Though there are many similar concepts between
such as concurrency, iteration, modularity, information hid- programming and process modeling, there are subtle differ-
ing, and exception handling that are integrated into Ada. ences that separate the two. For example, although a pro-

In addition, the existing compilers provide type checking gram may be evolved, at each step the program must be se-

and error checking capabilities. Other modeling constructs mantically correct. In process modeling, the modeler may

such as relations and tasks were effectively implemented uswant to experiment with partially correct models to obtain
ing Ada constructs of packages and tasks. Despite numerfeedback. Therefore, a new language design is needed that

e simplicity: a non-technical person should be able to
model a process without being encumbered by the syn-
tactic or semantic requirements of the language

e enactability:the language should enable the model to
mimic the actual execution of a process

focuses on and represents the concepts of process modekyntax forpmL in the context of the evolutionary develop-
rather than relying on programming languages, which are ament of a process model to describe the traditional waterfall
product of a different research domain. model of software development.

2.2. Our approach 3. ThepMmL language

Instead of using existing languages to reflect processes,
we examine the requirements of process modeling lan-3-1. Language fundamentals
guages and design a language based on those principles.)
The result of our approach is the modeling languaige [2, Tht_e most _fundamental component of a process is a task
14], which intrinsically supports process-related concepts or action, which are term; tha_t can be used interchangeably.
rather than implementing them in terms of concepts from a ThePML syntax for an action is:
programming language. action identifier { ... }
This top-downapproach to language development has
many advantages that address problems inherent in tha/Vith just the process and action statements it is possible to
bottom-up approacteML is a simple language with only make a non-trivial model of the waterfall process:
thirteen keywords. This design decision has many implica- process waterfall {
tions: the language is much easier to learn, which makes action analyze { }

action design { }

it more attractive to those who do not have a background action code { }

in programming. Another positive aspectriL is that the action test { }
syntax is very straightforward and not impacted by that of
a programming language. ML, statements all follow a This high-level description provides information about

simple form that helps to eliminate the confusion of com- what steps need to be completed and the order in which they
plicated grammars. The only consideration is about whatshould be performed. Though there is little detail about any
statements can be nested inside other statements, but nestf these steps, the model has enough information for a ba-
ing is generally shallow. sic understanding of the waterfall development process.
Another problem that this language design addresses is

the difficulty in achieving the right level of expressiveness.
Modeling languages built on programming languages are
restricted by the underlying language, but not having that re-
striction allows for a much more adaptable gramnrasL
incorporates a language construct callegualifier, which

3.2. Resources and attributes

Resources are an essential component to creating a pro-
cess model that does more than just reiterate the steps in a
is not a keyword in the language, but is a user-defined Spec_|orocess. The ability to descripe the flow of resources allows
ification that enumerates the characteristics or qualities ofth.e ’T‘Ode'er to recreate a variety of dependen.mes. that occur
a resource, which allows the modeler to emphasize, con—Wlthln aprocess. The only postulate for an action |s'that the

resource is available when the process enters or exits the ac-

strain, or modify resources in the process model. . ; . .
This design approach also makes the process model eadion. PML allows actions to require and provide resources,
which reflects the action’s need for or the production of a re-

ier to enact. Instead of relying on a compiler to generate) oo . b L
code that is later executed to enact the process, the actugiource: but gives no indication of its origin or destination.
process model can be enacte#iL employs an enactment U.smg thes:e constr_ucts, we can_mod|fy our modell to pro-
environment to interpret and enact the process model an(]\/lde more information about the internals of an action:

is designed specifically for execution of process models. action analyze { _ _

Therefore, it understands how to handle process related ac- [ravires 1 1ancion & bonay o e e dion)

tivities as opposed to a program that is designed for compu- }

tation. For example, the environment can rely on the user in

making decisions regarding which action to perform next. This statement illustrates the conditions that must be met

for this action to be performed and to terminate. Entrance to

PML is also quite flexible in that it supports evolution- h o bl | he f ion. behavi d
ary model development. A high-level process model can pelN€ action is not possible unless the function, behavior, an

written easily and modified iteratively until the desired level mtgrface ?re a\c/janab:e 6,‘”(3 exiting ISt rlf)t poSs_lbIet\;]wthout r‘:_
of detail is obtained. To illustrate this ability, we present the quirements and analysis documentation. L'sing these predi-
cates, a modeler can reconstruct the dependencies that exist
1 The namerML is an acronym, originally for “Process Markup Lan- within a process by speC|fy|ng Its pre- and pOStCOhdItIOﬂS.
guage.” The language quicklyevo_lved to re_sem_bleaprogramming lan- In most cases, resources alone are not enough to pro-
guage, but themL name was retained for historical reasons. vide the detail needed for an accurate model. While many

actions in a process may require a resource, there are spe3.3.2. lIteration. A condition that occurs quite frequently
cific qualities or characteristics of the resource that are es-within processes is the need to repeat certain steps. While it-
sential and cannot be described by the resource’s name. Werating over these steps, there are two concerns that must be
previously stated that the actianalyze: addressed: when to go back and repeat the steps, and when
provides { analysis_documentation } to stop repeating and continue the process. Generally, this
decision is handled by an expression that is evaluated to de-

that the analysis portion of the documentation is completetermlne if the steps need to be repeated. This method works

complicates the process. Without being able to modify the well if the number of repetitions is known when the loop

properties of a resource, a new resource needs to be create_k()JEng’ but the dynamic nature of a process often results

to describe any change in the process. Therefore, we pro—'n this information being unavailable. An example of this

vide attributes to solve this problem by describing the state nonjdeterm.mlsuc nature Processes 1S r_naklng a cake where
of a resource and thus it would be more clear to state: the instructions state: add flour, stir mixture, test for con-

_ _ _ sistency, andepeatuntil mixture is thick and consistent,
provides { documentation.analysis }

. . which is clearly subjective. The syntax for agration fol-
While analysis_documentation is an abstract resource |ogws the same structure as a sequence:

created to describe the result of an actidogumentation iteration {

is a concrete resource that will persist throughout the pro- action first { }
cess as new sections of the documentation are added. At- :2::2: fﬁ?f’gd{{}}
tributes provide a means to describe changes to resources }

without having to create spurious resources. action post { }

Finally, attributes alone cannot always adequately de- When determining which path to take L, the predi-
scribe specific qualities and states of resources or their propcates of the first action in the loofirst, and the first action
erties. Actions often rely on attributes having specific val- following the loop,post, are the points of interest. When the
ues and as the model evolves and detail is added, constraintast action in a loop is complete, the loop determines how
ing the state of resources and attributes provides more exto proceed based on whether or not the requirements in the
plicit control. By adding expressions the model transitions first action of the loop and the first action following the loop
to another level of detail and can represent state: are satisfied.

provides { documentation.analysis == ‘‘complete’’ } At first this decision procedure may appear to be incon-

This statement is an assertion regarding the state of the/€nient because processes may need to wait for a human to
attribute of a resource, and does not affect the value of thech00se the proper path, but it actually allows the process to
attribute. The enactment environment simply ensures that?® more dynamic by providing multiple options when they
the attribute has the correct state when the action terminates€Xist and suppressing them when only one path is available.

Such level of detail can be gradually added to further SpeC_AIso, there are many conditions in processes that are based
ify or constrain the model. on human judgment and cannot be evaluated by a machine.

However, introducing a new resource to describe the fact

3.3.3. Selection.Selecting one of many paths requires that
3.3. Control constructs a decision be made about which direction to take. 3de

. o lection constructirPML defines possible paths of execution
PML has four mechanisms for describing the control of \ith only one being performed:

a process. These control-flow constructs reflect process- __ . (

related activities and describe the ordering of stepsin a pro- action choice.

hoice? | |
action choice_2
cess. action choice-3 { }

3.3.1. SequenceA sequence is the most basic form of 4
control and is the default control mechanism when noth- The decision procedure for determining which path to
ing else is specified. The actions irsequence construct take is handled in a similar manner to iterations. In this case,

are performed in the order that they are specified: the predicates of the first actions in each possible path are
sequence { the focus.
achon Sférczr‘]d{{}} This type of decision.in process models cannot always
action third { } be automatically determined and therefore may rely on hu-
¥ man interaction to choose which path to take. Though it is

This construct is the most natural and intuitive form of con- possible to simply choose the first available path, therefore
trol for a process. When one thinks about performing any avoiding human interaction, there might be external consid-
process, a simple sequence of steps to accomplish the fierations about which path should be taken that an automatic
nal goal is often the easiest representation. procedure cannot foresee.

3.3.4. Branch. The branch construct specifies a set of A similar problem occurs when creating a new resource.
concurrent actions within a process: Providing more information about how a resource was cre-
branch { ated is not possible with the basic language constructs of
action path.1 { } PML. For example, code does not spontaneously appear in
e on s 11 the coding stage, but is derived from the design, but it is not
possible to illustrate this quality of the code without addi-
tional levels of specification.

Concurrency is usually employed as an optimization, .
o I To alleviate these problemeML has a construct called
which is generally performed implicitly and does not have o PR . gy
a qualifier. The qualifier is used to describe characteristics

a decision procedure associated with it. Each path must be o
. . . —or qualities of a resources that are beyond the scope of the
performed, which removes any need for human interaction

related to control. Unlike APPL/APML does not restrict language’s regular syntax. With this construct we can state:
the way that a rendezvous is handled. Insteagvia inter- (partially.consumed) funding
preter must decide whether a synchronous or asynchronoug this examplepartially_consumed is a user-defined qual-
rendezvous is used. We realize that this introduces an amity of the resourcéunding. This language feature also sup-
biguity as to what will actually happen at a rendezvous, but ports multiple layers of qualifiers, such as:
processes do not adhere to the strict nature of programming
languages and the dynamic nature of processes requires that
the decision be left to the modeler. Of course, artificial con- ~ With this construct, the model can better represent the
straints in an asynchronous implementation can be intro-process, but there are some difficulties associated with us-
duced to recreate a synchronous rendezvous. ing a qualifier. For the process to be enacted, the environ-
The waterfall model states that testing should be done af-ment must understand how to handle the qualifier if it has
ter the code is written, but writing tests is often started at a direct impact on the execution of the process. This means
the same time as coding, so that tests can be prepared as ttibat additional functionality must be provided to interpret
code is written rather than having to wait until the code is the meaning of a qualifier, otherwise it will be ignored.

(new) (generated) executable

complete. To represent this we can change our model to: Using the language features pML, we present a de-
branch { tailed, idealized waterfall process model in Figure 1. This
action code { } example is one of many possible models of the waterfall

action write_tests { }

development process. Even this model can be refined to in-

clude more detail to meet the needs of the person perform-

ing the process, such as adding scheduling, funding, and

3.4. Advanced language features project-specific information. However, this model can be

applied to any waterfall development process without mod-

Though attributes and expressions provide methods forification because it is at a high enough level to describe

describing properties and states of resources, not evenhe general process, but low enough to capture the essen-

quality of a resource can be expressed in this manner. Therdial control and resources.

are aspects of a resource that are extrinsic to the resource We started with a simple model to describe the waterfall

and apply to how the resource is handled, modified, and re-process. By adding resources, attributes, expressions, and fi-

stricted. For example, consider an action in a model thatnally qualifiers, we gradually introduced more and more de-

requires both design and funding. This action has two re-tail to make the original model more specific. At any point

quirements that consist of some tangible resource. The dein this evolution, we could have stopped and used the ex-

sign is an inexhaustible resource in that it can conceivablyisting model. For example, even the first model presented

be used over and over again without losing any of its sub- that consisted solely of actions is enactable. We feel that this

stance or quality. However, funding is exhaustible and cantype of evolutionary development of models reflects the top-

only be used until the funding is gone. Some languages pro-down way in which people reason about and describe most

vide keywords associating a resource with being consumedprocesses, at least at an initial, conceptual level.

by an action [13]. Though adding keywords will make mod-

eling a specific situation, such as this one, much easier, therel, Model verification

are many possible situations that cannot be conceived of

while designing the language. Furthermore, adding a lan-4.1. Tool motivation

guage construct to clarify how each situation should be han-

dled explicitly violates our goal of simplicity and the ex- Using a process modeling language to recreate an ac-

pressiveness of the language would rely on how many situ-tual process is a complex procedure because the modeler

ations we could envision. must extract important information about tasks, resources,

pass through before arriving at a detailed representation of

process W;‘:l;f;” {{ the process. The first level of abstraction in a model is a
requires { function && behavior && interface } list of tasks that must be performed. However, at this level,
_) the errors that can be introduced by a modeler are simple
provides { requirements } . .
) provides { documentation.analysis == ‘‘complete’’ } anld mctlul((je prOblemS such as Syntax €rrors or typeraphl_
cal mistakes.
ac?szoqnuiriess'%n riquirements } Transitioning to a lower level of abstraction incorporates
requires { documentation.analysis == *complete " } adding resources to the model which begins the develop-
provides { design } _ ment of dependencies and may result in a considerable num-
) provides { documentation. design == *’complete " } ber of errors related to modeling. If the name of a resource
branch { is misspelled and another step in the model needs that re-
a“::e°q”uir2"sde{{design) source, the dependency will be broken because the task was
requires { documentation.design == *‘complete’’ } expecting the resource to have a different name. A modeler
provides { documentation. code == **complete’" } might also forget to state that a step has requirements or that
provides { (derived) code && (new) executable } it provides something. These types of errors manifest them-
icﬁon write_tests { selves as broken dependencies and extraneous steps in the
requires { requirements && design } model. Similarly, if a modeler fails to note what a step re-
requires { documentation.design == *‘complete " } quires, but does note what it produces, then it appears that
provides { test_cases } the step is creating some resource out of nothing. Though
} some steps in a process may only rely on abstract concepts
action test { or ideas that would not be properly represented by a require-
requires { code && test.cases && executable } ment, this type of mistake is generally a problem that is in-
provides { code.tested } troduced as an oversight. The same type of concern is raised

when a step requires resources but a product for the task is
not specified.

Figure 1. An elaborated waterfall model. Dependencies at low levels of abstraction have a direct
impact on the control of the process, which can lead to dif-
ficulties in trying to satisfy both control flow and dependen-
and control in such a way that the model will properly re- cies put in place by the modeler. If the modeler wants to
flect the process. Consequently, the resulting model oftenspecify that two steps in the process are concurrent, but un-
contains errors that can be attributed to two sources: theintentionally creates a dependency that would prevent con-
process and the modeler. Errors that are contained withincurrency, such as having the first concurrent thread rely on
the process are problematic in that they represent some ina product of the second concurrent thread, then the model
efficiency or mistake in the process that could result in any would not represent the real process. This type of error is
number of problems including slow performance or even the result of either not understanding the dependencies of
preventing the process from continuing after it reaches athe process or over-specification of concurrency within the
certain point. Problems introduced by the modeler repre- process.
sent human error by either improperly representing the pro- Other control-flow aspects of a model are compromised
cess, or making a typographical error that has repercussiongy common modeling errors. If there are many possible
throughout the model. With the help of tools that look for paths in the process, but only one can be taken, then fulfill-
these errors, models can be more efficient and accurate. ing dependencies is critical for the modeler. If the modeler

We noted that modeling languages implemented us-notes that a step after a path selection depends on a prod-
ing programming languages have inherited tool support for uct that is produced during the path selection, then all pos-
checking errors in models, but these tools are not specif-sible paths must produce that resource or the modeler has
ically designed for process-related errors. Compilers per-introduced the potential for a stall in the process. As pos-
form type-checking, look for undeclared variables, and sible paths become more numerous and more complicated,
check for other syntactic errors. The problem with using it becomes difficult to track what is produced and where it
these methods is that they do not represent the kind of er-will be available.
rors that occur in a process model. Therefore, we need Once a process model has been effectively implemented
to explore the types of errors that might occur in a pro- at a level of resource specification, it is possible to transition
cess and how they would be reflected in a model. to a lower level of abstraction that will illustrate constraints

In evolutionary process modeling, any errors are usually on the state of objects within the process. This level of ab-
related to the many levels of abstraction that the model muststraction is the most detailed and also the most error prone.

action second { } second act?on Choice’l {1} choice_1 choice_2 act?on path.1 { } path_1 Opathi2
action choice.2 { } action path_2 { }

iteration { Qﬁm selection { /O{dfm"" branch { /Of{rf
action first { }
Oconjunction } join

action post { } post t

Figure 2. Graph representations of PML control constructs.

When transitioning to a detailed specification, the modeler tool, PMLCHECK, currently provides four conceptual lev-
must keep track of dependencies between the properties oéls of checking: syntax checking only, resource specifica-
resources as well as the resources themselves. The additiotion, resource dependencies, and expression satisfiability.
of properties to the model can disrupt the dependencies that PMLCHECK is not strictly limited to providing informa-
were in place at higher levels of abstraction. For example, tion at these levels of refinement and within each concep-
if the requirements for a step in the model are altered to in- tual level there are a variety of checks that are performed
clude the state of a property, but the model fails to specify andpPMLCHECK can focus analysis on a particular point of
that the property was introduced by an earlier step, then theinterest. This flexibility was intentionally designed to reflect
dependency between the two steps is broken. the evolutionary nature of process specification anatie
The primary objective of a tool designed to analyze a language while providing the modeler with control over in-
process model is to examine the model for the types of er-formation gathered by the tool.
rors mentioned. In order to fulfill this objective, there are a We noted that inconsistencies may be introduced into a
number of requirements that a tool must meet and failing to model because of a failure to specify requirements for a
meet these requirements is detrimental to the tool’'s useful-task. InPMmL, this translates to the failure to require or pro-
ness: vide a resource in an action. These types of errors fall into
four categories: those requiring and providing no resources
(“empty), those only requiring resourceshfack holeg),
those only providing resourcesnfiracles), and those that
provide resources other than those that they requirar($-
e analysis refinementThe evolutionary nature of pro- formations).
cess modeling languages requires that supporting tools Each of these scenarios is an indicator that something
operate at each level of refinement in the developmentpas peen left out of the process model and is a projection of
of the process model. If the analysis tool is reporting problems discussed previously. Since all of these cases are
resource and dependency errors when the model is at aycg| to an actionpPMLCHECK simply examines each ac-
higher level of abstraction, then the analyzer has failed tjon in turn in order to find errors. However, there are legit-
to meet the evolutionary requirements of the language. jmate cases where a new resource is created and we want to
e ease of uself the analysis tool is cryptic, slow, or dif- explicitly state that it is not an error. Using qualifiers pro-
ficult to use, then it will deter users from utilizing it to vides the ability to state that a transformation should in fact

e meaningful feedbackihe tool should attempt to con-
structively map the errors in the model to conceptual
errors in the real process.

aid their model development. occur. We provide a predefined qualifiderived, that will
suppress a warning in the case of a transformation, but this
4.2. Tool design and implementation is only one of many uses for a qualifier.

In contrast, tracing dependencies through a model is
Our tool is designed to translate a process model into amuch more complicated than simple specification checks.
format that incorporates all aspects of the model and basedControl-flow constructs and the level of specification of a
on the structure of processes, the most intuitive represen+esource play an important role in determining whether or
tation is a graph. The procedure for mapping fromna not resources are availableMLCHECK implements two
model to a graph is relatively simple; the nodes of a graph types of resource-based dependency checks: assuring re-
represent actions constructs and the edges represent the flosources required by an action are provided, and provided
of control. The language constructs designed for describingresources are required by an action.
control flow are interpreted and constructed into a graph in ~ To implement both of these checksMLCHECK uses
a syntax-directed, bottom-up manner as shown in Figure 2.standard graph propagation algorithms to propagate the
Each action node describes the resources that are used araVailability of resources through the control-flow graph. A
produced through thprovidesand requiresproperties. A resource available along only one path afetection con-
tree structure is used to describe resources and expressionstruct is marked as only possibly available. A similar check
One of the objectives of an automated analysis tool theis performed for resources that are produced or consumed
ability to check a process at many levels of abstraction. Ourin concurrent actions inlaranch .

Error Type Initial Revised Final

Empty 2 0 0

Miracle 2 0 0

Black hole 6 0 0
Transformation 32 1 0
Unprovided 24 7 0
Unconsumed 20 12 0

Table 1. Summary of errors reported by ~ PMLCHECK.

Finally, to implement the checks for expression satisfi-
ability, PMLCHECK uses logical equalities to first rewrite
the expressions into a canonical form to eliminate nega-
tions and many of the relational operators, thereby reduc-
ing total number of cases that need to be examined. Sinc
expressions are limited only to logical and relational opera-
tions on resources and literals, satisfiability is simple to im-
plement using a straightforward exhaustive algorithm as a
unification-based approach is not required. (For full details,
see [21].)

5. Experimental results

NetBeans is an IDE for Java, whose requirements and re
lease process is based on a distributed open source develo
ment model, and is therefore different than a traditional soft-
ware process. In open source projects such as this, the actu

coding of the system is external to the requirements and re-
lease of the product and the software development process

is not concerned with how the code is written because the
authors develop in a variety of environments.

The development process for NetBeans has two compo-

nents: eliciting requirements and releasing the next version
of the software. The first stage entails detailing what fea-
tures should be included in the next version of the soft-
ware and the second is based on establishing that the cod
is ready for release and generating a deliverable. The Net
Beans development process is not self-contained because
relies on the previous revision of the process to continue.
Though many software projects are terminated when the
product is finalized, a release for NetBeans signifies a spe
cific level of achievement of the software, but development
continues to proceed.

Using the model from [7], analysis consisted of two lev-
els of refinement in order to capture inconsistencies at dif-
ferent levels of abstraction. On first inspection of the model
it is clear that the model is in a very basic state in that it

includes control and resources, but no attributes or expres-

e

l51_ityFeedback as a resource, as Figure 4 shdw$hese

The first application oPMLCHECK revealed a significant
number of errors in the process and are summarized in Ta-
ble 1. Empty actions generally indicate that resources are
missing from the specification. For example, the empty ac-
tion CompleteStabilization is the final action in the model,
but it does not require anything and does not produce any-
thing. However, this action is clearly included to finalize the
product and make it available, but any information about
what resources are required was omitted. The adtiait
ForVolunteer also does not contain resources, but for a dif-
ferent reason. This action is an artificial action created to
represent what the process is doing in preparation for the
next action to take place. It is not essential for the process
because the next action must be ready before the process
can continue, so it can be removed without adversely af-
fecting the rest of the model.

“Black holes” pose a problem similar to empty actions.
Though actions such aReviewNetBeans and SendMes-
sageToCommunityForFeedback were initially specified
as not providing anything, they do contribute to the pro-
cess.ReviewNetBeans may not provide anything new, but
it does affect a property of the road-map and should reflect
those changes by providingetBeansRoadmap.Reviewed.

In Figure 3, the actionSendMessageToCommunityFor-
Feedback would intuitively imply that feedback is gathered
from the community and thus should provid®mmu-

types of oversights are a misrepresentation of the pro-

&ess andPMLCHECK helped locate the cause of these

Inconsistencies.

PMLCHECK reports that there are a significant number of
transformations being performed in the process, but this re-
port has two possibilities: the transformation is correct and
the tool should not consider the created resource as an er-
ror, or the transformation is indicative of a change to a re-
source that was not specified as a requirement to the action.
The only possible way to determine the actual meaning is
to carefully inspect the process model. Acti®etRelease-

Bate is an obvious situation where the tool is improperly re-

orting an inconsistency because the release date is derived
Erom the road-map. By qualifying the created resource as
(derived) ReleaseDate, PMLCHECK will understand that the
resource is intended to be available at this point in the pro-

cess. ActiorReviseProposalBasedOnFeedback is an exam-

ple of where a transformation is improper, as shown in
Figure 3. This action is modifying two resourcesten-
tialRevisionsToDevelopmentProposal and RevisedDevelop-
mentProposal, but these relate to a single resoum@evelop-
mentProposal. As shown in Figure 4, by consolidating these
resources to a single resource and using attributes, we can

sions. Through verification usirgMLCHECK, we improved
the quality and consistency of the model by removing errors
without adversely affecting the underlying process.

2 Due to space considerations, only extracts from the models are shown
here. The complete models are approximately two hundred lines each
and can be found in [21].

iteration EstablishFeatureSet {

action CompileListOfPossibleFeaturesTolnclude {

requires { ProspectiveFeaturesGatheredFromlssuezilla &&
ProspectiveFeaturesFromPreviousReleases }

provides { FeatureSetForUpcomingRelease }

}

action CategorizeFeaturesProposedFeatureSet {
requires { FeatureSetForUpcomingRelease }
provides { WeightedListOfFeaturesTolmplement }

action SendMessageToCommunityForFeedback {
requires { WeightedListOfFeaturesTolmplement }
/xprovides { } %/

iteration

EstablishFeatureSet {

action CompileListOfPossibleFeaturesTolnclude {
requires { ProspectiveFeatures.Issuezilla &&

ProspectiveFeatures. PreviousVersions }

provides { (derived) ReleaseFeatureSet }

}

action CategorizeFeaturesProposedFeatureSet {
requires { ReleaseFeatureSet }
provides { ReleaseFeatureSet.Weighted }

action CreateDevelopmentProposal {
requires { ReleaseFeatureSet.Weighted }
provides { (derived) DevelopmentProposal }

action SendMessageToCommunityForFeedback {

requires { ReleaseFeatureSet.Weighted &&
DevelopmentProposal && CommunityMailingList }

provides { (derived) CommunityFeedback }

action ReviewFeedbackFromCommunity {
requires { FeebackMessagesOnMail }
provides { PotentialRevisionsToDevelopmentProposal }

action ReviseProposalBasedOnFeedback {
requires { PotentialRevisionsToDevelopmentProposal } action ReviewFeedbackFromCommunity {
provides { RevisedDevelopmentProposal } requires { CommunityFeedback && DevelopmentProposal }
} provides { DevelopmentProposal.PotentialRevisions }
}
action ReviseProposalBasedOnFeedback {
requires { DevelopmentProposal.PotentialRevisions }

Figure 3. Extract from original NetBeans model. provides { DevelopmentProposal. Revised }

reduce the total number of resources. In addition to clarify-
ing the model, this change brings forth a more critical prob-
lem: nowhere in the specification of the process is the devel-
opment proposal created. The first indication of a develop-6. Related work
ment proposal is in actioReviewFeedbackFromCommunity
which providesPotentialRevisionsToDevelopmentProposal, APPL/A [17] is a process enactment language designed
but prior to this action there is no development proposal, as a superset of Ada to maximize automation. Features spe-
so it is difficult to discuss potential revisions to a nonexis- cific to modeling that are not implemented in Ada are con-
tent proposal. structed as extensions to the language. The modeling lan
Though a report of an unprovided resource can meanguage JIL [20] aims to recreate many of the functionali-
a misrepresentation of process, it can also be indicativeties of languages such as APPL/A, but without the under-
of a resource that should preexist the process. Adien lying programming language. JIL is designed with a com-
viewNetBeans requires theNetBeansRoadmap, but this is bination of proactive and reactive control constructs allow-
the first action in the process which means the resource caning the modeler to define the control flow, or have it deter-
not be specified prior to its useMLCHECK also reports mined by the interpreter. While JIL is designed toward com-
resources that are provided by an action but are not useclete automationpmML supports user interaction to allow
later in the process. One possible cause for this error is thaimore dynamic models. Also, whereas JIL provides high-
a task later in the process has been misspecified and doelevel constructs for modeling software processes, is not
not note that it requires a certain resource. For example, ac+estricted to just the software process domain.
tion ReportissuesTolssuezilla provideslissuezillaEntry, but Cook and Wolf [5] discuss a method for validating soft-
this resource is never used in the process. The following ac-ware process models by comparing specifications to actual
tion looks at standing issues, but does not explicitly require enactment histories. This technique is applicable to down-
this resourcePMLCHECK provides a simple mechanism for stream phases of the software life-cycle, as it depends on
specifying the inputs and outputs of a process to suppresshe capture of actual enactment traces for validation. As
these types of errors. such, it complements our technique, which is an upstream
After applying the types of changes described along with approach. Similarly, Johnson and Brockman [9] use execu-
some cosmetic changes of names throughout the procesgion histories to validate models for predicting process cycle
we arrive at a revised model with the number of errors times. The focus of their work is on estimation rather than
shown in Table 1. Examining these remaining errors re- validation, and is thus concerned with control flow rather
vealed that many were the result of changes made to the prothan resource flow.
cess including trivial errors resulting from case-sensitivity =~ Scacchi’s research uses a knowledge-based approach to
and misspellings. Applying the same techniques to our re-analyzing process models. Starting with a set of rules that
vised model resulted in a final model with no errors. describe a process setting and models, processes are diag-

Figure 4. Extract from revised NetBeans model.

nosed for problems related to consistency, completeness, [5] J. E. Cook and A. L. Wolf. Software process validation:

and traceability. Conceptually, this work is closely related to

ours; many of the inconsistencies uncovere@ky CHECK
are also revealed by Scacchi and MAgiculator [16].

7. Conclusion

We have presented a philosophy of modeling based on
the fundamental elements of processes with the intention

(6]

(7]

of highlighting the essential components of processes in or- [8]
der to create informative models for analysis and enactment.

We utilized this philosophy as a framework for designing
a high-level languagesmL, that has the expressive capa-

bility to model processes at abstract and concrete levels of (9]
specification. This language has a number of features such
as qualifiers that allows flexible development and specifi- [10]
cation. However, the consequence of constructing this new

language is lack of tool support and modeling for the pur-

pose of improvement requires verification of the model.
To provide support forrmL, we implemented a new

method of process checking based on our research into prof11]

cess structure. The resulting to®MLCHECK, examines

process models looking for common errors that result from

process development and design. The flexibility of the lan-

guage and the tool allow for specification and verification [
at many levels of abstraction. Using a general approach
to process modeling and analysis allows for the concepts
presented in this paper to be applied to a variety of mod-
eling languages and analysis tools. Finally, the model of

(13]

the NetBeans process that we examined and refined illus{14)
trates many benefits of tool-guided analysis. Understanding

the resource flow of a process provides useful information

to improve the specification of a process and to note aread15]

of ambiguity. Examining the interaction of resources in the
process can also improve the enactability of a model by en—[
1

suring that resource flow is consistent throughout.

References

[1] P. Armenise, S. Bandinelli, C. Ghezzi, and A. Morzenti. A

(17]

survey and assessment of software process representatioq g]

formalisms. Int. J. Softw. Eng. Knowl. Eng3(3):401-426,
Sept. 1993.

D. C. Atkinson and J. Noll. Automated validation and veri-
fication of process models. Proc. 7th IASTED Int. Conf.
on Softw. Eng. Applpages 587-592, Cambridge, MA, Nov.
2003.

[3] A.G.Cass,B.S. Lerner, E. K. McCall, L. J. Osterweil, S. M.

(2]

Sutton, Jr., and A. Wise. Little-JIL/Juliette: A process defi-

nition language and interpreter. Rroc. 22nd Int. Conf. on
Softw. Eng.pages 754-757, Limerick, Ireland, June 2000.
(4]
many? InProc. 4th Eur. Work. on Softw. Process Teglages
98-118, Noordwijkerhout, The Netherlands, Apr. 1995.

(19]

(20]

R. Conradiand C. Liu. Process modelling languages: One or [21]

6] W. Scacchi and P. Mi.

Quantitatively measuring the correspondence of a process to
a model. ACM Trans. Softw. Eng. Methodo8(2):147-176,
Apr. 1999.

G. Cugola and C. Ghezzi. Software processes: A retrospec-
tive and a path to the futureSoftw. Process Improv. Pract.
4(3):101-123, Sept. 1998.

C. Jensen, W. Scacchi, M. Oza, E. Nistor, and S. Hu. A first
look at the NetBeans requirements and release process. Tech-
nical report, Institute for Software Research, Feb. 2004.

G. Joeris and O. Herzog. Towards flexible and high-level
modeling and enacting of processesPhoc. 11th Int. Conf.

on Adv. Inf. Syst. Engpages 88-102, Heidelberg, Germany,
June 1999.

E. W. Johnson and J. B. Brockman. Measurement and analy-
sis of sequential design process&€M Trans. Des. Autom.
Electron. Syst.3(1):1-20, Jan. 1998.

G. Junkermann, B. Peuschel, W. &fdr, and S. Wolf. Mer-

lin: Supporting cooperation in software development through
a knowledge-based environment. Software Process Mod-
elling and Technologypages 103-129. Research Studies
Press Ltd., 1994.

G. E. Kaiser, S. Popovich, and I. Z. Ben-Shaul. A bi-level
language for software process modeling.Pioc. 15th Int.
Conf. on Softw. Engpages 132-143, Baltimore, MD, May
1993.

12] C. D. Klingler. A STARS case study in process definition.

Technical Report F19628-88-D-0031, DARPA, 1994.

C. D. Klingler, M. Neviaser, A. Marmor-Squires, C. M. Lott,
and H. D. Rombach. A case study in process representation
using MVP-L. InProc. 7th Annual Conf. on Comp. Assur.
pages 137-146, Gaithersburg, MD, June 1992.

J. Noll and W. Scacchi. Specifying process-oriented hyper-
text for organizational computingl. Netw. Comput. Appl.
24(1):39-61, Jan. 2001.

R. F. Paige, J. S. Ostroff, and P. J. Brooke. Principles for
modeling language desiginf. Softw. Techngl42(10):665—
675, July 2000.

Process life cycle engineering: A
knowlege-based approach and environmehtt. J. Intell.
Syst. Account. Financ. Managé(2):83-107, June 1997.

S. M. Sutton, Jr. APPL/A: A Prototype Language for
Software-Process ProgrammindhD thesis, University of
Colorado, Department of Computer Science, Aug. 1990.

S. M. Sutton, Jr., D. Heimbinger, and L. J. Osterweil. AP-
PL/A: A language for software-process programmiAGM
Trans. Softw. Eng. Methodp#(3):221-286, July 1995.

S. M. Sutton, Jr,, B. S. Lerner, and L. J. Osterweil. Experi-
ence using the JIL process programming language to specify
design processes. Technical Report UM-CS-1997-068, Uni-
versity of Massachusetts, 1997.

S. M. Sutton, Jr. and L. J. Osterweil. The design of a next-
generation process language.Aroc. 6th Euro. Softw. Eng.
Conf. and 5th ACM Symp. on Found. Softw. Epgges 142—
158, Zurich, Switzerland, Sept. 1997.

D. C. Weeks. Process modeling language design and model
verification. Master's thesis, Santa Clara University, Depart-
ment of Computer Engineering, June 2004.

Modeling Recruitment and Role Migration Processes in OSSD Projects

Chris Jensen and Walt Scacchi
Institute for Software Research
Bren School of Information and Computer Sciences
University of California, Irvine
Irvine, CA USA 92697-3425
{cjensen, wscacchi}@ics.uci.edu

Abstract

Socio-technical processes have come to the
forefront of recent analyses of the open source
software development (OSSD) world. Though
there many anecdotal accounts of these processes,
such narratives lack the precision of more formal
modeling techniques, which are needed if these
processes are going to be systematically analyzed,
simulated, or re-enacted. Interest in making these
processes explicit is mounting, both from the
commercial side of the industry, as well as among
spectators who may become contributors to OSSD
organization. Thus, the work we will discuss in this
paper serves to close this gap by analyzing and
modeling recruitment and role transition processes
across three prominent OSSD communities whose
software development processes we've previously
examined: Mozilla.org, the Apache community, and
NetBeans.

Keywords: Project recruitment, membership,
process modeling, open source, Mozilla, Apache,
NetBeans

Introduction

In recent years, organizations producing both open
and closed software have sought to capitalize on
the perceived benefits of open source software
development methodologies. This necessitates
examining the culture of prominent project
communities in search of ways of motivating
developers. Although the ensuing studies have
provided much insight into OSSD culture, missing
from this picture was the process context that
produced the successes being observed. Ye and
Kishida (2003) and Crowston and Howison (2005)
observe that community members gravitate towards
central roles over time represented with *“onion”
diagrams such as in figure 1. These depictions
indicate a similar number of layers in
organizational hierarchies across communities, but
do not suggest how one might transition between
layers and what roles are available at each layer.
Much like their development processes, OSSD
communities typically provide little insight into
role migration processes. What guidance is
provided is often directed at recruitment- initial

Active Users

Developers

Core Developers

Project Managers

Community Managers
« Passive Users

and Observers

Figure 1. An “onion” diagram representation of an
open source community organizational hierarchy

steps to get people in the door. Guidance for
attaining more central roles is often characterized
as being meritocratic, depending on the governance
structure of the community. Nevertheless, these
development roles and how developers move
between them seems to lie outside of the traditional
view of software engineering, where developers
seem to be limited to roles like requirements
analyst, software designer, programmer, or code
tester, and where there is little/no movement
between roles (except perhaps in small projects).

Christie and Staley (2000) argue that social and
organizational processes, such as those associated
with moving between different developer roles in a
project, are important in determining the outcome
of software development processes. In previous
studies, we have examined software development
processes within and across OSSD communities
(Jensen and Scacchi, 2005, Scacchi 2002, 2004,
2005). Here, we take a look at two related socio-
technical processes used in OSSD as a way of
merging the social/cultural and
technical/developmental 0SSD activities.
Specifically, we’ll focus on the recruitment and
migration of developers from end-users or
infrequent contributors towards roles more central
to the community, like core developer, within
projects such as the Mozilla, Apache community,
and NetBeans projects. Such processes characterize
both the hierarchy of roles that OSS developers
play (cf. Gacek and Arief 2004), as well as how
developers move through or become upwardly
mobile within an OSSD project (Sim and Holt
1998). While anecdotal evidence of these
processes exists, the lack of precision in their
description serves as a barrier to community entry,

continuous improvement, and process adoption by
other organizations. The goal of our work here
thus serves to provide process transparency through
explicit modeling of such processes in ways that
may enable increased community participation,
more widespread process adoption, and process
improvement.

In the remaining sections, we outline details about
recruitment and role migration as membership
processes as found while examining each of these
three OSSD project communities. At the
ProSim’05 Workshop we will present a variety of
semi-structured and formal models that enable
more rigorous analysis and simulated re-enactment
using tools and techniques we have previously
developed and employed (cf. Noll and Scacchi
2001, Jensen and Scacchi 2005)

Membership Processes in Mozilla.org
Developer recruitment in Mozilla was difficult at
the start. The opening of the Netscape browser
source code offered developers a unique
opportunity to peek under the hood of the once
most dominant Web browser in use. Nevertheless,
the large scale of the application (millions of lines
of source code) and the complex/convoluted
architecture scared developers away. These
factors, combined with the lack of a working
release and the lack of support from Netscape led
one project manager to quit early on (Mockus, et.
al, 2002). However, with the eventual release of a
working product, the Mozilla project garnered
users who would become developers to further the
cause.

The Mozilla Web site lists several ways for
potential developers and non-technical people to
get involved with the community (Getting Involved
with Mozilla.org, 2005). The focus on quality
assurance and documentation reflects a community
focus on maturing, synchronizing, and stabilizing
updates to the source code base. Technical
membership roles and responsibilities currently
listed include bug reporting, screening, confirming,
and fixing, writing documentation, and contacting
sites that do not display properly under Mozilla.
Compared to more central roles, these activities do
not require deep knowledge of the Mozilla source
code or system architecture, and serve to allow
would-be contributors to get involved and
participate in the overall software development
process.

When bugs are submitted to the Bugzilla, they are
initially assigned to a default developer for
correction. It is not uncommon for community
developers and would-be developers to become
frustrated with an outstanding issue within the bug
repository and submit a patch, themselves.

The next task is to recruit others to accept the patch
and incorporate it into the source tree. Recruitment
of patch review is best achieved through emailing
reviewers working on the module for which the
patch was committed or reaching out to the
community via the Mozilla IRC chat. By
repeatedly ~ demonstrating competency and
dedication writing useful code within a section of
the source, would-be developers gain a reputation
among those with commit access to the current
source code build tree. Eventually, these
committers recommend that the developer be
granted access by the project drivers. In rare cases,
such a developer may even be offered ownership of
a particular module if s/he is the primary developer
of that module and it has not been blocked for
inclusion into the trunk of the source tree.

Once a project contributor is approved as a source
code contributor, there are several roles available to
community members. Most of these are positions
requiring greater seniority or record of
demonstrated accomplishments within the
community. As module developers and owners
establish themselves as prominent community
members, other opportunities may open up. In
meritocratic fashion (cf. Fielding 1999), developers
may transition from being a QA module contact to
a QA owner. Similar occasions exist on the project
level for becoming a module source reviewer.

Super-reviewers attain rank by demonstrating
superior faculty for discerning quality and effect of
a given section of source on the remainder of the
source tree. If a reviewer believes that s/he has
done this appropriately, s/he must convince an
existing super-reviewer of such an
accomplishment. This super-reviewer will propose
the candidate to the remainder of the super-
reviewers. Upon group consensus, the higher rank
is bestowed on the reviewer (Mozilla Code Review
FAQ, 2005). The same follows for Mozilla drivers,
who determine the technical direction of the project
per release.

Community level roles include smoke-test
coordinator, code sheriff, and build engineer,
although no process is prescribed for such
transitions. As individual roles, they are held until
vacated, at which time, the position is filled by
appointment from the senior community members
and Mozilla Foundation staff. Role hierarchy and a
flow graph of the migration process for
transitioning from reviewer to super-reviewer are
provided in figure 2 as an example of those we
have modeled for this community. In the flow
graph, rectangles refer to actions, whereas ovals

! https://bugzilla.mozilla.org/show_bug.cgi?id=18574

refer to resources created or consumed by the
associated action, as determined by the direction of
the arrow linking the two. Transitions from one
role to another are depicted with a dashed arrow
from an action performed by one role to the title of
another. We have also used dashed lines to
differentiate social or role transitioning activities
and resources from strictly technical,
developmental resources.

Membership Processes in the Apache

Community

Role migration in the Apache community is linear.
The Apache Software Foundation (ASF) has laid
out a clear path for involvement in their
meritocracy. Individuals start out as end-users
(e.g., Web site administrators), proceed to
developer status, then committer status, project
management committee (PMC) status, ASF
membership, and lastly, ASF board of directors
membership (How the ASF Works, 2005). Much
as in advancement in the Mozilla community,
Apache membership is by invitation only. As the
name suggests, the Apache server is comprised of
patches submitted by developers. These patches
are reviewed by committers and either accepted or
rejected into the source tree.

In addition to feature patches, developers are also
encouraged to submit defect reports, project
documentation, and participate on the developer
mailing lists. When the PMC committee is
satisfied with the developer’s contributions, they
may elect to extend an offer of “committership” to
the developer, granting him/her write access to the
source tree. To accept committership, the
developer must submit a contributor license
agreement, granting the ASF license to the
intellectual property conveyed in the committed
software artifacts.

PMC membership is granted by the ASF. To
become a PMC member, the developer/committer
must be nominated by an existing ASF member
and accepted by a majority vote of the ASF
membership participating in the election (Fielding,
et. al, 2002). Developers and committers
nominated to become PMC members have
demonstrated commitment to the project, good
judgment in their contributions to the source tree,
and capability in collaborating with other
developers on the project. The PMC is responsible
for the management of each project within the
Apache community. The chair of the PMC is an
ASF member elected by his/her fellow ASF
members who initially organizes the day-to-day
management infrastructure for each project, and is
ultimately responsible for the project thereafter.
ASF membership follows the same process as PMC

membership- nomination and election by a
majority vote of existing ASF members.

ASF members may run for office on the ASF board
of directors, as outlined by the ASF bylaws
(Bylaws of the Apache Software Foundation,
2005). Accordingly, the offices of chairman, vice
chairman, president, vice president, treasurer (and
assistant), and secretary (and assistant) are elected
annually. A flow graph of the role migration
process appears in figure 3.

Although, there is one path of advancement in the
Apache community, there are several less formal
committees that exist on a community (as opposed
to project) scale. These include the conference
organizing committee, the security committee, the
public relations committee, the Java Community
Process (JCP) committee, and the licensing
committee. Participation in these committees is
open to all committers (and higher ranked
members) and roles are formalized on an as-needed
basis (e.g. conference organization). Non-
committers may apply for inclusion in specific
discussion lists by sending an email to the board
mailing alias explaining why access should be
granted. Thus, processes associated with these
committees are ad hoc and consist of one step.

Membership Processes in the

NetBeans.org Community

Roles in the NetBeans.org community for
developing the Java-based NetBeans interactive
development environment are observable on five
levels of project management (Oza, et. al 2002) just
as in Apache. These range from users to source
contributors, module-level managers, project-level
managers, and community-level managers. The
NetBeans community’s core members are mostly
Sun Microsystems employees, the community’s
primary sponsor, and are subject to the
responsibilities set on them by their internal
organizational hierarchy. As such, (and unlike the
cases of Apache and Mozilla), not all roles are
open to volunteer and third-party contributors.
Non-Sun employed community members wanting
to participate beyond end-usage are advised to start
out with activities such as quality assurance (QA),
internationalization, submitting patches, and
documentation (Contributing to the NetBeans
Project, 2005). As in the case with Mozilla, until
they have proven themselves as responsible, useful,
and dedicated contributors, developers must submit
their contributions to developer mailing lists and
the issue repository, relying on others with access
to commit the source. However, unlike Mozilla,
developers are also encouraged to start new
modules.

While the community was more liberal with
module creation early in the project’s history, as
the community has matured, additions to the
module catalogue have become more managed to
eliminate an abundance of abandoned modules.
Also as in Mozilla, developers are subjected to the
proving themselves before being granted committer
status on a portion of the source tree. Additionally,
they may gain module owner status be creating a
module or taking over ownership of an abandoned
module that they have been the primary committer
for. With module ownership comes the
responsibility to petition the CVS manager to grant
commit access to the source tree to developers,
thereby raising their role status to “committer.”

Rising up to the project-level roles, the Sun-
appointed CVS source code repository manager is
responsible for maintaining the integrity of the
source tree, as well as granting and removing
developer access permissions. In contrast, the
release manger’s role is to coordinate efforts of
module owners to plan and achieve timely release
of the software system. Theoretically, any
community member may step in at any time and
attempt to organize a release. In practice, this
rarely occurs. Instead, most community members
passively accept the roadmap devised by Sun’s
NetBeans team. In the latter case, the previous
release manager puts out a call to the community to
solicit volunteers for the position for the upcoming
cycle. Assuming there are no objections, the
(usually veteran) community member’s candidacy
is accepted and the CVS manager prepares the
source tree and provides the new release manager
permissions accordingly. Alternatively, a member
of Sun may appoint a member of their development
team to head up the release of their next
development milestone.

At the community-management level, the
community managers coordinate efforts between
developers and ensures that issues brought up on
mailing lists are addressed fairly. At the inception
of the NetBeans project, an employee of CollabNet
(the company hosting the NetBeans Web portal)
originally acted as community manager and liaison
between CollabNet and NetBeans. However, it
was soon transferred to a carefully selected Sun
employee (by Sun) who has held it since. As
community members have risen to more central
positions in the NetBeans community, they tend to
act similarly, facilitating and mediating mailing list
discussions of a technical nature, as well as
initiating and participating in discussions of project
and community direction.

Lastly, a committee of three community members,
whose largely untested responsibility is to ensure
fairness within the community, governs the

NetBeans project.. One of the three is appointed by
Sun. The community at large elects the other two
members of the governance board. These elections
are held every six months, beginning with a call for
nominations by the community management.
Those nominees that accept their nomination are
compiled into a final list of candidates to be voted
on by the community. A model of the product
development track role migration process is shown
in figure 4.

Discussion

In both NetBeans and Mozilla, recruitment consists
of listing ways for users and observers to get
involved. Such activities include submitting defect
reports, test cases, source code and so forth. These
activities require a low degree of interaction with
other community members, most notably decision
makers at the top of the organizational hierarchy.
Our observation has been that the impact of
contributions trickles up the organizational
hierarchy ~ whereas socio-technical direction
decisions are passed down. As such, activities that
demonstrate capability in a current role, while also
coordinating information between upstream and
downstream (with respect to the organizational
hierarchy) from a given developer are likely to
demonstrate community member capability at
his/her current role, and therefore good candidates
for additional responsibilities.

Recruitment and role migration processes aren’t
something new; since they describe the actions and
transition passages involved in moving along
career paths. Like career paths described in
management literature (e.g., Lash and Sein 1995),
movement in the organizational structure may be
horizontal or vertical. Most large OSSD project
communities are hierarchical, even if here are few
layers to the hierarchy and many members exist at
each layer.

In the communities we have examined, we found
different paths (or tracks) towards the center of the
developer role hierarchy as per the focus of each
path. Paths we’ve identified include project
management (authority over technical issues) and
organizational management (authority over
social/infrastructural issues). Within these paths,
we see tracks that reflect the different foci in their
software processes. These include quality
assurance roles, source code creation roles, and
source code versioning roles (e.g. cvs manager, cvs
committer, etc), as well as role paths for usability,
marketing, and licensing. There are roles for
upstream development activities (project planning--
these are generally taken up by more senior
members of the community. This is due in part that
developers working in these roles can have an

impact on the system development commensurate
with the consequences/costs of failure, and require
demonstrated skills to ensure the agents responsible
won’t put the software source code into a state of
disarray).

In comparison to traditional software development
organizations, tracks of advancement in open
source communities are much more fluid. A
developer contributing primarily to source code
generation may easily contribute usability or
quality assurance test cases and results to their
respective community teams. This is not to suggest
that a module manager of a branch of source code
will automatically and immediately gain core
developer privileges, responsibilities, and respect
from those teams. However, industrial
environments tend towards rigid and static
organizational hierarchies with highly controlled
growth at each layer.

The depiction of role hierarchies in open source
communities as concentric, onion-like circles
speaks to the fact that those in the outer periphery
have less direct control or knowledge of the
community’s current state and its social and
technical direction compared to those in the inner
core circle. Unlike their industrial counterparts,
open source community hierarchies are dynamic.
Although changes in the number of layers stabilizes
early in the community formation, the size of each
layer (especially the outer layers) is highly
variable. Evolution of the organizational structure
may cause or be caused by changes in leadership,
control, conflict negotiation, and collaboration in
the community, such as those examined elsewhere
(Jensen and Scacchi 2005b). If too pronounced,
these changes can lead to breakdowns of the
technical processes.

As a general principle, meritocratic role migration
processes such as those we have observed consist
of a sequence of establishing a record of
contribution in technical processes in collaboration
with other community members, followed by
certain “rights of passage” specific to each
community. For Apache, there is a formal voting
process that precedes advancement. However, in
the Mozilla and NetBeans communities, these are
less formal. The candidate petitions the
appropriate authorities for advancement or
otherwise volunteers to accept responsibility for an
activity. These authorities will either accept or
deny the inquiry.

Conclusion

Social or organizational processes that affect or
constrain the performance of software development
processes have had comparatively little
investigation. This is partially because some of

these processes may be well understood (e.g.,
project management processes like scheduling or
staffing), while others are often treated as “one-off”
or ad hoc in nature, executing in a variety of ways
in each instantiation. The purpose of our
examination and modeling study of recruitment and
role migration processes is to help reveal how these
socio-technical processes are intertwined with
conventional software development processes, and
thus constrain or enable how software processes are
performed in practice. In particular, we have
examined and modeled these processes within a
sample of three OSSD projects that embed the Web
information infrastructure. Lastly, we have shown
where and how they interact with existing software
development processes found in our project
sample.

References
Bylaws of the Apache Software Foundation,
available online at

http://www.apache.org/foundation/bylaws.html
accessed 7 February 2005

Christie, A. and Staley, M. “Organizational and
Social Simulation of a Software Requirements
Development ~ Process” Software Process
Improvement and Practice 2000; 5: 103-110
(2000)

Contributing to the NetBeans Project, available
online at
http://www.netbeans.org/community/contribute/
accessed 7 February 2005

Coward, Anonymous. “About Firefox and
Mozilla” Comment on Slashdot.org forum “Firefox
Developer on Recruitment Policy,” available online
at
http://developers.slashdot.org/comments.pl?sid=13
7815&threshold=1&commentsort=0&tid=154&tid
=8&mode=thread&cid=11527647, 31 January,
2005.

Crowston, K. and Howison, J. 2005. The Social
Structure of Free and Open Source Software
Development, First Monday, 10(2). February.
Online at
http://firstmonday.org/i8ssues/issue10_2/crowston/i
ndex.html

Elliott, M., The Virtual Organizational Culture of a
Free Software Development Community,
Proceedings of the Third Workshop on Open
Source Software, Portland, Oregon, May 2003.

Fielding, R., Shared Leadership in the Apache
Project. Communications ACM, 42(4), 42-43, 1999.

Fielding, R., Hann, I-H., Roberts, J and Sandra
Slaughter, S. “Delayed Returns to Open Source
Participation: An Empirical Analysis of the Apache
HTTP Server Project,” Presented at the Conference
on Open Source: Economics, Law, and Policy,
Toulouse, France June 2002.

Gacek, C. and Arief, B., The Many Meanings of
Open Source, IEEE Software, 21(1), 34-40,
January/February 2004,

Getting Involved with Mozilla.org, Web page
available online at
http://www.mozilla.org/contribute/ 3 November
2004

How the ASF works, available online at
http://www.apache.org/foundation/how-it-
works.html, accessed 7 February 2005

Jensen, C. and Scacchi, W., Process Modeling
Across the Web Information Infrastructure,
Software Process Improvement and Practice, to
appear, 2005.

Jensen, C. and Scacchi, W. Collaboration,
Leadership, Control, and Conflict Negotiation
Processes in the NetBeans.org Open Source
Software Development Community. working
paper, Institute for Software Research, March 2005

Lash, P.B. and Sein, M.K. Career Paths in a
Changing IS Environment: A Theoretical
Perspective, Proc. SIGCPR 1995, 117-130.
Nashville, TN

Mockus, A., Fielding, R., and Herbsleb, J. “Two
Case Studies of Open Source Software
Development: Apache and Mozilla,” ACM
Transactions on Software Engineering and
Methodology, 11(3):309-346, 2002

Mozilla Code Review FAQ, available online at
http://www.mozilla.org/hacking/code-review-
fag.html, accessed 7 February 2005

Noll, J. and Scacchi, W., Specifying Process-
Oriented Hypertext for Organizational Computing,
J. Network and Computer Applications, 24(1), 39-
61, 2001.

Oza, M. Nistor, E. Hu, X., Jensen, C., Scacchi, W.
“A First Look at the NetBeans Requirements and
Release Process.” June 2002, updated February
2004 available online at
http://www.isr.uci.edu/~cjensen/papers/FirstLookN
etBeans/.

Scacchi, W., Understanding the Requirements for
Developing Open Source Software Systems, IEE

Proceedings--Software, 149(1), 24-39, February
2002.

Scacchi, W., Free/Open Source Software
Development Practices in the Computer Game
Community, IEEE Software, 21(1), 59-67,
January/February 2004.

Scacchi, W., Socio-Technical Interaction
Networks in Free/Open Source Software
Development Processes, in S.T. Acufia and N.
Juristo (eds.), Software Process Modeling, 1-27,
Springer Science+Business Media Inc., New York,
2005.

Sim, S.E. and Holt, R.C., The Ramp-Up Problem in
Software Projects: A Case Study of How Software
Immigrants Naturalize, Proc. 20" Intern. Conf.
Software Engineering, Kyoto, Japan, 361-370,
1998.

Ye, Y. and Kishida, K. Towards an Understanding
of the Motivation of Open Source Software
Developers, Proc. 25" Intern. Conf. Software
Engineering, Portland, OR, 419-429, 2003.

Quality Assurance

Module Peer QA Contact QA Owner Reviewer Super Reviewer
]
Volunteer Tester Smoke Test Coordinator
Development
Developer —— Module Peer Module Owner

Bugzilla Component Owner ——— Smoke Test Coordinator
Reviewer Super Reviewer

Source Build

Code Sherrif Build Engineer

QA Owner Module Owner Code Sherrif Build Engineer Reviewer

\—'—1

Drivers

Super Reviewer

Mozilla Staff

Super Reviewership

Accept Nomination
for Super Reviewership

§

Reviewer

Demonstrate Performance by Assessing quality,
effect of submitted patches, enhancements

Performance
Evidence

/ Super N Request Consideration 3
Assess Reviewer's Performance 4— Reviewership #——Y q ; s
: Request / for Super Reviewership |

Reviewer /

3 { _ ’ { Nomination |
; ‘. Recommendation
v

Recommend Reviewer for Super Reviewership

Super Reviewer

, Reviewer [Positive Grant Super Reviewership

L .) ~.Consensus _./ |
*..Recommendation .- ‘

Negative
Consensus

Figure 2. Role hierarchy and super reviewership migration in the Mozilla community

Discuss Candidate’s Performance

Development

End User Developer H Committer H PMC Member H ASF Member H ASF Board Member

Download, install, configure, and use the system

Submit defect reports

Submit feature requests

Submit questions and answers on use of the system on user mailing lists

Submit feature patches to developer mailing lists
Submit defect reports to developer mailing lists

Submit project documentation to developer mailing lists
Participate in discussions on developer mailing lists

Committership
Enhancement Selected defect/
requests, defect list enhancement

‘ Select defect/enhancement to patch ‘

/@\

Submit patch to committers

/ ,,,,,,,,,,,,,,,,,

Write, revise, test patches

{ Merit

Assess merit -

Developer

License agreement
Community Bylaws, docs
Mailing lists

Signed license
agreement

Committership
advancement
notification

Nomination
message

Receive majority vote of PMC members
for membership nomination

Read/understand license agreement, community policies
Submit license agreement (CLA)
Read developer documentation
Join project commit diff mailing lists

Become nominated for committership ‘

Figure 3. Role hierarchy and committership migration in the Apache community, highlighting the sequence of a
developer becoming a committer

Development

Observer User Module Module Module Release Manager
Developer Contributor Maintainer
‘ CVS Manager
. (Sun Staffed)
Quality Assurance
Developer QA QA “Module”
Observer User (Tester) Contributor Maintainer Release Manager
User Interface
Observer —— User —— Ul Developer/ Ul Contributor |— ul Mod_ule — Release Manager
Tester Maintainer

Community Web Portal

Web Content Web Content Web‘ Mo_dule
Observer Developer Contributor Maintainer
P (Sun Staffed)
Marketing
Observer Developer Sun Marketing Sun Marketing Sun Executive
(Promoter) Analyst Manager
Governance
. . CVS Manager Community Manager
Contributor Maintainer Release Manager (Sun Staffed) (Sun Staffed)

Locate NetBeans related
articles, news

NetBeans news,
articles

Governance Board Member

Insight on
appropriateness

Read existing newsletters to
glean article appropriateness

Existing
newsletters
, articles

Observer /

v
Translate existing site content
to another language

Web Content Developer 4"

[

Request commit access
to localized areas of the site

~<

Submit NetBeans related articles
and translations to Web team mailing list

Translated
site content

‘\

Write newsletter, article content

NetBeans news,
article content

Web Content Contributor

Coordinate with developers, contributors

to assemble article, newsletter
content submissions

NetBeans
newsletter,
eatured article

L

Submit request for news L
to community members

Distribute newsletters to mailing lists

&

Figure 4. Role hierarchy and Web Team membership migration in the NetBeans open source community

Process Modeling Across the Web Information Infrastructure

Chris Jensen and Walt Scacchi
Institute for Software Research
University of California, Irvine
Irvine, CA, USA 92697-3425
{cjensen, wscacchi}@ics.uci.edu

Abstract

Web-based open source software development
(OSSD) communities provide interesting and unique
opportunities for software process modeling and
simulation. Whereas most studies focus on analyzing
processes in a single organization, we focus on
modeling software development processes both
within and across three distinct but related
communities: Mozilla, a Web information artifact
consumer; the Apache HTTP server that handles the
transactions of Web information artifacts to
consumers such as the Mozilla browser; and
NetBeans, an integrated development environment
(IDE) for creating Web information artifacts. In this
paper, we look at the process relationships between
these communities as components of a Web
information infrastructure. We look at expressive
and comparative techniques for modeling such
processes that facilitate and enhance understanding
of the software development techniques utilized by
their respective communities and the collective
infrastructure in creating them.

Keywords
Process Modeling, Open Source Software
Development, Apache, Mozilla, NetBeans

1. Introduction

Large-scale geographically distributed software
development projects present challenging process
problems. The Apache, Mozilla, and NetBeans open
source software development communities collectively
have millions of estimated users and tens of thousands
of community members contributing in one fashion or
another. Such magnitudes would be difficult for most
closed source organizations to manage. Yet these
three communities have proven extremely successful
at it. Further, they have done so in a delicate
ecosystem of evolving Web standards and tools.
These standard technologies and tools compose
framework for integrating each community’s tools
together. Therefore, as Web standards evolve, each
community must negotiate its position within the
process space or suffer its collapse.

At ProSim 2003, we discussed discovery and
modeling of a single community development process
[Jensen and Scacchi 2003]. Here, we look at
processes within and across three related open source
software development communities [cf. Scacchi 2002].

In our efforts to model software development
processes on both community and infrastructure levels,
we have used a variety of techniques. These include a
detailed narrative model of the process, a semi-
structured hyperlinked model, a formal computational
process model, and a reenactment simulator, all of
which serve as input for other process engineering
activities [Scacchi and Mi 1997]. Further, all of our
models are hypermedia artifacts that may be produced
and consumed by the software products of the
processes they describe. Our belief is that the richness
provided by these modeling techniques will prove
scalable from the simplest to most complex processes
as well as facilitate, enhance, and expedite their
understanding and analysis in comparison with static
linear models.

We will set the stage with a discussion of each
process modeled independently before taking the
infrastructure together, as a whole. Finally, we look at
the modeling techniques themselves, how they may be
used to guide developers, and how they can serve as a
basis for process simulation and other process
activities.

2. Process Modeling Techniques

As previously introduced [Jensen and Scacchi
2003], we address three process modeling techniques
here as a sampling of those we have applied in our
study. These are the rich hypermedia, process flow
graphs, and formal modeling. Formal modeling in
turn supports tools for simulated reenactment of
software processes, which is used to preview,
interactively walkthrough, validate, and support
process training on demand [Scacchi and Mi 1997]

2.1. Rich Hypermedia

Based on the rich picture concept described by
Monk and Howard [1998], we created a rich
hypermedia variant as a semi-structured model of

software development processes in each of Mozilla,
Apache, and NetBeans projects, showing the
relationships between tools, agents, their
development concerns, and activities that compose
the process. Whereas Monk and Howard propose a
static model, our hypermedia is interactive and
navigational [Noll 2001], including process
fragments captured and hyperlinked as use cases. Use
cases are a known technique compatible with the
Unified Modeling Language (UML) for representing
(user) process enactment scenarios [Fowler 2000].
The hypermedia artifacts are also annotated with
detailed descriptions of each tool, agent, and concern.
Each of these process objects is hyperlinked to its
description. Descriptions can, in turn, be linked to
other data or hypermedia resources. In this way, the
modeler can define the scope of the rich hypermedia
to include as little or as much information as the need
requires. The rich hypermedia provides a quickly
discernable intuition of the process without the
burden of formalization. Figure 1 displays an
example of a rich hypermedia model as an image
map for the Mozilla Quality Assurance process.

2.2. Process Flow Graph

The process flow graph illustrates the flow of
development artifacts through a path of interaction
with process agents and activities. This workflow
diagram provides some sequential ordering of the
process fragments and allows us to tease out
dependencies between artifacts and activities seen in
the rich hypermedia. It also offers an idea of which
artifacts and activities are most vital to development,
by measuring the fan-in and fan-out of each.

These artifacts are the most likely to be the cause
of bottlenecks in the development process when they
are found to be inadequate, incomplete, or faulty
results of prior development activities. Borrowing
from Web modeling terminology, an artifact that is a
hub or nexus for several activities will hold up
development until it is completed or found
satisfactory. Likewise, an artifact that is a product of
several inputs inhibits activities that require it until it
is ready for further processing. Additionally, we can
also detect cycles of development, such as in the
stabilization process and refining the software build
release plan.

While these insights can be captured in other
means, this diagram, like the rich hypermedia,
provides an overall representation of the context for
process activities without the weight of the details of
more formal models. Process entities shown in the
flow graph may also be hyperlinked to resources in
the community Web to provide interactive richness,
as well as to enable process inspection activities.
Figure 2 shows a process flow graph for the Apache

HTTPD Server project’s release process, where the
boxes denote process activities and ellipses denote
the resources or artifacts flowing through the process.
Further, software developer roles are associated with
each process activity.

2.3. Formal Modeling

We developed formal models of software
processes following an ontology [Mi and Scacchi
1996] based on PML described in [Noll and Scacchi
2001] using Protege-2000 [Georgas 2002, Noy, et al.,
2001]. The work done here is identifying instances
for all the PML process meta-model components:
agents, resources, tools, actions and activity control
flows, which we represent using the Protege-2000
tool. Once a process instance is input, it may be
exported to an XML format and also a graphical
representation using the Ontoviz tool. Protege-2000's
facilities for scoping of process entities (i.e. tools,
actions, agents, and resources) in graphical rendering,
allowing process experts to focus analysis on certain
process entity relationships, abstracting unrelated
information. Such portable formats are important
given the complexity of the processes rendered.

While the graphical process rendering can be
more intuitive than a coded textual format, the textual
representation can be used as input to other process
lifecycle activities such as enactment and
prototyping. Figure 3 shows a graphic representation
of an underlying PML model of the NetBeans
Requirements and Release process that has been
interpreted for visual rendering and layout of its
relational interdependencies.

2.4. Reenactment Simulator

Process analysis seeks to identify potential
pitfalls that can be discovered prior to their
deployment or adoption in a project. Process
simulators that can enact or reenact processes are
especially useful when validating, modifying, or
redesigning a process, as well as for providing on-
demand training [Scacchi and Mi 1997].

Our process enactment simulator [Choi and
Scacchi 2001, Noll and Scacchi 2001] interactively
serves a series of Web pages according to the control
flow expressed in the PML model. This simulator
allows process performers and other community
members to simulate enacting the process through a
step-by-step interactive walkthrough. With such an
reenactment simulator, developers within a project
may be able to exercise, critiqgue, and identify
improvement opportunities within processes that can
be observed at a distance. It also provides the
potential to easily transition from the simulator to
live process enactment ftransactions on the

SEmozilla.org

Provide Resource and
Manp o wer

Collaborate and

' I Netscape

Help to prioritize
checkin patches

ﬁm'.'iae Mozl a
wo ki ng & nire nime nt

o unicate
with Testers
for smoke test

Review code

/-" - o
Emacs [Diedlla
E * B Tods _.:'
o
[‘,mrmnnﬁ.taﬁm*

Sheriff

Developers . DrHvers
(Mndulg Owners, Stai: & ISta;F Assucr:qatfis Reviewing patch
Module P evelop & manage Mozilla 0
odule Peers) {'“é-ul_._‘_‘_ "
?-’.‘ ook an
Close "Tre e® [lonita
Provide code EE ll:'n"' serrors " ! Approve Build Build Status
e nhanceme rts =oding .
and bug fises Check-in <M ¥ & =
P_" 1 % Code CH E
’ &
‘5. B/ Devdoprnendt LV, o] . .
Ok given to Dawnloa & - Tindabesx, | Build Engineers
Inwite teshers for srmoketest G, 1 o Tt Clase "Tree”
| Smoke Test Generate Build ;
Coordinators : Approve Build Dtz rrine

Caornpilation
F‘mE eris

QA Contacts & DOwners

*ﬁ
. Open Bugzilla Accourt

Research Finding/Re part

Performn bug trage
Fun test cases

Input Bug Repot

Yolunteer Testers

Bugzilla Open Bugzilla Accourt i Eﬁngu HEE i
En5ur‘g high Component Owners Resean:F: Finding/Feport Nﬂﬁgu?ulld
?ualgg of Performn bug trage Smoke test
&nhancanant Pcceptance & assignment Eun test cases
and buq fines Input Bug Report

' Help to as=ign
I'— ougs

Help 1o
reveal bugs

—1

Figure 1: Mozilla quality assurance process rich picture [cf. Carder, et al 2002]

community Web site.! In doing so, we have been
able to detect processes that may be unduly lengthy,
which may serve as good candidates for downstream
activities such as process streamlining or
reorganization. It allows us to better see the effects
of duplicated work. Figure 4 displays a screenshot of
the NetBeans Requirements and Release process
[Jensen and Scacchi 2003].

3. Modeling Processes Within Web

Information Infrastructure Projects

The Apache HTTP Web server, Mozilla Web
browser, and NetBeans-based (Java) Web
applications together form a Web information
infrastructure. However, as the projects that develop
each of these open source software systems operate

! For example, the NetBeans.org project posted a
copy of our ProSim’03 Workshop paper [Jensen and
Scacchi 2003] where some of these ideas were
initially proposed and evaluated. See
http://www.netbeans.org/community/articles/UCI_pa

pers.html.

as virtual enterprises [Noll and Scacchi 1999], we
have no basis to assume that their development
process activities, roles, or tools are identical or
common. Thus, in order for these projects, and other
open source software projects like them [cf. Scacchi
2002], to collectively produce and sustain a viable
global Web information infrastructure, they must be
able at some point to synchronize and stabilize their
processes, their process activities, shared artifacts,
and targeted software releases [cf. Cusumano and
Yoffie 1999].

Before we can understand how software
development processes in each of these three Web
information infrastructure components fit with the
others, we must understand them individually. We
start by presenting a brief overview of the quality
assurance (QA) process in the Mozilla Web browser
release cycle, followed by the Apache release
process, and lastly, the NetBeans requirements and
release process.

3.1. Mozilla Quality Assurance Process
The daily Mozilla QA cycle [Carder, et al.,
2002] (see Figure 1) begins with the closing of the

http://www.netbeans.org/community/articles/UCI_papers.html
http://www.netbeans.org/community/articles/UCI_papers.html

Apache HTTPD
Release Process

jug &

Program
Management
Committee

juild Source

Developers

Vote On &

New Features

Developers
i

To Commit

Patches

Dewvelop New

Felease
Manager

Final T
On Own Se

Figure 2: Apache HTTP server release process flow graph [cf. Ata, et al 2002]

source tree to submissions. After this, the “code
sheriff” and system build engineer create a build of
the source code tree using the Mozilla Tinderbox
build tool. If build errors are present, the sheriff and
build engineer contact the “on the hook™ developers,
reviewers, and super-reviewers who were responsible
for the offending source, who are called on to correct
the defects. When the defect is corrected or
offending source removed, the source is rebuilt. This
process iterates until all build errors are corrected.

When no build errors are present, the source is
placed on the community FTP server and the “smoke
test” coordinator issues a call for developers and
volunteer testers to download the build via the
community Internet relay chat (IRC) channel. After
this, QA contacts, QA owners, and volunteer testers
will announce what they plan to test, download and
install the build and perform a series of smoke tests,
security specific (SSL) smoke tests, or less critical
“general tests” (periodic regression checkups) based
on bug reports submitted to the bug repository.
Testers note and discuss the results over the IRC
channel. Critical bugs are identified and assigned to
the “on the hook” developers to be patched

whereupon the source is retested. Non-critical bugs
are set aside until they are confirmed by another
tester, uploaded to the Bugzilla defect repository, and
further dealt with at a later time. Once all critical
defects are corrected, the sheriff and build engineer
reopen the source tree to further development and
source submission.

When first detected, defects are entered into
Bugzilla as unconfirmed, noting their severity,
component, and platform where the defect was
observed. A member of the quality assurance team
(either a QA contact or owner) must then research the
defect and certify it as a new defect or marking it as a
duplicate of another known defect. Patches are then
created by developers during the course of
development or by drivers as the release date
approaches to ensure the overall quality of the
product, and the status revised to reflect the changes.

3.2. Apache HTTP Server Release Process
The Apache release process [Ata, et al., 2002;
Erenkrantz 2003] follows a somewhat similar path as
in NetBeans, though individual roles in the process
are different. As shown by the flow graph in Figure

. MNetbeans_reqguirements_release Protégé-Z000

Project Edit Window Help

=10l x|

(H:public_htmlpag

=2 =
confi | 2 2| -|[sK|op| C|{ -
frame sub 5up| sle| isx| sl Metbeans Requirements and Hele+e
Netheans .|]| [|[vl | [vl | | ¢
: flaw scenario
i . E=tablish release managir o
: E—T_ ired b\,;-ﬂ"'-aif_ed_ b}‘\i’;@s___ et
| . T—— "y F _n_--"'_-__—::__
\‘\hused by | Solicit Rhd woluntes o i
4 [e —
l I l : ya“:::gsedb_f:-_—- =
Classes V| i———
@ THlNG _A_ - ;I?E:."‘-\-_ ..____USEd b'!,ll'-\ ;-___'__,_-—_ |
. _ ﬁ --\""\-\. H"-___ - __-"'-
E—%_SYSTEM CLASS | T e _next actian l y
Frocess Model {13 : / — Mgy g
@ Agent (9 / — dend message reques
(C)Resource (17) 1 ey — —_
@TDN 107 2/ - __+,-'_u5ed by -~ — —_—
(T Action (23 Y T]
@ (CJ Contral Flow (1) ssed by Ve N
@Ecript e]
: -~ — |~
B O

Figure 3: NetBeans requirements and release process formal model rendering with Protégé-2000

2, in the release process, the program management
committee puts forth a set of proposed features,
which are gleaned from the project roadmap, patches,
enhancement reports submitted to the Bugzilla
repository, and suggestions from committee
members. These are then voted on by the committee
and fashioned into a requirements proposal that
guides development. Developers volunteer for
implementing the features ratified by the voting
process.

Feature implementations are submitted as
patches to the server. Apache developers with
committer status review the submitted patches and
vote on whether to accept into the source tree or
revoke each based on quality and completeness. As
development moves towards completion, the release
manager determines which features are fit for
inclusion in the release and which are not. Those that
pass are compiled into an alpha build, which is made

available on the community Web and announced on
the developer mailing lists. Developers and
committers are then called upon to test the build on
their own servers manually or using the Apache
automated test suite. Discovered defects are
submitted to Bugzilla and patched by developers and
subsequently subjected to the patch review process.

When the release manager is adequately satisfied
with quality of the source, s/he will declare the
release suitable for beta or final release candidacy.
When s/he announces this, the builds are made
available on the main page of the community Web
and adopted by a wider audience, for continued
testing and patching. At some point, the release
manager deems the source fit for general public use
and creates a general availability build, announcing it
on the development, committer, and tester mailing
lists. This build is then voted on by the committers
and tested on the Apache community Web site. If

; MetBeans Software Development Prototype- Action: Submit Bug/Issue Report Page - Microso - |EI|£|
File Edit Miew Favorites Tools Help |
Address I@ htt|:-:,I',l'www.ics.uci.edu,l'~cjensen,l'papers,l'Firsthc-kNetBeans,l'prc-tc-type,I'SUNQP.,I'bug_chechug_checkS.html?submitl=Ctj 6>GD |Links = @ -
=l
NetBeans Software Development Process Prototype
Action: Report 1ssues to Issuezilla
Enter user imformation:
Tsername: I
Password: I Login
Search Enowledge Base to see if the 1ssue has been discussed.
Check to see if the 1ssue has alveady been submitted.
Summary Eevword Search: I Zearch
Enter issue info
Component: | Platform: | Eeporter: |
Subcomponent: | o3 | Wersion: |
Priotity: | Izzue Type: | Target Milestone: |
SUMmAry: | Eeywords: | Additienal Comments: |
subrnit Done |
121231 action Eeport izsues to Issuezlla
requires { Test results }
provides { Issuezilla entry }
tool { Web browser }
agent | users, developers, Zun ONE Studio QA team, Sun ONE Studio developers }
schpt { Mawvigate to Issuezilla. Select issue numbericomponent to update . 3
[~
|&] Dore l_ I_ l_ | Imternet v

Figure 4: NetBeans requirements and release process reenactment simulator

there is a simple majority of approval and at least
three positive votes, the release is declared final. The
finality is announced via the community Web and
mailing lists and distributed via a system of mirrored
Web sites.

3.3. NetBeans Requirements and Release
Process

The NetBeans requirements and release process
is depicted formally and reenacted as shown in
Figures 3 and 4, respectively. The first step in the
NetBeans requirements and release process [Oza, et
al., 2002; Jensen and Scacchi 2003] is to establish a
release manager, a set of development milestones
(with estimated completion dates), and a central
theme for the release. The theme is selected by the
community members who have taken charge of the
release, with the goal of overcoming serious
deficiencies in the product (e.g. quality, performance,
and usability), in addition to new features and
corrective maintenance planned by module teams.

Historically, most releases have been led by members
employed by Sun Microsystems, which provides
development and financial support for the
community, though volunteer releases also occur.
Based on this, and in conjunction with input from the
feature request reports, lead developers will draft a
release plan, providing the milestones, target dates,
and features to be implemented in the upcoming
release. After review and revision by the community,
the plan is accepted and developers are asked to
volunteer to complete the tasks outlined therein and a
volunteer is sought to act as release manager and
coordinate efforts of community. Usually, a
developer will either volunteer or be volunteered for
the role via the mailing list by and accepts the
nomination or is accepted through community
CONSensus.

All creative development must be completed by
the feature freeze milestone date specified in the
release proposal, which signals the end of the

IssueZilla

Bugzilla

Conflict NetBeans

Coordination

T @ Conflict
" Coordination

Coordination

w Conflict

Coordination

Coordination

o Conflict
Coordination

Conflict

Coordination

Figure 5: Intercommunity interprocesses communication in the Web information infrastructure

requirements subprocess and the beginning of the
stabilization phase- the release subprocess. At this
point, only bug fixes may be submitted to the source
tree. The stabilization phase consists of a build-test-
debug cycle. Nightly builds are generated by a series
of automated build scripts and subsequently
subjected to a series of automated test scripts, the
results of which are posted to the community Web
site. Additionally, the quality assurance team
performs a series of automated and manual testing
every few weeks, as part of the Q-Build program
with the aim of ensuring that source code submitted
regularly meets reasonable quality standards. Defects
discovered during testing are then recorded in the
IssueZilla issue repository and subsequently
corrected. When the release branch is believed to be
devoid of critical “showstopping” defects, it is
labeled a release candidate. If a week passes without
any further showstoppers, the release candidate is
declared final; else the defect is corrected and another
release candidate is put forth.

4. Modeling Processes Across Web

Information Infrastructure Projects

The successful interoperation between the
components of a Web information infrastructure
depends on adherence to a shared set of standards.
For Mozilla to correctly present Web artifacts, it must
implement both protocols for processing Web
transactions to the Apache server, and also standards
for displaying content of the document or object
types generated by NetBeans. Similarly, NetBeans
must produce artifacts and applications forms that
artifact consumers, including Mozilla and Apache,
expect. Apache, for its part, must comply with the
transaction protocol Mozilla anticipates (e.g., HTTP),
and provide Web application module support

required by applications produced by NetBeans.

The inter-community synchronization and
stabilization process is a continuous define-
implement-revise cycle between communities. When
an individual community varies from the standard or
implements a new standard, the other communities
must act to support it. Likewise, defects in data
representations or operations of one tool can cause
breakdowns or necessitate workarounds by the
others. Thus, synchronization and stabilization of
shared artifacts, data representations, and operations
or transactions on them is required for a common
information infrastructure to be sustained.

This process is not “owned”, located within, or
managed by a single organization or enterprise.
Instead, it represents a collectively shared set of
activities, artifacts, and patterns of communication
across the participating communities. Thus, it might
better be characterized as an ill-defined or ad hoc
process that differs in form during each enactment.

4.1. Community Interoperation

Dependencies between communities roughly fall
into two categories. On the one hand, we have
technologies including protocols, such as HTTP,
specifying the process for data communication
between software (or hardware) tools, as well as
formats specifying how data is organized within a
document (e.g. XML, Javascript). Secondly, we find
instances where one community integrates another’s
software tool into their own. If we believe process
discovery and modeling are progressive endeavors,
these dependencies suggest certain bodies of
evidence that will lead to greater understanding of an
intercommunity process characterizing their

relationship with respect to some larger end. In this
case, the intercommunity process is the ongoing
development of the infrastructure and the end entails
the alignment, integration, or interoperation of
system components from each community within the
shared information infrastructure. Accomplishing
such an end is continually negotiated and potentially
reconfigured by the individual goals of each of the
participating stakeholders. The first insights into the
infrastructure process are community interactions,
stakeholder goals and concerns. The rich hypermedia
captures these data, though at too a high level to
declare a sequence of interprocess communication
across communities. We address this next.

4.2. Interprocess Communication across
Communities

Communications between communities provide
both opportunities for collaboration and sources of
conflict between them [Elliott and Scacchi 2003,
Jensen and Scacchi 2004]. Communication is
collaborative if it identifies compatibilities or
potential compatibilities between development
projects. From a process perspective, collaborative
communications enable external stakeholders to
continue following their internal process as normal,
perhaps with a small degree of accommodation.
They also reinforce infrastructural processes since
they do not require changes in the interoperations
between communities. If the degree of
accommodation becomes too great, the
communication can precipitate conflict between
communities. Conflict may occur due to changes in
tools or technologies shared between them, or in
contentious views/beliefs for how best to structure or
implement new functionality or data representations
across projects. These conflicts require extensive
process articulation to adapt.

With few exceptions (e.g. open letters between
IBM/Eclipse and Sun/NetBeans), communication
between communities is not direct. Instead, we see it
in the form of version changelogs announcing
support (and changes in support) for tools and
technologies integrated into development. It may
also appear in defect/feature request repositories,
email discourse, and community newsletters within
the respective community Web sites, in addition to
external news sources (e.g. slashdot.org and
freshmeat.org). Communities must monitor these
information sources to assess their degree of impact
and whether the impact is directly or indirectly
collaborative or conflictive. NetBeans, for example,
uses the IssueZilla bug/feature request repository
developed by the Tigris community, which is, in turn,
an extension of Mozilla’s Bugzilla tool (see Figure
5).

Communication “channels” (i.e., recurring
patterns of communication of shared artifacts, data
representations, or protocols) connect process inputs
and outputs of each community within the
infrastructure. Each channel between communities
denotes ad hoc processes or process fragments that
describe the interoperability of tools and technologies
between them, as well as the “boundary objects™
[Star 1989] that are shared between them. The Web
information infrastructure development process can
therefore be characterized by the communication
flow between its constituent organizations.
Subsequently, if this communication flow is
discernable, it can be represented as a semi-structured
rich hypermedia image map, a flow graph, or as a
low-fidelity formal process model.

Thus, we have established that identification of
shared tools and technologies between Apache,
Mozilla, and NetBeans are a first step to discovery
and modeling of the Web infrastructure development
process. Secondary and tertiary relationships may be
worth noting, however these may indicate that
prominent communities are being marginalized in the
constructed models. Next, collaboration and conflict
processes are observed and loosely modeled as rich
hypermedia. Extraction or process fragments guides
creation of process flow graph models, which permit
formalization and reenactment simulation.

Among coordination and conflict interactions,
we can identify several types of issues which we have
hinted at above. We now discuss in greater detail.

4.3 Coordination

Coordinative interactions may be communication
and collaboration activities or leadership and control
activities [Jensen and Scacchi 2004].
Communication and collaboration interaction across
communities may occur in the form of bug reports
submitted referencing a tool or technology
implementation on which another community
depends. Collaborative organizations may participate
in discussions on newsgroups, email lists, IRC chat
channels, and message forums on each other’s
community Web. Community discussion mediums
and newsgroups serve as information outposts for
stakeholders, both internal and external to a
community. From these sources, members of the
infrastructure determine ways in which their tools
and technologies can become compatible with one
another. Further, meta-communities have appeared
to support coordination of independent efforts of
several communities towards a common goal. The

2 Boundary objects are those that both inhabit several
communities of practice and satisfy the informational
requirements of each of them.

Java Tools Community (JCT) is one such community
whose goal is to create a technology by establishing
standards for tool interoperability between IDEs.

One common way open source software
development communities define success is in terms
of market share. To achieve and maintain market
share, communities must interact with other members
of the infrastructure in ways that the target
demographic of users will find somehow compelling,
and more so than alternative products and services.
Gaining an advantage often requires influencing the
evolution of external tools and technologies to the
benefit of one particular use (and often to the
detriment of others) or through increased coupling
between communities for mutual benefit. In this
way, leadership and control of the evolution of the
infrastructure are causes for coordination, as well as
potentially for conflict with other organizations. The
JTC is one such example where establishing a
particular standard for interoperability between
several high profile tools may be a contentious goal
among communities that seek to increase their market
share. Such communities may be enticed to follow
the standard and gain entrance into the JTC in an
attempt to woo existing users of compatible tools to
adopt and use the new “standard.”

4.4 Conflict

Conflictive activities arise often from
organizations competing for market share and control
of the technical direction of infrastructure and shared
technologies. It also arises from common and less
belligerent activities, such as introducing a new
version of a tool or database that other organizations
depend on, requiring massive effort to incorporate.
In these cases, the organization placed into conflict
may simply choose to reject adopting the new tool or
technology alterations, possibly selecting a suitable
replacement tool/technology if the current one is no
longer viable. This path was chosen by the
shareware/open source image editing community
infrastructure due to patent conflicts with the GIF
image format in the early and mid 1990s, leading to
the creation of the portable network graphics (PNG)
image format standard.

Conflicts across open source software
development projects are resolved in collaborative
means, through communication on message forums
and the like. Alternatively, an organization causing
or resisting a tool or technology may cave to pressure
exerted by support from rest of the infrastructure.
Irreconcilable differences, if they become persistent
and strongly supported can lead to divisions in the
infrastructure.

5. Discussion

Apache, Mozilla, and NetBeans are three
prominent members of a larger organizational
ecosystem. In the three space of software
development, this ecosystem forms a plane as a
development domain: the Web information
infrastructure. ~ Other prominent members of this
ecosystem include OpenOffice.org, Tigris.org, the
World Wide Web Consortium (W3C), and the Java
Community Process (JCP). We look at these three
communities because they developing large-scale
software systems and related products through
complex processes that coordinate efforts of tens of
thousands of developers with millions of users. At the
same time, the ecosystem is not static. Communities
rise and fade from prominence. As they increase in
mass (membership) and interconnectivity, they create a
sense of both gravity and inertia around them, and
other organizations may seek coordinative
relationships. While closed source projects tend to
enjoy tightly coupled integration with relatively few
counterparts, open source software communities tend
towards loosely coupled interoperability with many
counterparts. The effect of this is that there are more
organizations impinging on the ecosystem with more
complex but weaker bindings than those of proprietary
system relationship networks, which are both sparser
and less changing.

6. Conclusion

In this paper, we described techniques and issues
in modeling software processes used within three large
open source software development communities. The
software developed in these communities form an
information infrastructure for creating, serving, and
consuming Web information artifacts. We
demonstrated how development processes within these
communities interact in terms of ad hoc or fragmentary
processes across communities. Finally, we show the
potential for Web information artifacts to model the
processes of the Web information infrastructure that
promotes a more comprehensive, multi-model
understanding of the processes rendered. Through
increased process understanding, organizations may
gain insight into modes of process improvement and
interaction with components of their respective work
systems.

7. Acknowledgments

The research described in this report is supported by
grants from the National Science Foundation #ITR-
0083075, #ITR-0205679, and #ITR-0205724. No
endorsement implied. Contributors to work
described in this paper include Mark Ackerman at the
University of Michigan Ann Arbor; Les Gasser at the
University of Illinois, Urbana-Champaign; John Noll
at Santa Clara University; John Georgas, Maulik Oza,
Eugen Nistor, Susan Hu, Bryce Carder, Baolinh Le,
Zhaogi Chen, Veronica Gasca, Chad Ata, Michele

Rousseau, and Margaret Elliott at the UCI Institute
for Software Research.

8. References

Ata, C., Gasca, V., Georgas, J., Lam, K. and
Rousseau, M. 2002. “The Release Process of the
Apache Software Foundation,” 2002.
http://www.ics.uci.edu/~michele/SP/index.html

Carder, B., Le, B., and Chen, Z. 2002. “Mozilla SQA
and Release Process,”
http://www.ics.uci.edu/~acarder/225/index.html

Choi, J.S., and Scacchi, W., Modeling and
Simulating Software Acquisition Process
Architectures, J. Systems and Software, 59(3), 343-
354, 15 December 2001.

Cusumano, M. and Yoffie, D., Software
Development on Internet Time, Computer, 32(10),
60-69, October 1999.

Elliott, M. and Scacchi, W., Free Software
Developers as an Occupational Community:
Resolving Conflicts and Fostering Collaboration,
Proc. ACM Intern. Conf. Supporting Group Work,
21-30, Sanibel Island, FL, November 2003.

Erenkrantz, J. "Release Management Within Open
Source Projects," Proceedings of the 3rd Workshop
on Open Source Software Engineering, Portland,
Oregon, May 2003.

Fowler, M. and Scott, K. UML Distilled: A Brief
Guide to the Standard Object Modeling Language.
Second ed. Addison Wesley: Reading, MA. (2000).

Georgas, J. “Software development process using
Protégé.” University of California, Irvine. 9 June,
2002.
http://www.ics.uci.edu/~jgeorgas/ics225/index.htm

Jensen, C., Scacchi, W. “Simulating an Automated
Approach to Discovery and Modeling of Open
Source Software Development Processes.” In
Proceedings of ProSim'03 Workshop on Software
Process Simulation and Modeling, Portland, OR May
2003.

Jensen, C., Scacchi, W. “Collaboration, Leadership,
Control, and Conflict Negotiation in the
NetBeans.org Community.” In Proceedings of the
Fourth Workshop on Open Source Software

Engineering ICSE04-OSSEQ4, Edinburgh, Scotland,
(to appear), May 2004.

Mi, P. and Scacchi, W., A Meta-Model for
Formulating Knowledge-Based Models of Software
Development, Decision Support Systems, 17(4), 313-
330, 1996.

Monk, A. and Howard, S. The Rich Picture: A Tool
for Reasoning about Work Context, Interactions,
March-April 1998.

Noll, J. and Scacchi, W., Supporting Software
Development in Virtual Enterprises, J. Digital
Information, 1(4), February 1999.

Noll, J. and Scacchi, W. “Specifying Process-
Oriented Hypertext for Organizational Computing,”
J. Network and Computer Applications, 24(1):39-61,
2001.

Noy, N.F., Sintek, M., Decker, S., Crubezy, M,
Fergerson, R.W., and Musen, M.A., Creating
Semantic Web Contents with Protégé-2000, IEEE
Intelligent Systems, 16(2), 60-71, March/April 2001.

Oza, M., Nistor, E., Hu, S. Jensen, C., and Scacchi, W.
2002. “A First Look at the Netbeans Requirements and
Release Process,”
http://wwe.ics.uci.edu/cjensen/papers/FirstLookNetBe
ans/

Scacchi, W. and Mi, P., Process Life Cycle
Engineering: A Knowledge-Based Approach and
Environment, Intern. J. Intelligent Systems in
Accounting, Finance, and Management, 6(1):83-107,
1997.

Scacchi, W., Understanding the Requirements for
Developing Open Source Software Systems, IEE
Proceedings—Software, 149(1), 24-39, February
2002.

Star, S. L., The Structure of 11l-Structured Solutions:
Boundary Objects and Heterogeneous Distributed
Problem Solving, in Distributed Artificial
Intelligence (eds. L. Gasser and M. N. Huhns), Vol.
2, pp. 37-54. Pitman, London.

Process Analysis and Enactment

This section contains the following two chapters that examine new methods and
techniques for automatically analyzing process models, and for inferring the state of a
process during its enactment.

Darren Atkinson and John Noll, Automated Validation and Verification
of Software Process Models. Proceedings SEA '03, Marina Del Rey, CA,
USA, November, 2003.

John Noll and Jigar Shah, Process State Inference for Support of
Knowledge Intensive Work. Proceedings SEA '04, Cambridge, MA,
USA, November, 2004.

Automated Validation and Verification of Process Models

Darren C. Atkinson
Department of Computer Engineering
Santa Clara University
Santa Clara, CA 95053-0566
atkinson@engr.scu.edu

ABSTRACT

In process programming, processes are modeled as pieces
of software, and a process programming language is used to
specify the process. Such a language resembles a conven-
tional programming language, providing constructs such as
iteration and selection. This approach allows models to be
simulated and enacted easily. However, it also suffers from
the same problems that plague traditional programming,
such as the question of whether the program itself is seman-
tically correct or contains errors. We present an automated
approach for detecting errors in such process models. Our
approach is based on static code analysis techniques. We
have developed a tool to analyze processes modeled using
PML and have subsequently successfully redesigned mod-
els using our tool.

KEY WORDS
Process Programming, Modelling Languages, Modelling
and Simulation, Static Analysis

1 Introduction

1.1 Motivation

In 1987, Osterweil asserted that “software processes are
software too” [1], and thus could (and should) be devel-
oped, analyzed, and managed using the same software en-
gineering methods and techniques that are applied to soft-
ware. This idea implies there is a software process life-
cycle that resembles the software life-cycle, involving anal-
ysis, design, implementation, and maintenance of software
processes [2]. One of the outgrowths of this line of research
is the notion ofprocess programminghe specification of
process models using process programming languages that
resemble, and in some cases are derived from, conventional
programming languages [3].

One advantage of process programming is that a pro-
cess model can be coded and simulated or enacted easily.
An enactment engine can, for example, automatically no-
tify actors when they should begin execution of a particular
task. However, process programming is also subject to all
of the pitfalls of traditional programming and software en-
gineering. In particular, there is the possibility of errors in
the program and, more importantly, errors in the design and
in the capturing of the requirements.

Copyright 2003 IASTED. Published in the Proceedings of the 7th IASTED International Conference on Software
Engineering and Applications (SEA'03), November 3-5, 2003, Marina Del Rey, CA. Personal use of this material
is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of
this work in other works, must be obtained from IASTED.

John Noll
Department of Computer Engineering
Santa Clara University
Santa Clara, CA 95053-0566
jnoll@engr.scu.edu

There is a large body of knowledge comprising tech-
nigues for analyzing programs written in conventional pro-
gramming languages. These techniques enable program-
mers to assess the correctness of their programs, identify
potential faults, and, as in the case of optimizing compilers,
automatically redesign the implementation of a program to
improve execution performance. We would therefore like
to apply these techniques to the analysis of process pro-
grams in order to help the process engineer find errors be-
fore simulation or enactment of a model. Specifically, we
would like to use these techniques to validate the correct-
ness of process programs as models of real-world processes
and aid in process redesign.

1.2 Approach

In this paper we present a technique for analyzing the flow
of resourceghrough a process, as specified by a process
program. This technique, derived from research into data-
flow analysis of conventional programming languages, en-
ables a process designer to answer important questions
about a process model, including:

e Does a process actually produce the product that it is
supposed to produce?

e Are intermediate products consumed by later steps in
a process actually produced by earlier steps?

e Does the flow of resources through a process match
the flow of control?

The answers to these questions can result from errors
in the specification, indicating a need for further capture
and modeling activities; or, they may highlight flaws in the
underlying process, indicating a potential for process im-
provement. To validate our hypotheses, we have developed
a tool to analyze specifications written in th&lL process
programming language [4].

We have used our tool to analyze software process
models and present an in-depth analysis of the redesign of
one model, used by students for their senior projects. Our
tool detected 63 errors in the model, which consisted of
only 204 lines ofPML code. Through iterative use of the
tool, we were able to successfully redesign the model.

We begin with a brief overview ofMmL, to provide a
context for discussing our technique. Then, we present our

analysis technique and discuss the implementation of our
tool. We discuss our results of applying the tool to actual

PML specifications. We conclude with our assessment of
the technique and potential directions for future work.

2 The PML Language

PML is a simple process programming language that is in-
tended to model organizational processes at varying levels
of detail [4]. PML was designed specifically for rapid, in-
cremental process capture, to support both process model-
ing and analysis, and process enactment [5]. Using,
a process can be specified initially at a very high level that
contains only major process steps and control flow.

pPML reflects the conceptual model of process enact-
ment developed by Mi and Scacchi [6]. This model views
a process as a situation in which agents use tools to perform
tasks that require and produsourcesPML models pro-
cesses as collections of actions that represent atomic pro-
cess taskseMmL specifies the order in which actions should
be performed using conventional programming language
control flow constructs such as sequencing, iteration, and
selection, as well as concurrent branching of process flows:

e Sequence—A series of tasks to be performed in order:

sequence {
action first {}
action second {}

}

e lteration—A series of tasks to be performed repeat-
edly:

iteration {
action first {}
action second {}

}

action go_on {}

e Selection—A set of tasks from which the actor should
chooseoneto perform:

selection {
action choice_1 {}
action choice_2 {}

}

e Branch—A set of tasks that can be performed concur-
rently (all tasks in a branch must be performed before
the process can continue):

branch {
action path_1 {}
action path_2 {}
}

The providesand requiresfields of an action spec-
ify how resources are transformed as they flow through
a process. As such, they capture several important facts
about a process, namely what conditions must exist before
an action can begin, and what conditions will exist after

an action is completed. As a result, tregjuiresand pro-
videspredicates specify the purpose of an action, in terms
of how the action affects the products under development.
The simplest form of a resource predicate simply names the
resource:

provides { resourceName }

This predicate states that the output of an action is a
resource bound to the variablesourceName Resource
specifications may also be predicates that constrain the
state of the resource:

requires { resourceName.attributeName op value }

Here,op is any relational operator. Predicates may
also be joined using conjunction and disjunction. In short,
resource predicates allow process designers to specify in
some detail how a product evolves as a process progresses,
as well as what resources are required to produce a product,
and the state those resources must have before the process
can proceed.

3 Analysis of Resource Flow

What can we learn from analysis of syntactically correct
process programs? Analysis helps in two phases of the pro-
cess life-cycle. First, by analyzing the flow of resources
through a process specification, we can identify situations
where provided and required resources do not match. This
information is useful for validating process specifications
against reality; such inconsistencies may indicate gaps in
process capture and understanding.

Second, resource analysis can also point out potential
areas of improvement in the process being modeled. Incon-
sistencies between provided and required resources signal
a potential for re-engineering to make the process more ef-
fective. For example, if a sequence of actions does not have
a resource flowing from one action to the next, it may be
possible to perform those actions concurrently.

In the following sections, we examine in detail the
kinds of inconsistencies that can exist in a specification and
their potential impact on a process. Then, we discuss the
design of a tool for detecting these inconsistenciesnin
specifications.

3.1 Categories of Resource Inconsistencies

Inconsistencies can be classified into several situations:

1. A resource is provided by an action that does not re-
quire any resources. This situation (termed a “mira-
cle”) could represent a modeling error where the mod-
eler failed to capture an action’s inputs; or, it could
represent a real situation where the actor generates
something like a document from (intangible) ideas:

action describe_problem {
/* requires inspiration */
provides { problem_description }

2. Aresource is required by an action that does not pro-
vide any resources. This situation (termed a “black
hole”) could represent a legitimate activity, such as a
task that requires the actor to read certain documents
and develop an “understanding” of their contents; the
action produces no tangible results, but is worthwhile
nevertheless:

action understand_problem {
requires { problem_description }
/* Provides nothing tangible */
}

3. Aresource is required, but a different resource is pro-
vided. Occasionally, this situation (termed a “trans-
formation”) represents a modeling error, but is more
often the desired result: an action consumes some re-
sources in the production of another. A simple exam-
ple happens when a document is assembled from dif-
ferent sections: the action requires each section, and
provides the completed document:

action submit_design_report {
requires { use_cases && architecture }
provides { design_report }

}

4. Required resource not provided. In this situation, an
action requires a resource that is not provided by any
preceding action:

action a { provides { r } }

action b { requires { s } }

5. A provided resource is never used. An action might
provide a resource that is never required by a subse-
guent action:

action a { provides { r && s } }
action b { requires { r } }

Inconsistencies due to unprovided or unrequired re-

sources are not necessarily errors: an unrequired re-
source could indicate an action that represents an out-
put of a process; an unprovided resource could indi-

cate a point where the process receives input from an-
other process.

6. A provided resource does not match a subsequent re-
source requirement. Here, the resource is not missing,
but rather in the wrong state:

action a { provides { r.status ==1 1} }
action b { requires { r.status == 2 } }

3.2 Analysis Tool Design

Our analysis tool, calle@gmlcheck, is designed to com-
plement theemL compiler. The compiler generates exe-
cutable models, useful for simulation and enactment, and
pmlcheck can tell the process engineer interesting things
about these models.

function check-if-providednoderesourcestart)
visited[nodq := true
status[nodq := unknown

if node# startand resourcec provided[nodg then
status[nodgq := true
necessarynodg [resourcé := true
else
for predin predecessorfnodg do
if visited[nodq = false then
check-if-providedpredresourcestart)
end if
status[nodq := @hoge (Status[nodd, status[pred])
end for
end if
end function

Figure 1. Basic algorithm used k1 check.

To compute the flow of resources thougkmaL pro-
gram, pmlcheck constructs gprocess graphsimilar to a
control-flow graph in conventional languages. Each atomic
action becomes a graph node. The graphs for other con-
structs are easily constructed in a syntax-directed manner:

sequence { iteration {

A {1}

branch {
A{}
B {}

The colored nodes in theranchgraph distinguish it
from the selectiongraph, since in the former all paths are
always executed and in the latter only one path is executed.

The first three inconsistencies described in the Sec-
tion 3.1 arelocal to an action node and are easily checked
without traversal of the graph. However, the latter three
inconsistencies requiglobal knowledge of resources and
therefore require a graph traversal.

The basic algorithm used to check if a required re-
source is provided is given in Figure 1. The algorithm per-
forms a depth-first search of the process graph looking for
a node that provides the required resource. The function
(hodeiS a decision function that updates the status of a node
given its current status and the status of a predecessor. Ef-
fectively, ghogeperforms a booleasnd for aselectiorsince
a resource must be provided on all paths to be definitely
provided, and performs a boolean for a branchsince it
is enough that the resource be provided on any path since
all paths are guaranteed to be executed. The algorithm also
records those provided resources that were found during
the search. This information is used to determine which
resources are provided, but never required.

3.3 Further Design Considerations

Rather than using a separate analyzer, we could require that
global consistency be enforced at compile time, as many

modern programming languages do. However, such a pol-
icy is generally not desirable. First, it is not necessary:
useful process analysis and enactment are possible with-
out global consistency. Second, it is not always possible.
Process capture is an iterative process that uncovers hid-
den activities over time, as process understanding emerges.
Thus it is desirable to allow specifications that are incom-
plete or inconsistent. Finally, valid models can be incon-
sistent, because the underlying process being modeled is
inconsistent. An organization’s processes may contain use-
less steps, missing steps, or sequences of activities that do
not produce desired results. Nevertheless, it is important to
document these processes accurately, to establish a baseline
for process redesign. Therefore, the process engineering
environment must be tolerant of inconsistencies that exist
in the real world.

4 Examples and Results

To assess the effectivenesspafl check, we analyzed two
software development processes: the development pro-
cess used to conduct Computer Engineering Senior Design
projects at Santa Clara University, and a graduate Software
Engineering course software development process.

4.1 SCU Senior Design Process

Our first experiment employeghlcheck to aid in the cre-
ation of a model of the Santa Clara University Computer
Engineering department’s senior design project process.
The process spells out a set of milestones and deliverables
roughly based on Boehm'’s Anchoring Milestones [7].

We first did an initial capturing of the process in
which we simply translated the narrative specification into
PML. Then, we used the analysis providedday check to
improve the accuracy of the model by correcting specifica-
tion errors and elaborating resource specifications.

The first version of the model was a simple transla-
tion of the narrative specification intoraL specification.

We modeled each milestone as a sequence of actions, each
action producing a single deliverable.

The tool reported 63 potential inconsistencies in this
initial model (see Table 1). How many of these were actual
errors? To determine the answer, we analyzed the reported
inconsistencies in detail, categorizing them as follows:

e Specification erro—The modeler made a mistake in
the program specification such as misspelling a re-
source name.

e Modeling erro—The model did not match the under-
lying process. For example, an action was out of order
or was missing.

e Process erro—The model was correct, but the under-
lying process contained an inconsistency.

e Spurious error—The tool correctly identified an error,
but the error was triggered by a previous error.

e No error—The tool incorrectly reported an inconsis-
tency.

Of the 63 reported inconsistencies, three were speci-
fication errors where a resource name was misspelled, and
two were spurious errors, caused by the specification er-
rors. An additional two were not errors as they represented
process output.

The remaining 56 errors were the result of incorrectly
modeling some aspect of the process, such as omitting a
required or provided resource from an action (42 inconsis-
tencies). These conclusions are summarized in Table 2.

Perhaps most interesting from a process engineering
viewpoint, 13 errors were the result of omitting actions to
capture and deliver document components as a single doc-
ument; for example, one sequence was missing a “submit
design report” action to assemble the document parts and
deliver them as a completed “design report” resource. We
used our analysis of the initial version of the model to cor-
rect the errors uncovered Ipyilcheck. In the new model,

12 inconsistencies were reported, none of which were er-
rors, as they represented process input or output.

4.2 Graduate Software Processes

We also used temlcheck to analyze twenty-four process
models developed by graduate software engineering stu-
dents to describe the class project development process.
The intent was to develop formal models of the processes
specified by the instructor as narrative text in assignments
and lectures, augmented by the students’ personal experi-
ence. The analysis results are shown in Table 1.

4.3 Discussion

It appears from these experiments that the majority of in-
consistencies reported byl check are unprovided or un-
required resources. This is its chief limitation: siroeL
does not distinguish between provided and required re-
sources and process inputs and outppiischeck takes a
conservative approach and reports process inputs as unpro-
vided resources, and outputs as unrequired resources.
Curiously, the Graduate Software Development pro-
cesses contained only two miracles and no black holes
among 95 actions; in contrast, the initial Senior Design
model had 28 miracles and 15 black holes. This ap-
pears to be the due to careful attention to detail on the
part of the three modelers who wrote these specifications.
Also, pmlcheck reported 67 transformations in the Gradu-
ate Software Development processes; 31 of these proved to
be specification errors that caused the provided resource to
appear to be a new resource rather than a modification of
the required resource. This was a surprise: we had antici-
pated that most actions identified as transformations would

Model

| Lines | Actions | Resources| Empty | Unprovided | Unrequired | Miracles | Black Holes | Trans.

Senior Design

seniocdesign.pml 204 35 69 1 3 16 28 15 36
seniordesign2.pml 290 37 122 0 6 6 0 0 42
Graduate S/W Development

Architecture.pml 130 16 26 3 5 5 0 0 13
Checkout.pml 11 1 2 0 1 1 0 0 1
Commit.pml 12 1 2 0 1 1 0 0 1
Edit.pml 27 3 6 0 2 2 0 0 3
PostMortem.pml 44 7 4 4 0 2 2 0 3
Update.pml 18 2 4 0 2 2 0 0 2
checkin.pml 13 1 2 0 1 1 0 0 1
checkout.pml 16 1 2 0 1 1 0 0 1
make.pml 13 1 2 0 1 1 0 0 1
milestonel.pml 172 18 36 0 13 13 0 0 8
milestone5.pml 141 15 30 0 10 10 0 0 6
updateANDresolve.pml 22 2 4 0 2 2 0 0 1
Analysis.pml 10 1 3 0 2 1 0 0 1
FunctionalRequirements.pml 10 1 3 0 2 1 0 0 1
Milestone2.pml 59 7 21 0 7 7 0 0 7
Milestone3.pml 45 5 15 0 5 5 0 0 5
NonFunctionalRequirements.pml 10 1 3 0 2 1 0 0 1
OperationalConcept.pml 10 1 3 0 2 1 0 0 1
ProjectLog.pml 10 1 3 0 2 1 0 0 1
RepositoryCheckin.pml 10 1 3 0 2 1 0 0 1
RepositoryCheckOut.pml 20 2 5 0 3 2 0 0 2
RepositorySynchronize.pml 20 2 5 0 3 2 0 0 2
Riskldentification.pml 10 1 3 0 2 1 0 0 1
SourceCodeEdit.pml 33 4 6 1 3 3 0 0 3
TOTAL 866 95 193 8 74 67 2 0 67

Table 1. Detailed analysis of the errors reported for all models.

Model | Total | Spec.| Model. | Proc. | Spurious| No Error
original 63 3 56 0 2 2
revised 12 0 0 0 0 12

Table 2. Classification of analysis results for the original
and the revised senior design models.

actually transform resources into new resources. Thus, it
appears to be useful to optionally flag actions that trans-
form resources for closer examination.

5 Related Work

5.1 Program Analysis

Many of the checks performed by our tool are analogous
to those checks performed by optimizing compilers such as
gcc and static checkers such ast. Optimizing compil-

ers typically warn the user regarding possibly uninitialized
variables. Our analysis tool informs the user regarding re-
sources that are required without possibly being provided.
As another example, register allocation [8], the process of
effectively assigning registers to variables to increase exe-
cution speed, requires knowledge of the lifetimes of vari-
ables in a program. Such knowledge is obtained by com-
puting when a variable is first and last possibly referenced,
which is analogous to determining when a resource is first
provided and last required.

Algorithms for analyzing programs described as
graphs are well-known [9, 10] as are algorithms for com-
puting properties of the graphs [11]. Finally, other tools to
aid the programmer in finding errors in programs include
assertion checkers [12] and program slicing tools [13, 14].

5.2 Process Validation

Cook and Wolf [15] discuss a method for validating soft-
ware process models by comparing specifications to actual
enactment histories. This technique is applicable to down-
stream phases of the software life-cycle, as it depends on
the capture of actual enactment traces for validation. As
such, it complements our technique, which is an upstream
approach.

Similarly, Johnson and Brockman [16] use execution
histories to validate models for predicting process cycle
times. The focus of their work is on estimation rather than
validation, and is thus concerned with control flow rather
than resource flow.

Scacchi’'s research employs a knowledge-based ap-
proach to analyzing process models. Starting with a set
of rules that describe a process setting and models, pro-
cesses are diagnosed for problems related to consistency,
completeness, and traceability [2]. Conceptually, this work
is most closely related to ours; many of the inconsisten-
cies uncovered bymlcheck are also revealed by Scacchi
and Mi’s Articulator [17]. Although pML and theArticu-

lator share the same conceptual model of process activity,
there are important differences. Their approach is based on
knowledge-based techniques, with rule-based process rep-
resentations and strong use of heuristics. This is a differ-
ent approach thapmL’s, which closely resembles conven-
tional programming. Thus, our analysis technique is de-
rived from programming language research.

6 Conclusion

What can we conclude about data-flow analysis of pro-
cess programs? Data-flow analysis can uncover specifica-
tion errors, such as misspelled resource names, that can ex-
ist in otherwise syntactically correct process specifications.
Without analysis, these errors would not be detectable un-
til the process is executed. Also, resource flow analysis
can identify inconsistencies between a specification and the
process it models. This was shown in Section 4, where our
initial Senior Design process model was missing several
resource dependencies that were important to the process.
Further, data-flow analysis can validate that a process pro-
duces the products it was intended to produce. By verify-
ing that the resource flow specified by the process program
proceeds correctly from beginning to end, the process de-
signer can validate that the process does in fact transform
its inputs into the desired outputs. Finally, in addition to
identifying potential errors in a process specification, re-
source flow analysis can suggest opportunities for redesign
of a valid process.

For example, our revised Senior Design model con-
tains six actions that require the “problem statement” re-
source. Where does this resource come from? At present,
the process assumes that the problem statement exists prior
to the beginning of the process. But the intent of the process
is for professors to provide problems for student teams to
solve; so the process should include a phase where students
and professors negotiate the problem statement, which then
serves as the input to the Conception phase.

6.1 Future Work

A sequence specifies a temporal dependency between ac-
tions: a predecessor must be completed before the succes-
sor can begin. This implies that the predecessor does some-
thing that the successor needs; in other words, the predeces-
sor provides something that the successor requires. If the
resources analysis shows that no resource flows between
sequential actions, however, it may indicate an opportunity
for concurrency. In this case, the process specification in-
dicates a dependency among actions that does not exist.

The opposite situation occurs when the control-flow
specification indicates that actions can be performed con-
currently, but the resource flow among them requires that
they performed in a certain order. This situation may indi-
cate either an error in process capture, or a problem with
the process itself.

This suggests a tool for automatically transforming a
specification into an equivalent specification based on the
resource flow graph. Such a tool would analyze the re-
source dependencies among actions, then re-arrange their
ordering so that the control flow matches the resource flow.

Finally, the analysis of actuabmL programs dis-
cussed in Section 4 revealed certain deficienciesmn.
Specifically, sinceeML makes no distinction between re-
sources provided by or required from actions within the
process and resources provided by or to the external envi-
ronment,pmlcheck cannot distinguish between an unpro-
vided resource and a process input, and likewise between
an unrequired resource and a process output. This suggests
the need for an enhancementrmiL to allow the process
modeler to specify the process inputs and outputs.

References
[1] L. J. Osterweil, Software processes are software fwo¢. 9th Intl.
Conf. Soft. Eng.Monterey, CA, 1987, 2-13.

W. Scacchi, Understanding software process redesign using mod-
eling, analysis and simulatioigoftw. Process. Improv. and Pract.
5(2-3), 2000, 183-195.

S. M. Sutton, Jr., D. Heimbigner, and L. J. Osterweil, APPL/A:
A language for software process programmiAGM Trans. Softw.
Eng. Meth, 4(3), 1995, 221-286.

J. Noll and W. Scacchi, Supporting software development in virtual
enterprises). Digit. Inf,, 1(4), 1999.

W. Scacchi and J. Noll, Process-driven intranets: Life-cycle support
for process reengineerintEEE Inter. Comput.1(5), 1997, 42—49.

P. Mi and W. Scacchi, A knowledge-based environment for mod-
eling and simulating software engineering processé€d\l Trans.
Knowl. Data Eng.2(3), 1990, 283-289.

B. W. Boehm, Anchoring the software procetSEE Softw,. 13(4),
1996, 73-82.

F. C. Chow and J. L. Hennessy, A priority-based coloring approach
to register allocationACM Trans. Prog. Lang. Systl2(4), 1990,
501-536.

A. V. Aho, R. Sethi, and J. D. UllmarGompilers: Principles, Tech-
nigues, and ToolReading, MA: Addison-Wesley, 1986).

J. Ferrante, K. J. Ottenstein, and J. D. Warren, The program depen-
dence graph and its use in optimizatigkCM Trans. Prog. Lang.
Syst, 9(3), 1987, 319-349.

T. Lengauer and R. E. Tarjan, A fast algorithm for finding domi-
nators in a flowgraphACM Trans. Prog. Lang. Systl(1), 1979,
121-141.

D. Jackson, ASPECT: An economical bug-deteddooc. 13th Intl.
Conf. Soft. EngAustin, TX, 1991, 13-22.

M. Mock, D. C. Atkinson, C. Chambers, and S. J. Eggers, Improving
program slicing with dynamic points-to dafroc. 10th ACM Sym.
Foun. Soft. Eng.Charleston, SC, 2002, 71-80.

M. Weiser, Program slicinglEEE Trans. Softw. Eng.SE-10(4),
1984, 352-357.

J. E. Cook and A. L. Wolf, Software process validation: Quantita-
tively measuring the correspondence of a process to a magal,
Trans. Softw. Eng. Meth8(2), 1999, 147-176.

E. W. Johnson and J. B. Brockman, Measurement and analysis of se-
quential design processesCM Trans. Des. Autom. Electron. Syst.
3(1), 1998, 1-20.

W. Scacchi and P. Mi, Process life cycle engineering: A knowlege-

based approach and environmelnt,. J. Intell. Syst. Account. Fi-
nanc. Manage.6(2), 1997, 83-107.

(2]

(3]

(4]
(5]
(6]

(7]
(8]

(9]

[10]

(11]

[12]

[13]

[14]

(18]

[16]

[17]

PROCESS STATE INFERENCE FOR SUPPORT OF KNOWL EDGE
INTENSIVE WORK

John Noll
Computer Engineering Department
Santa Clara University
500, El Camino Real,
Santa Clara, CA-95053, USA.
email: jnoll@cse.scu.edu

ABSTRACT

Different actors may do the same work in different ways,
depending on their preferences and level of expertise. The
nature and amount of process support required also varies
with the knowledge level of the actors: novice actors may
require guidance at each and every stage of the process,
while experts like to have a free hand and need guidance
only when in doubt.

We describe a descriptive enactment approach,
whereby guidance is provided only when asked, rather than
actively prescribing a list of actions at every stage of the
process. The enactment mechanism also infers the state of
the process by examining the state of products created or
modified during the execution of the process; therefore, the
actor does not have to notify the system of every action he
does while performing the process, but the system can still
keep track of process progress so that appropriate guidance
can be provided when needed.

KEY WORDS
Software Engineering Applications, Cooperative Work
Support, Workflow Modeling

1 |Introduction

Traditional workflow support approaches are based on pre-
defined, formal descriptions of work processes. Also, these
approaches are based on the paradigm that the system has
to guide actors through each and every stage of the process
execution. Hence, the success of these systems has been
limited to domains which have routine and highly repeti-
tive processes [7].

Knowledge intensive work is different from routine
work in that actors may perform knowledge intensive tasks
in different ways, depending on their intuition, preferences,
and expertise. For example, novice actors who are perform-
ing the work for the first time may not have any knowledge
about how to do the work. More experienced actors who
have done the work before have some insight about how
things should be done. Finally, there are experts, who know
the process thoroughly and can readily improvise new solu-
tions to problems. Due to this difference in their respective
knowledge levels, different actors may do the same work

Jigar Shah
Computer Engineering Department
Santa Clara University
500, El Camino Real,
Santa Clara, CA-95053, USA.
email: jdshah@scu.edu

in different ways. Consequently, the amount and nature of
guidance required while doing the work is different. Thus,
a system for supporting knowledge intensive work must be
flexible, in order to provide support workers with varying
expertise.

In this paper, we describe a process support system
which is more explanatory in nature than enforcing. Rather
than prescribing a list of actions to be performed at each
and every stage of the process, we adopt a reactive ap-
proach, whereby the actor is provided with guidance only
when he explicitly asks for it. The process support sys-
tem is ‘descriptive’, in the sense that the actor does not
even need to inform the system about the activities he has
performed while executing a process. Rather, the process
enactment engine infers the state of the process by exam-
ining the state of products created or modified during the
performance of the process’s tasks. Then, if and when an
actor requires guidance as to what tasks should (or may)
be performed next, the system can use the inferred state
to determine the next action to be taken, according to the
underlying process model.

To enable this, we use a product centric modeling ap-
proach. A process specification lists tasks along with a
nominal sequence in which these tasks could be performed.
Each task also has a specification of the pre-conditions and
post-conditions for its performance, expressed in terms of
the state of artifacts used and produced when the task is
performed. Using this specification, the current state of the
process can be inferred by observing the current state of the
products in the environment. Then, when the actor asks for
advice, the process support system uses this inferred state
and the process specification to provide guidance on what
to do next. Since there is no enforcement of the nominal
flow of tasks specified in the process model, deviations can
be easily supported.

2 Product Based Modeling

A critical feature to the approach presented in this paper
is the ability to view a knowledge-intensive processes as
a series of actions that use or consume some artifact and
produce some artifact on completion.

We model processes using the PML Process Model-

ing Language [3]. PML provides familiar programming
language constructs such as selection, branch, iteration,
and sequence to model the recommended order in which
actions should be performed.

The PML feature central to the approach in this paper
is the ability to view the process as a series of actions that
use or consume some artifact and when they are done, pro-
duce some artifact. To capture this information, the spec-
ification of an action in the process model may be accom-
panied with predicates that specify the resources (products,
artifacts) the action produces uses.

The requires predicate specifies the state of the re-
sources which are required for the action to be done. As an
example, consider,

requires { document }

The provides predicate, on the other hand, specifies
the state of a product produced or modified as a side-effect
of performing the action:

provi des { document.spell _checked == "true" }

Thus, a PML process model specifies the evolution of
the products created during the execution of that process.
Hence, while enacting a process, at any given stage, by ob-
serving the state of products, we can easily infer the state
of process.

As an example, Figure 1 shows a PML model describ-
ing a process a student might follow to submit homework
via email or hardcopy.

To understand how PML enables flexible process sup-
port, we will consider how two actors — one novice, one
experienced — might perform this process. This process
has several steps: first, create a PDF file from the home-
work document; then, either submit the PDF file as a hard
copy in person, or send it as an email attachment. Email
submissions will be acknowledged by a message from the
professor.

Consider a student who has never submitted home-
work via email. This student might interact with a process
guidance system at each and every stage of the process, as
depicted in Figure 2, and depend on the system completely
to guide him through the process. This novice actor informs
the system of each and every action he performs while exe-
cuting the process. The system is able to respond immedi-
ately by suggesting the next course of action, by following
the process control flow from the last action completed.

In contrast, a student that has submitted homework
this way before is familiar with the process and may need
little guidance. Consider Figure 3, which shows an ex-
pert student interacting with a process support system while
submitting his homework.

Since this student knows the process, he knows how
to start, and hence does not need (or want) to interact with
the system for guidance. He starts the job straightaway and
creates a PDF file of his homework document. However, if,
after creating the PDF file, he is not sure of how to proceed,

process SubnitHomework {

r

action create pdf file {
requires { docunent }
provides { pdf file }

script {
"Create a PDF formatted version of your
docunent. }
}
sel ection {

action subnit_hardcopy {
requires { pdf _file }
script {
Print a copy of your document and turn
t in at the beginning of class." }
}
sequence {
action subnit_emil {
equires { pdf _file}

provi des { ack message }
script {

r

"Create an enmil message with subject
identifying the course and assi gnment
to which this docunent applies. Attach
the pdf file to this message." }

}

action verify_ack {
equires { ack_message }

script {

}

"Exam ne the ack_message to be sure that
the professor has received your honmework
file." }
}
}
}

Figure 1. PML Model Process for Submitting Homework

. 1. 1 want to Submit Homework .
novice Tell me what to do? novice

3. Create pdf file g

5, Detect pdf file

(G PN

6. Decide whether to submit
hard copy or submit by e mail

% SO g OO Proogmet — Tsmthadoopy | RO ~10Youmedonet | " GRen
4.1 created apdf file. 8. Submit the pdf file
Now what? to your professor

novice 9.1 w’t\nlrgvlvtt%g]g pdf file

@

Figure 2. Novice Interacting with a Process Support System

expert 2. What next?

//\

4. Decide whether to submit hard
copy or submit by e mail.

~——_copyorsibmitbyemal.

Process Support
System

1. Create pdf file

=z

3. Detect pdf file

Environment

Figure 3. Expert Interacting with a Process Support System

he could consult the system to ask for advice on what to
do next. At this point, the system can detect that he has
already created a PDF file; using this information, it can
respond with the suggestion that he may perform any action
that requires the PDF file, such as submit the homework by
email or submit a hard copy.

The key observation from this scenario is that an ex-
pert actor does not want advice at each and every stage of
the process, but he may want advice when he is not sure
of what to do next. The novice actor, on the other hand,
requires assistance with each step.

3 Enactment Mechanism

A process model specifies the evolution of products during
the performance of that process. Since the actor is not re-
quired to inform the system about his activities, the enact-
ment mechanism has to keep track of the process by mon-
itoring the evolution of products specified in the process
model. Since the process model also specifies a order in
which the actions could be performed, the enactment en-
gine should can use the process model to provide guidance
to the actor, if asked to do so. Figure 4 shows the ar-
chitecture of the enactment mechanism. In the following
sections, we describe the components of this architecture.

actor Enactment Engine
Request Help

f —_— Predicate| | Inferred| | process
Guidance Evaluator PFS[O? Models

ff% Resource
States

Figure 4. Enactment Architecture

3.1 Enactment Engine

The enactment engine parses the PML process model and
interprets the process specification. This interpretation in-
volves the following:

e Get the required and provided resources for a given
action.

e Determine whether the requires and provides predi-
cates are satisfied. The predicate evaluator component
is used to evaluate the predicates.

e Update the process state to reflect the state of the re-
sources in the environment. To do this, a the engine
converts the PML process model into a graph repre-
sentation, which can be traversed for interpreting the
process description. Details on this graph representa-
tion can be found in [3].

e When asked, use the process model and the inferred
process state to advise on what to do next.

Thus, the main functionality of the enactment engine
is to update the process state to reflect the state of resources
in the environment and to provide guidance based on this
process state and the PML model.

A change in resource state may be the result of the
actor completing an action. This may also result in the re-
quires predicate of another action to evaluate to true, thus
making that action ready to be executed. At this point, if an
actor asks for guidance, the enactment engine can suggest
to do the action whose requires predicate just evaluated to
true. Hence to infer the process state based on the state of
resources, the enactment engine evaluates all the requires
and provides predicates (using the predicate evaluator) and
marks the actions accordingly. This then represents the up-
dated process state.

3.2 Process Guidance

The guidance given by the enactment engine contains a
list of all the actions in the process, presented with the
same structure as the nominal flow specified in the process
model. In addition, all the actions are annotated with a spe-
cific state. An action can be in any of the following states:

READY The previous action is DONE, and all the re-
sources required by this action are available.

DONE The action has been performed, it’s provides pred-
icate is true.

BLOCKED The previousaction is DONE, but its required
resources are not available.

AVAILABLE An action in the AVAILABLE state means
that the resources it requires are available, but the pre-
vious action is not yet DONE.

NONE The previous action is not DONE, and the requires
predicate is not yet true.

By marking actions as READY or AVAILABLE, the en-
actment mechanism provides the following guidance to the
actor: “ideally, you should do the actions in the READY
state; you could do the actions in the AVAILABLE state;
or if you really know what you are doing, you can do any
action you want (there is no enforcement)”.

Figure 5 shows a screenshot of the user interface,
which the actor sees when he asks for guidance after com-
pleting the action create_pdf_file in our example scenario.
The user interface exhibits the following features:

e The left pane shows all the actions in the process, pre-
sented in the structure specified in the process model.
This enables the actor to get a sense of how different
actions are structured within the process.

e Each action is accompanied by a color coded icon
representing the state of that action. Blue indicates
actions which are done; red indicates actions which
are blocked; green indicates actions which are ready;
and yellow indicates actions which are available. For
example, in Figure 5, actions submit_hardcopy and
submit_email are ready, while action create_pdf file is
done.

e The engine has determined that action create_pdf file
has been done and marked it accordingly.

e The right hand side pane shows the details of sub-
mit_hardcopy — the resources it requires, the resources
it provides, and also a script which informally de-
scribes what is to be done to do this action.

e The buttons ‘start’, “finish’, ‘suspend’, and ‘abort’ on
the right hand side are for novice actors who want to
interact with the system at each and every stage of
the process. They can use these buttons to indicate
what actions they are doing. The enactment engine
updates the process state based on these notifications
and shows the updated process state in the left panel.

Thus, when asked for help, the enactment engine can
provide the actor with adequate help on what to do next
depending on far he is done and on what the process model
indicates.

4 Reated Work

A significant amount of research has been done toward de-
velopment of adaptive, flexible and dynamic workflow sys-
tems. Based on the approaches taken, we can broadly clas-
sify the research done so far into five categories.

The first approach views deviations from the normal
flow of work as ‘exceptions’. In this view, a process has a
normal sequence of tasks, and occasional exceptions to the
normal sequence where tasks are skipped, performed out
of order, An example of this approach is the MILANO sys-
tem [1], which augments execution of processes modeled
as simple Petri-nets with the ability to skip or change the
order of places in the net. Another example of the excep-
tion handling approach is the PROSYST system [5]. Just
as is the case in our approach, users are not forced to satisfy
the constraints stated in the process model.

Another approach to handling deviations as excep-
tions focuses on a consistent and effective evolution of the
workflow model as a basic step toward making workflow
systems flexible. Such systems allow modification of the
workflow models at runtime. For example, Casati and col-
leagues [4] allow modifications to the flow structure of a
running process instance; another approach uses the con-
cept of inheritance to achieve flexible and reusable work-
flow models [13].

Implicit in the exception-handling view of flexibility
is the notion that there is a “right” or “normal” sequence
of tasks, and exceptional deviations. In contrast, we view
deviations from the nominal sequence as both normal an
unexceptional.

Processes are not always well enough understood to
be fully specified as a detailed model. To cope with this sit-
uation, Jorgensen proposes an approach allowing initially
ambiguous process models to be deployed, calling on the
actor to interpret the ambiguous parts [9]. Thus, enactment

S submit_hw.pml (pid: 0) ||
create_pdf_file :
¢ Cselection
msubmit_hardcopy|
? Csequence
msubmit_email
mverify_ack

state: READY

Script:

submit_hardcopy

[Required Resource: fhome/jigar fhomework.pdf

No Resources Provided

Print a copyv of /home/jigar /homework.pdf and turn it in

at the beginning of class.

|| Rebind Previous Mext

o = I i @ jigar@dhcp-19-53:~femcleanypraject Q @ e
‘ @ @ Ll Peos GUI :

Figure 5. User Interface

takes place as a dialog between the actor and the enact-
ment mechanism, ultimately leading to a refinement of the
model into a complete, unambiguous specification. Sadiq
and colleagues [10] also define flexibility as the ability of
the process to execute on the basis of a partially defined
model where the full specification is made at runtime and
maybe unique for each instance.

Many researchers attribute the lack of flexibility in
workflow to process model specifications that are too rigid.
As an alternative, Glance and colleagues [8] propose a con-
straint specification language that can be used to specify the
goals of the process, without having to specify the order
of the activities to be performed. This gives actors max-
imum flexibility in achieving the process goal: they can
select the most appropriate sequence of tasks as long as
they do not violate the constraints specified in the process
model. Dourish and colleagues [11] also use a constraint
based process modeling formalism. Its focus is on medi-
ation between process and action rather than enactment of
a process. However, the increased flexibility comes at the
cost of providing guidance to the user.

Process mining and plan inference are two research
areas that also attempt to infer process data from the state
of the environment. Cook and Wolf have applied process
mining techniques on software engineering processes [6]
They describe three approaches to discover processes from
event streams - algorithmic, using neural networks, and a

Markovian approach. Application of process mining in
the context of workflow management is presented in [2].
This work deals with the problem of generating workflow
graphs from workflow events recorded in a workflow log
and presents an algorithm to construct such graphs.

Though not directed explicitly to workflow support,
plan inference is conceptually similar to our approach of
inferring process state from user actions. The goal is to in-
fer intent by observing the actions of the actor. One such
application of this idea is discussed in [12], which uses plan
inference techniques for providing context sensitive help.
However, the goal of this approach is to deduce what plan
is being followed, rather than the state of a previously iden-
tified plan (or process).

Unlike process mining or plan inference, we start with
an existing process model and then infer the state of an in-
stance of this model, thus avoiding some of the computa-
tional complexity involved in constructing a model from
scratch.

5 Conclusion

We have proposed a process support system, which is more
explanatory in nature, rather than enforcing, and which is
flexible enough to support actors with varying degrees of
expertize, ranging from novices to experts. While the sys-

tem can support actors interacting with it at each and every
stage of the process, it can also support actors who like to
have a free hand while doing the work and need guidance
only when in doubt. The system is truly ‘descriptive’ in the
sense that, the actor does not even need to inform the sys-
tem about the activities he has performed while executing
the process. The system infers the state of the process by
inferring the state of products evolved during the execution
of the process, and uses this inferred state and the process
specification to provide guidance when asked.

We believe that this approach is well suited for sup-
porting knowledge intensive work, where the expertise
level of actors ranges from novices to experts. Since the
system does not prescribe any flow of work, experts have a
free hand in doing the actual work in a way that seems best
to them. They are not forced into doing anything. Also,
since the system provides guidance when asked for, it is
useful for novice actors who may want guidance at every
stage of process execution.

Our initial experience with the system has been posi-
tive. We feel that the approach we have proposed has poten-
tial and plan to conduct more extensive experiments using
the proof of concept system we have developed during the
course of this research.

Acknowledgments

This work is supported in part by the National Science
Foundation under Grant No. 11S-0205679, through subcon-
tract from the University of California, Irvine; and by IBM
Faculty Research and Arthur Vining Davis grants awarded
through Santa Clara University. No endorsement is im-
plied.

References

[1] A. Agostini and G. D. Michelis. A light workflow
management system using simple process models.
Computer Supported Cooperative Work, 9(3-4):335-
363, Aug. 2000.

[2] R. Agrawal, D. Gunopulos, and F. Leymann. Mining
process models from workflow logs. Lecture Notes in
Computer Science, 1377:469-483, 1998.

[3] D.C. Atkinson and J. Noll. Automated validation and
verification of process models. In Proceedings of the
2003 IASTED Conference on Software Engineering
Applications, Marina Del Rey, CA, USA, November
2003.

[4] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Work-
flow Evolution. In International Conference on Con-
ceptual Modeling / the Entity Relationship Approach,
pages 438-455, 1996.

[5] C.Cugola. Tolerating Deviations in Process Support
Systems via Flexible Enactment of Process Models .

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

IEEE Transactions on Software Engineering, 24(1),
1998.

J. E. Cook and A. L. Wolf. Discovering models
of software processes from event-based data. ACM
Transactions on Software Engineering and Method-
ology, 7(3):215-249, 1998.

P. Dourish. Process descriptions as organizational ac-
counting devices: The dual use of workflow technolo-
gies. In Proceedings of the 2001 International ACM
SIGROUP Conference on Supporting Group Work,
pages 52-60, Boulder, Colorado, USA, Oct. 2001.
ACM Press.

N. S. Glance, D. S. Pagani, and R. Pareschi. General-
ized process structure grammars (GPSG) for flexible
representations of work. In Proceedings of the 1996
ACM Conference on Computer Supported Coopera-
tive Work, pages 180-189. ACM Press, 1996.

H. D. Jorgensen. Interaction as a framework for
flexible workflow modelling. In Proceedings of the
2001 International ACM SIGROUP Conference on
Supporting Group Work, pages 32-41, Boulder, Col-
orado, USA, Oct. 2001. ACM Press.

P. Mangan and S. Sadig. On Building Workflow
Models for Flexible Processes. In X. Zhou, ed-
itor, Thirteenth Australasian Database Conference
(ADC2002), Melbourne, Australia, 2002. ACS.

P.Dourish, J.Holmes, A.MacLean, P.Marqvardsen,
and A.Zbyslaw. Freeflow: Mediating between rep-
resentation and action in workflow systems. In Pro-
ceedings of the 1996 ACM Conference on Computer
Supported Cooperative Work, pages 190-198. ACM
Press, 1996.

K.-J. Quast. Plan recognition for context sensitive
help. In Proceedings of the 1st international con-
ference on Intelligent user interfaces, pages 89-96.
ACM Press, 1993.

G. Yang. Process inheritance and instance modifica-
tion. In Proceedings of the 2003 International ACM
SIGROUP Conference on Supporting Group Work,
pages 229-238, Sanibel Island, Florida, USA, Nov.
2003. ACM Press.

Process Breakdown, Recovery and Articulation

This section contains the following two chapters that examines issues that arise when
complex processes or hidden workflows that span one or more enterprises breakdown,
and must be repaired or re-articulated in order for the process to complete.

Margaret Elliott, and Walt Scacchi, Free Software Development:
Cooperation and Conflict in a Virtual Organizational Culture, in S.
Koch (ed.), Free/Open Source Software Development, 152-172, Idea
Publishing, Pittsburgh, PA, 2005.

Chris Jensen and Walt Scacchi, Collaboration, Leadership,
Control, and Conflict Negotiation in the NetBeans.org Software
Development Community, Proc. 38th. Hawaii Inter. Conf.
Systems Science, Waikoloa Village, HI, January 2005.

Free Software Development: Cooperation and Conflict in A
Virtual Organizational Culture

Margaret S. Elliott
Institute for Software Research
University of California, Irvine

Irvine, CA 92697
949 824-7202
melliott@jics.uci.edu

Walt Scacchi
Institute for Software Research
University of California, Irvine

Irvine, CA 92697

949 824-4130

wscacchi@ics.uci.edu

August 2003
Previous version: May 2003

Revised version submitted to:
S. Koch (ed.), Free/Open Source Software Development, IDEA Publishing, 2004.

Acknowledgements: The research described in this report is supported by grants from
the National Science Foundation #I11S-0083075, #ITR-0205679 and #ITR-0205724. No
endorsement implied. Mark Ackerman at the University of Michigan Ann Arbor; Les
Gasser at the University of Illinois, Urbana-Champaign; John Noll at the Santa Clara
University; Chris Jensen, Mark Bergman, and Xiaobin Li at the UCI Institute for
Software Research, and also Julia Watson at The Ohio State University are collaborators
on the research project that produced this chapter.

Free Software Development: Cooperation and Conflict in A
Virtual Organizational Culture

1 Introduction
Free/open source software development (F/OOSD) projects are growing at a rapid rate. The

SourceForge Web site estimates 600,000+ users with 700 new ones joining every day and a total
of 60,000+ projects with 60 new ones added each day. Thousands of F/OOSD projects have
emerged within the past few years (DiBona, et al., 1999; Pavlicek, 2000) leading to the
formation of globally dispersed virtual communities (Kollock and Smith, 1999). Examples of
open software projects are found in the social worlds that surround computer game development;
X-ray astronomy and deep space imaging; academic software design research; business software
development; and Internet/Web infrastructure development (Elliott, 2003; Elliott and Scacchi,
2002; Elliott and Scacchi, 2003; Scacchi 2002a, 2002b). Working together in globally
distributed virtual communities, F/OSS developers communicate and collaborate using a wide
range of web-based tools including Internet Relay Chat (IRC) for instant messaging, CVS for

concurrent version control (Fogel, 1999), electronic mailing lists, and more (Scacchi, 2002b).

Proponents of F/OSS claim advantages such as improved software validity, simplification of
collaboration, and reduced software acquisition costs. While some researchers have examined
F/OOSD using quantitative studies exploring issues like developer defect density, core team size,
motivation for joining free/open source projects, and others (Koch and Schneider, 2000; Mockus
et al., 2000, 2002), few researchers have explored the social phenomena surrounding F/OOSD
(Berquist, M. and J. Ljungberg, 2001; Mackenzie ef al., 2002). While the importance of

understanding the culture of FOSS developers has been discussed in popular literature (Pavlicek,

2000; Raymond, 2001), no researchers have articulated the work culture of F/OOSD in a virtual
organization. In this chapter, we present the results of a virtual ethnography to study the work
culture and F/OOSD work processes of a free software project, GNUenterprise (GNUe)

(http://www.gnuenterprise.org). We identify the beliefs and values associated with the free

software movement (Stallman, 1999a) which are manifested into the work culture of the GNUe
community and we show the importance of computer-mediated communication (CMC) such as
chat/instant messaging and summary digests in facilitating teamwork, resolving conflicts, and

building community.

The free software movement promotes the production of free software that is open to anyone to
copy, study, modify, and redistribute (Stallman, 1999b). The Free Software Foundation (FSF)
was founded by Richard M. Stallman (known as RMS in the F/OSS community) in the 1970s to
promote the ideal of freedom and the production of free software, based on the concept that
source code is fundamental to the furthering of computer science, and that free source code is
necessary for innovation to flourish in computer science (DiBona et al., 1999). It is important to
distinguish between the terms free software (Stallman, 1999a) and open source (DiBona et al.,
1999). Free software differs from open source in its philosophical orientation. RMS feels that
the difference is in their values, their ways of looking at the world.

“For the Open Source movement, the issue of whether software should be open source is

a practical question, not an ethical one. As one person put it, ‘Open source is a

development methodology; free software is a social movement.” For the Open Source

movement, non-free software is a suboptimal solution. For the Free Software movement,

non-free software is a social problem and free software is the solution.
http://www.fsf.org/philosophy/free-software-for-freedom.html

A popular expression in the free software culture is “Think free speech, not free beer.” The

FSF promotes the use of the General Public License (GPL) for free software development as

well as other similar licenses (http://www.gnu.org/licenses/license-list.html). While the

majority of open source projects use the GPL, alternative licenses suggested by the Open

Source Inititative (OSI) are also available (see http:/www.opensource.org).

The free software movement has spawned a number of free software projects all adhering to the

belief in free software and belief in freedom of choice (http://www.gnu.org) as part of their

virtual organizational culture. As with typical organizations (Martin, 1992, Schein, 1992),
virtual organizations develop work cultures, which have an impact on how the work is
completed. Each of these free software projects basically follow the suggested work practices

outlined on the FSF Web site (see http://www.fsf.org) for initiating and maintaining a free

software project. However, each project may also have cultural norms generic to their particular
virtual organization. Subsequently, there is a need for better articulation of how these free
software beliefs and values may influence F/OOSD. Managers and developers of F/OOSD
projects would benefit from an understanding of how the culture of the free software movement
influences work practices. In this chapter, we present empirical evidence from the GNUe case
study of the influence that beliefs and values of the free software movement have on teamwork,
tool choices, and conflict resolution in a free software development project. The results show a
unique picture of one free software community and how they rely on CMC for software and
documentation reviews, bug fixes, and conflict resolution. As with all qualitative research (Yin,
1992; Strauss and Corbin, 1990), we do not intend to portray a generalized view of all free
software development projects. However, research has shown that many F/OOSD projects
follow similar procedures (Scacchi 2002b). Future research will show how closely the GNUe

work culture resembles that of other free software projects.

In the section 2 we present the GNUe project, followed by research methods in section 3. In
section 4, we present background and in section 5 we discuss the GNUe virtual organizational
culture with a conceptual diagram followed a description of the cases in section 6. Next we
present a discussion of the data in section 7 followed by recommendations in section 8. We

finish the chapter with section 9 on future research and section 10 as conclusions.

2 GNUe Project
GNUe is a meta-project of the GNU (http://www.gnu.org) Project. GNUe is organized to collect

and develop free electronic business software in one location on the Web. The plans are for
GNUe to consist of:

1. aset oftools that provide a development framework for enterprise information
technology professionals to create or customize applications and share them across
organizations;

2. aset of packages written using the set of tools to implement a full Enterprise Resource
Planning system; and

3. ageneral community of support and resources for developers writing applications using
GNUe tools. The GNUe Web site advertises it as a “Free Software project with a corps
of volunteer developers around the world working on GNUe project.”

GNUe is an international virtual organization for software development (Crowston and 2002;
Noll and Scacchi, 1999) based in the U.S. and Europe. This organization is centered about the
GNUe Web portal and global Internet infrastructure that enables remote access and
collaboration. As of the writing of this paper, GNUe contributors consist of 6 core maintainers
(co-maintainers who head the project); 18 active contributors; and 18 inactive contributors. The

6 core maintainers share various tasks including the monitoring of the daily IRC, accepting bug

fixes to go into a release, testing software, documentation of software, etc. Another task for
these core maintainers appears to be that of trying to resolve conflicts and answering questions
regarding GNUe. For the duration of the IRC logs that we studied, several core maintainers were
on the IRC almost the entire day. Companies from Austria, Argentina, Lithuania, and New
Zealand support paid contributors, but most of the contributors are working as non-paid

participants.

3 Research Methods
This ongoing ethnography of a virtual organization (Hine, 2000; Olsson, 2000) is being

conducted using the grounded theory approach (Strauss and Corbin, 1990) with participant-
observer techniques. The sources of data include books and articles on OSSD, instant messaging
(Herbsleb and Grinter, 1999, Nardi et al., 2000) transcripts captured through IRC logs, threaded
email discussion messages, and other Web-based artifacts associated with GNUe such as Kernel

Cousins(summary digests of the IRC and mailing lists — see http://kt.zork.net). This research

also includes data from email and face-to-face interviews with GNUe contributors, and
observations at Open Source conferences. The first author spent over 100 hours studying and
perusing IRC archives and mailing list samples during open and axial coding phases of the
grounded theory. During open coding the first case study presented here was selected as
representative of the strong influence of cultural beliefs on GNUe software development
practices. The selection of cases was aided by the indexing of each Kernel Cousin into sections
labeled with a topic. For example, we read through all Kernel Cousins looking mainly at the
indices only and found the following title “Using Non-Free Tools for Documentation” in

(http://kt.zork.net/GNUe/gnue20011124 4.html). Hyperlinks from this cousin pointed us to a

similar case where non-free tools were being used for documentation of code. The third case

was found by coding the last file in the three day series for the case two debate. In the third case,

a newcomer asks for help regarding the use of GNUe and we show how cooperation and

community building are facilitated by the use of IRC.

The initial research questions that formed the core of the grounded theory are:
1) How do people working in virtual organizations organize themselves such that work is
completed?
2) What social processes facilitate open source software development?
3) What techniques are used in open source software development that differ from typical

software development?

We began this research with the characterization of open source software communities as
communities of practice. A community of practice (COP) is a group of people who share similar
goals, interests, beliefs, and value systems in a common domain of recurring activity or work
(Wenger, 1998). An alternative way of viewing groups with shared goals in organizations is to
characterize them as organizational subcultures (Trice and Beyer, 1993; Schein, 1992; Martin,
2002). As the grounded theory evolved, we discovered rich cultural beliefs and norms
influencing “geek” behavior (Pavlicek, 2000). This led to us to the characterization of the COPs

as virtual organizations having organizational cultures.

We view culture as both objectively and subjectively constrained (Martin, 2002). In a typical
organization, this means studying physical manifestations of the culture such as dress norms,
reported salaries, annual reports, and workplace furnishings and atmosphere. In addition,
subjective meanings associated with these physical symbols are interpreted. In a virtual

organization, these physical cultural symbols are missing, so we focus on unique types of

accessible manifestations of the GNUe culture, such as Web site documentation and
downloadable source code. We use the grounded theory approach to build a conceptual
framework and develop a theory regarding the influence of organizational culture on software
development in a free software project (Strauss and Corbin, 1990). Data collection includes the
content analysis of Web site documents; IRC archives; mailing lists; kernel cousins; email

interviews; and observations and personal interviews from open source conferences.

During the open coding, we interpreted books and documents as well as Web site descriptions of
the OSSD process. We discovered strong cultural overtones in the readings and began searching
for a site to apply an analysis of how motivations and cultural beliefs influenced the social
process of OSSD. We selected GNUe as a research site because it exemplified the essence of
free software development providing a rich picture of a virtual work community with a rapidly
growing piece of downloadable free software. The GNUe Web site offered access to
downloadable IRC archives and mailing lists as well as lengthy documentation - all facilitating a
virtual ethnography. We took each IRC and kernel cousin related to the three cases and applied
codes derived from the data (Strauss and Corbin, 1990). We used a text editor to add the codes
to the IRC text logs using [Begin and End] blocks around concepts we identified such as “belief
in free software”. In this way, we discovered the relationships shown in Figure 1. During the
axial coding phase of several IRC chat logs, mailing lists and other documentation, we
discovered relationships between beliefs and values of the work culture and manifestations of the
culture. In the next section we discuss the organizational culture perspective and studies relating

to conflict resolution in cyberspace.

4 Background

In this section, we discuss the organizational culture perspective that is used to characterize the
work culture of the virtual organization, GNUe. Next we discuss literature related to conflict
resolution in virtual communities.

4.1 Organizational Culture Perspective

Popular literature has described open source developers as members of a “geek” culture
(Pavlicek, 2000) notorious for nerdy, technically savvy, yet socially inept people, and as
participants in a “gift” culture (Berquist and Ljungberg, 100; Raymond, 2001) where social
status is measured by what you give away. However, no empirical research has been conducted
to study FOSS developers as virtual organizational cultures (Martin, 2002; Schein, 1992) with
beliefs and values that influence decisions and technical tool choices. Researchers have
theorized the application of a cultural perspective to understand IT implementation and use
(Avison and Myers, 1995), but few have applied this to the workplace itself (Dube” and Robey,

1999; Elliott, 2000).

Much like societal cultures have beliefs and values manifested in norms that form behavioral
expectations, organizations have cultures that form and give members guidelines for “the way to
do things around here.” An organizational culture perspective (Martin, 2002; Schein, 1992;
Trice and Beyer, 1993) provides a method of studying an organization’s social processes often
missed in a quantitative study of organizational variables. Organizational culture is a set of

socially established structures of meaning that are accepted by its members (Ott, 1989).

The substances of such cultures are formed from ideologies, the implicit sets of taken-for-granted
beliefs, values, and norms. Members express the substance of their cultures through the use of

cultural forms in organizations -- acceptable ways of expressing and affirming their beliefs,

values and norms. When beliefs, values, and norms coalesce over time into stable forms that
comprise an ideology, they provide causal models for explaining and justifying existing social
systems. In a virtual organization, cultural beliefs and values are manifest in norms regarding
communication and work issues (if a work-related community like OSSD) and in the form of
electronic artifacts — IRC archives, mailing list archives, and summary digests of these archives
as Kernel Cousins. Most organizational culture researchers view work culture as a consensus-
making system (Ott, 1989; Trice and Beyer, 1993; Schein, 1992). In the GNUe study, we apply
an integration perspective (Martin, 2002) to the GNUe community to show how beliefs and
values of the free software movement tie the virtual organization together in the interests of
completing the GNUe free software project (See Elliott and Scacchi, 2003 for a detailed report of
the GNUe study). We present the GNUe virtual organization as a subculture of the FSF

inculcating the beliefs and values of the free software movement into their everyday work.

4.2 Conflict Resolution in Virtual Communities

Researchers have attempted to understand conflict resolution in virtual communities (Kollock and
Smith, 1996; Smith, 1999) in the areas of online communities and in the game world. Many others
have studied conflict resolution in common work situations such as computer-supported cooperative
work (CSCW) (Easterbrook, 1993). For our purposes, we are interested in virtual communities and

how they resolve conflicts so this discussion does not include studies on conflict management tools.

Smith (1999) studied conflict management in MicroMUSE, a game world dedicated to the
simulation and learning about a space station orbiting the earth. There were two basic classes of
participants: users and administrators. Disputes arose in each group and between the two groups

regarding issues like harassment, sexual harassment, assault, spying, theft, and spamming. These

problems emerged due to the different meanings attributed to MicroMUSE by its players and
administrators and due to the diverse values, goals, interests, and norms of the group. Smith
concluded that virtual organizations have the same kinds of problems and opportunities brought by
diversity as real organizations do, and that conflict is more likely, and more difficult to manage than
in real communities. Factors contributing to this difficulty are: wide cultural diversity; disparate
interests, needs and expectations; nature of electronic participation (anonymity, multiple avenues of
entry, poor reliability of connections and so forth); text-based communications; and power
asymmetry among users. On the contrary, in our GNUe study, we found that text-based

communications via the archival text (IRC and Kernel Cousins) enabled the conflict resolution.

Kollock and Smith (1996) explored the implications of cooperation and conflict in Usenet groups
emphasizing the importance of recognizing the free-rider problem. In a group situation where one
person can benefit from the product or resource offered by others, each person is motivated not to
contribute to the joint effort, instead free-riding on others’ work. The authors do a detailed analysis
of this free-rider problem and give suggestions for how to avoid it in Usenet groups. For example,
they suggest bandwidth be used judiciously, posting useful information and refraining from posting
inappropriate information as a way to better manage bandwidth. Success on a Usenet group also
depends on its members following cultural rules of decorum. We explore the topic of following

cultural rules in the next section by presenting the conceptual framework of the GNUe study.

S Conceptual Diagram of GNUe Virtual Organizational Culture
The substance of a culture is its ideology — shared, interrelated sets of emotionally charged

beliefs, values and norms that bind people together and help them to make sense of their worlds
(Trice and Beyer, 1993). While closely related to behavior, beliefs, values, and norms are unique

concepts as defined below (Trice and Beyer, 1993):

10

» Beliefs — Express cause and effect relations (i.e. behaviors lead to outcomes).
* Values — Express preferences for certain behaviors or for certain outcomes.

* Norms — Express which behaviors are expected by others and are culturally acceptable

As members of the FSF, free software developers share an ideology based on the belief in free
software and the belief in freedom of choice. These beliefs are espoused in the literature on free
software (Williams, 2002). The values of cooperative work and community are inferred from
this research. Figure 1 shows a conceptual diagram of the GNUe case study. The causal
conditions consist of the beliefs (free software and freedom of choice) and the values
(cooperative work and community). The phenomenon is the free software development process
— its formal and informal work practices. The interaction/action occurs on the IRC and mailing
lists. It consists of 1) the conflict over the use of a non-free tool to create a graphic diagram of
the emerging GNUe system design, 2) the conflict over the use of a non-free tool to create GNUe
documentation. The consequences are: 1) building community; 2) resolution of conflicts with a
reinforcement of the beliefs; and 3) teamwork is strengthened. The beliefs, values, and norms
are described below; the consequences are presented in the Discussion section.

5.1.1 Beliefin Free Software
The belief in free software appears to be a core motivator of free software developers. GNUe

developers extol the virtues of free software on its Web site and in daily activity on the IRC logs.
The FSF Web site has many references to the ideological importance of developing and

maintaining free software (See http://www.fsf.org). This belief is manifested in electronic

artifacts such as the Web pages, source code, GPL license, software design diagrams, and

accompanying articles on their Web site and elsewhere. The data analysis of the GNUe cases

11

showed that this belief varies from moderate to strong in strength. For example, those who have
a strong belief in free software refuse to use any form of non-free software (such as a
commercial text editor) for development purposes. The variation in strength of this variable

becomes the focal point of case two.

Causal Conditions Phenomenon Action/Interaction Consequences
Beliefs —
Free Software | Informal/Formal Newcomer Building
Freedom of Work Practices immediately Community
Choice accepted as
- Real-time Code —» contributor —P
and Design
Reviews
Values - CVS Releases
Community i)Softlware Cand
Cooperative > cvelopment any
WOrllj(Documentation |
gor];ﬂlcts and Resolution of
Ofen;tlesf :ever use conflicts
-1 .
Reinforces
i L Tools for GNUe —> Belicfs
documentation
Norms
Informal Management
> Acceptance of Electronic Artifacts
OutsiIZiers RC Real-time and Logs
Open Disclosure Mailing Lists .
Kernel Cousins Strong Belief
Private Email in Teamwork
Free Software facilitated

Figure 1. Conceptual Diagram of Variables
5.1.2 Belief in Freedom of Choice
Open source software developers are attracted to the occupation of OSSD for its freedom of
choice in work assignments. Both paid and unpaid GNUe participants to some degree can select
the work they prefer. This belief is manifested in the informal methods used to assign or select
work in an open source project. During an interview with one of the core contributors of GNUe,
Derek, at a LinuxWorld conference in August 2002, we asked how assignments were made and

monitored. Derek answered with:

12

“The number one rule in free software is ‘never do timelines or roadmaps’.”
The belief in freedom of choice also refers to the ability to select the tool of choice to develop
free software. Some OSS developers believe that a mix of free versus non-free software tools is

acceptable when developing free software, while others adhere to the belief in free software only.

5.1.3 Value in Community
The beliefs in free software and freedom of choice foster a value in community building as part

of routine work. This value is evident in the IRC archives when newcomers join GNUe offering
suggestions, or pointing out bugs, and GNUe contributors quickly accept them as part of the
community. For example, when frequent contributors (insiders) have a problem with
procedures or code related to free versus non-free software, the maintainers rally around the

insider trying to convince him that a temporary use of non-free software is OK.

5.1.4 Valuein Cooperative Work
The GNUe community’s beliefs in free software and freedom of choice combined with the value

in community foster a value in cooperative work. As with previous researchers (Easterbrook,
1993; Kollock and Smith, 1996; Smith, 1999), our results indicate that conflict arises during the
course of cooperative work. GNUe contributors work cooperatively to resolve conflicts through

the use of IRC and mailing lists.

5.1.5 Open Disclosure
Open disclosure refers to the open content of the GNUe Web site including the software source

code, documentation, and archived records of IRC, kernel cousins, and mailing list interchanges.
The GNUe contributors join others online via IRC on a daily basis and record the conversations
for future reference. All documentation and source code are easily downloaded from the GNUe

Web site and user criticism is welcomed by frequent GNUe maintainers.

13

5.1.6 Informal Management
The entire GNUe virtual organization is informal. There is no lead organization or prime

contractor that has brought together the alliance of individuals and sponsoring firms as a network
virtual organization. It is more of an emergent organizational form where participants have in a
sense discovered each other, and have brought together their individual competencies and
contributions in a way whereby they can be integrated or made to interoperate (Crowston and
Scozzi, 2002). The participants come from different small companies or act as individuals that
collectively move the GNUe software and the GNUe community forward. Thus, the participants
self-organize in a manner more like a meritocracy (Fielding, 1999). There is a flow to the work

determined by participants’ availability.

5.1.7 Immediate Acceptance of Outsider Critiques
In the GNUe organization, outsiders who have not visited the GNUe IRC before, can easily join

the discussion and give criticisms of the code or procedures. Sometimes this criticism revolves
around the use of free versus non-free tools and other times it is related to attempts to fix bugs in
the code. In either case, the GNUe maintainers who discuss these critiques respect and respond

to outsiders reviews with serious consideration even without knowing the reviewer’s credentials.

6 GNUe Case Study

The GNUe case study consists of the analysis of three cases of software development
communication over the IRC. They involve 1) the debate over the use of a non-free tool for
creation of a graphic; 2) the debate over the use of a non-free tool for GNUe documentation
creation and maintenance; and 3) the initiation of a newcomer who fixes bugs in realtime.
Each case will be described briefly in this section. For a more detailed description, see (Elliott

and Scacchi, 2003).

14

6.1 Case One — Use of Non-Free Graphic Tool for Documentation
In this section we present the first case study that reveals a trajectory of a conflict and debate

over the use of a non-free tool to create a graphic on the GNUe Web site (See

http://www.gnuenterprise.org/irc-logs/gnue-public.log.25Nov2001). This exchange takes place

on November 25, 2001 on the IRC channel and ends the next morning. This example illustrates
the ease with which a newcomer comes onboard and criticizes the methods used to produce a
graphical representation of a screenshot on the GNUe Web site. CyrilB, an outsider to GNUe,
finds a graphic that was created using Adobe Photoshop, a non-free graphical tool. He begins
the interchange with a challenge to anyone onboard stating that “it is quite shocking” to see the
use of non-free software on a free software project. He exhibits a strong belief in free software,
which causes a debate lasting a couple of days. Table 1 displays the total number of contributors
and the number of days of the conflict. Eight of the nine regular GNUe contributors were
software developers and one was working on documentation. The infrequent contributors drifted

on and off throughout the day — sometimes lurking and other times involved in the discussion.

Total Contributors | Regular Infrequent Number of Days
Contributors Contributors
17 9 8 1

Table 1 — Contributors and Duration of Conflict in Case One
The strong belief in free software of the outsider leads to conflict among those insiders who
have a moderate view of the use of free software for GNUe software development. A daylong
debate ensues among the Neilt, creator of the graphic, CyrilB, and other GNUe contributors
regarding the use of a non-free software tool to create a graphic for a GNUe screenshot for Web

site documentation.

15

CyrilB uses his strong view of belief in free software to promote the spirit of the free software
movement by exclaiming that images on the gnuenterpise.org Web site seem to be made with
non-free Adobe software. His reaction provokes strong reactions from GNUe contributors:

“ hope I'm wrong: it is quite shocking...We should avoid using non-free software at all
cost, am | wrong? (Strong BIFS-1)”

Reinhard responds with a moderate view of belief in free software:

“Our main goal is to produce good free software. We accept contributions without

regarding what tools were used to do the work especially we accept documentation in

nearly any form we can get because we are desparate for documentation.” (Moderate

View BIFS-1).
Once CyrilB has pointed out the use of the non-free graphic, Neilt, who originally created the
GNUe diagram using Adobe Photoshop, joins the IRC, reviews the previous discussion on the
archived IRC, and returns to discuss the issue with Reinhard and CyrilB. A lively argument

ensues between Neilt and others with onlookers contributing suggestions for the use of free tools

to develop the Adobe graphic.

Meanwhile Maniac, who has been “listening” to this debate, jumps in and gives technical details
about a PNG image. Then Reinhard and Neilt agree that CyrilB had a valid point since a PNG
has no vector information stored and so it would be difficult to use free software to edit the
graphic. These exchanges illustrate how participants use the IRC medium to support and enable
the cooperative work needed to resolve this issue. It also conveys the community spirit and
cooperative work ethic that is a value in the GNUe work culture. They both agree to wait until

CyrilB comes back to give more suggestions for an alternative.

Outside critiques of software and procedures used during development are common to the GNUe

project. One of the norms of the work culture is immediate acceptance of outsider

16

contributions. Eventually, Neilt, the creator of the non-free graphic questioned CyrilB’s
qualifications and was satisfied when he learned that CyrilB was a member of the European Free
Software Foundation. However, he was willing to fix the graphic prior to the revelation of

CyrilB’s credentials.

Consequences of the debate are a reinforcement of the belief in free software, value in
community, and value in cooperative work; and a recreation of a Web site graphic with free
software to replace the original created with a non-free software tool.

6.2 Case Two — Use of Non-Free Software for GNUe Documentation

The second case study explores project insider review of the procedures and practices for

developing GNUe documentation (See http://www.gnuenterprise.org/irc-logs/gnue-

public.log.15Nov2001 for the full three day logs). Once again the debate revolves around

polarized views of the use of non-free tools to develop GNUe documentation. In this case,
Chillywilly, a frequent contributor, balks at the need to implement a non-free tool on his
computer in order to edit the documentation associated with a current release. Even though his
colleagues attempt to dissuade him from his concerns by suggesting that he can use any editor —
free or non-free- to read the documentation in HTML or other formats, Chillywilly refuses to
back down from his stance based on a strong belief in free software. This debate lasts three
days. Table 2 displays the number of contributors and their classification for participation in
case two. This case exemplifies the fierce adherence to the belief in free software held by some
purists in the free software movement and how it directs the work of the day. While the three
day debate reinforces beliefs and values of the culture, at the same time, it ties up valuable time
which could have been spent writing code or documentation, yet it contributes to community

building.

17

Total Contributors | Regular Infrequent Number of Days
Contributors Contributors
24 9 15 3

Table 2 — Contributors and Duration of Conflict over Documentation
In order to understand this example, some background information is needed. The GNUe core
maintainers selected a free tool to use for all documentation called docbook

(http://www.docbook.org). DocBook is based on an SGML document type definition which

provides a system for writing structured documents using SGML or XML. However, several
GNUe developers as of November 15, 2001 were having trouble with its installation.

Consequently, they resorted to using lyx tool to create documentation (http:/www.lyx.org)...

The problem with lyx is that even though it was developed as a free software tool, its graphical
user interface (GUI) requires the installation of a non-free graphics package (called /ibxforms).
Chillywilly gets upset with the fact that he has to install non-free software in order to read and
edit GNUe documentation. A lengthy discussion ensues with debates over which tool to use for
GNUe documentation. This debate lasts for three days taking up much of the IRC time until
Chillywilly finally gives up the argument. The strength in the belief in free software drives this
discussion. The debate and its resolution also illustrate the tremendous effort by developers to
collaborate and work cooperatively through the use of the IRC channel. Although the discussion
is heated at moments, a sense of fun also pervades. Chillywilly begins on the November 14,
2001 IRC with an observation that a fellow collaborator, jamest, has made documents with lyx:

Action: chillywilly trout whips jamest for making lyx docs

Action: jcater troutslaps chillywilly for troutslapping jamest for making easy to do docs

<chillywilly> lyx requires non-free software

<Maniac> lyx rules
<chillywilly> should that be acceptable for a GNU project?

18

<jcater> chillywilly: basically, given the time frame we are in, it's either LyX documentation
with this release, or no documentation for a while (until we can get some other stinking
system in place)

<jcater> pick one :)

<chillywilly> use docbook then

<Maniac> lyx's graphics library is non-gpl (i.e. non-free software)

<chillywilly> I'm not writing your docs for you

<Maniac> this is an issue the developers are aware of but do not, at this time, have the
time to rectify

<chillywilly> Maniac: because they are **** KDE nazis

<chillywilly> that's who the original lyz authors are matthias, et. al.

<Maniac> well, my understanding is, they are working toward Ul independance, to make it
able to use differnt toolkits ie. kde, gnome, xyz as time/coding permit

Maniac questions chillywilly's incessant reminders about using non-free software as though this

myopic view of free software development is unnecessary. Chillywilly continues his debate

showing his strong view of free software.

Reinhard agrees with chillywilly as do others, but in order to complete the documentation, they
agree to use an interim solution. Chillywilly is so adamantly opposed to the use of non-free
software that he references Richard Stallman as part of his reasoning — “I will NOT install lyx
and make vrms unhappy”. This passage shows how RMS is considered the “guru” of the free
software movement. Eventually chillywilly sends an email to the mailing list:

“OK, I saw on the commit list that you guys made some LyX documents. | think it is

extremely ***that a GNU project would require me to install non-free software in order to

read and modify the documentation. | mean if | cannot make vrms happy on my debian

system them what good am | as a Free Software developer? Is docbook really this much

of a pain? | can build html versions of stuff on my box if this is what we have to do. This

just irks me beyond anything. | really shouldn't have to be harping on this issue for a GNU

project, but some ppl like to take convenience over freedom and this should not be

tolerated... Is it really that unreasonable to request that we not use something that requires

ppl to install non-free software? Please let me know. (Chillywilly, mailing list)”

A lengthy discussion of technical issues unrelated to the documentation problem ensues.

Meanwhile Jcater has sent a reply to Chillywilly's message to the mailing list.:

19

“I would like to personally apologize to the discussion list for the childish email you recently
received. It stemmed from a conversation in IRC that quickly got out of hand. It was never
our intention to alienate users by using a non-standard documentation format such as
LyX. Writing documentation is a tedious chore few programmers enjoy. The developers of
the GNUe client tools are no exception...The upcoming release was originally planned for
this past weekend. James and | decided to postpone the release... LyX was chosen
because it is usable and, more importantly, installable. After many failed attempts at
installing the requirements for docbook, James and | made the decision that LyX-based
documentation with the upcoming 0.1.0 releases was better than no documentation at
all....

PPS, By the way, Daniel, using/writing Free software is NOT about making RMS happy or
unhappy. He's a great guy and all, but not the center of the free universe, nor the
motivating factor in many (most?) of our lives. For me, my motivation to be here is a free
future for my son (Jcater, mailing list).”

The belief in freedom is a motivating factor for Jcater as stated above, even freedom for his son.
6.3 Case Three — Newcomer Asking for Help with GNUe Installation
In this example, mcb30 joins the IRC as a newcomer who wants to install and use GNUe

business applications for his small business in England (http://www.gnuenterprise.org/irc-

logs/gnue-public.log.16Nov2001). In addition, he offers his services as a contributor and

immediately starts fixing bugs in realtime. This case is a good example of the community
building spirit of GNUe since mcb30 is immediately accepted by frequent contributors especially

because he posts significant bug fixes very rapidly.

<mcb30> Is anyone here awake and listening?

<reinhard> yes

<mcb30> Excellent. I'm trying to get a CVS copy of GNUe up and running for the first(ish)
time - do you mind if | ask for a few hints?

<reinhard> shoot away :)

<reinhard> btw what exactly are you trying to run?

<reinhard> as "GNUe" as a whole doesen't exist (yet)

<reinhard> GNUe is a meta-project (a group of related projects)

<mcb30> OK - what | want to do is get *something™ running so | can get a feel for what
there is, what state of development it's in etc. - I'd like to contribute but | need to know
what already exists first!

<reinhard> ok cool

<reinhard> let me give you a quick overview

<mcb30> | have finally (about 5 minutes ago) managed to get "setup.py devel" to work

20

properly - there are 2 bugs in it
<mcb30> ok

Mcb30 goes offline and continues to fix bugs. He then comes back and suggests that he has a
patch file to help

<mchb30> I've got a patch file - who should | send it to? jcater?

<reinhard> jcater or jamest

<mcb30> ok, will do, thanks

<reinhard> mcb30: btw sorry if i tell you things you already know :)

<mcb30> don't worry - I'd rather be told twice than not at all! :-)

<reinhard> people appearing here in IRC sometimes have _very_ different levels of
information :)

<reinhard> look at examples/python/addrbook.py

<mcb30> excellent, thanks!

<mcb30> will have a play around

<reinhard> mcb30: i will have to thank you

<reinhard> mcb30: we are happy if you are going to help us

<reinhard> gotta leave now
Later mcb30 comes back to the IRC and posts code that he wrote to fix a problem and several
frequent contributors thank him and say that they wish they could hire him for pay. As with the
first case, contributors immediately accept them into the “club” and, as the chat unfolds, they ask

him for his credentials, motivation, and location (mcb30 is an educational consultant for IT in the

English school system).

7 Discussion
The three examples from the GNUe case study will be discussed in this section in relation to the

three main themes found in the data: realtime teamwork, building community, and conflict
resoluton. Each example comes from a detailed conding and content analysis of the IRCs.
7.1 Building Community

Kollock (1996) suggests that there are design principles for building a successful online

community such as identity persistence. He draws upon the work of Godwin (1994) showing

21

that allowing users to resolve their own disputes without outside interference and providing
institutional memory are two principles for making vritual communities work. Applying these
principles to the GNUe project shows that disputes are resolved simultaneously via IRC, and
recorded in IRC archives as a form of institutional memory. In the GNUe virtual community, the
community is continuously changing (when newcomers join even if for a brief time) yet the core
maintainers are dedicated for long periods of time. Here is a quote from Derek, a core
maintainer, who believes that the IRC helps them sustain their community:

“Many free software folks think IRC is a waste of time as there is 'goofing

off, but honestly | can say its what builds a community. | think a

community is necessary to survive. For example GNUe has been around for

more than 3 years. | can not tell you how many projects have come and

gone that were supposed be competition or such. | put our longevity
solely to the fact that we have a community.” (Derek, email interview (2002))

7.2 Conflict Resolution

In the two conflict resolution GNUe cases presented here, both issues resulted in a solution by
debate on the IRC and mailing lists. In the first case, the contributor who created the graphic
with ADOBE photoshop agreed to change it in the future using a free tool. In the second case,
chillywilly stopped badgering his co-workers about the use of a non-free graphics package to
complete documentation. His colleagues essentially told him to get back to work and use a text
editor if he is so worried about the use of /yx until they all can use the free software docbook. In
both cases, the conflicts were resolved in a reasonable amount of time via the IRC exchanges.
At the same time, the beliefs in free software are reinforced by people defending their positions
and this, in turn, helps to perpetuate the community.

7.3 Facilitating Teamwork

In each case there was evidence that as the day proceeded on the IRC, people were going offline

to experiment with free software that would help to resolve the conflict (i.e. a free graphics

22

package and a free text editor). Many infrequent contributors or newcomers who were lurking
and watching the problem unfold on the IRC, also gave technical advice for a tool to use to solve
the problem. The realtime aspect of the work clearly facilitates the teamwork since people could
simultaneously work together solving a technical problem. In the third case, a newcomer who
was having trouble with the GNUe installation was directed by a maintainer to the original
author of the code. Surprisingly, the original author joins the IRC that day and discusses the

bugs with mcb30.

8 Practical Implications
We have shown that the persistent recording of daily work using instant messaging (IRC) and

Kernel Cousins can serve as a community building avenue. Managers of open source might
benefit from incorporating these CMC mediums into their computing infrastructures. It assists
employees in conflict management and also binds the groups together by reinforcing the
organizational culture. As illustrated in the non-conflict GNUe example, the IRC serves as an
expertise Q&A repository. The author of the software quickly emerged and mcb30 was able to
gain detailed knowledge of how the system works. In addition, the IRC enables realtime
software design and debugging. As F/OOSD projects proliferate, managers should consider the

benefits of using an IRC to facilitate software development and to help build a community..

9 Future Research
We plan to continue with the analysis of GNUe data and compare the results with other free

software communities. Likewise, we expect to find similar beliefs and values in some open
source projects and plan to explore this phenomena. In this way, we can assertain whether
GNUe is in fact a unique culture (Martin, 2002) or whether other free software projects have

similar software development processes. A review of other GNU projects shows evidence of

23

proselitization of beliefs in free software (http://www.gnu.org/projects/projects.html). In

addition, in the LINUX community, there is an ongoing dispute about using Bitkeeper (non-free)
versus CVS (free) as a case management system. Other future research of interest is to
determine if having strong beliefs and values regarding free software contribute to a successful,

productive F/OOSD community.

10 Conclusions
Previous CSCW research has not addressed how the collection of IRC messaging, IRC transcript

logs, and email lists, and periodic digests (Kernel Cousins) can be collectively mobilized and
routinely used to create a virtual organization that embodies, transmits, and reaffirms the cultural
beliefs, values, and norms such as those found in free software projects like GNUe. Strong
organizational cultural beliefs in an F/OOSD virtual community combined with persisent
recordation of chat logs tie a group together and helps to build a community and perpetuate the
project. The beliefs in freedom, free software, and freedom of choice create a special bond for
the people working on free software projects. These beliefs foster the values of cooperative
work and community-building. Schein’s (1990) theory of organizational culture includes
revelation of underlying assumptions of cultural members that are on a mostly unconscious level.
In the GNUe world, the underlying assumptions of cooperative work and community-building
become ingrained in the everyday work practices in their pursuit of an electronic business and
ERP system implemented as free software. These beliefs and values enhance and motivate
acceptance of outsiders’ criticisms and resolution of conflict despite the distance separation and

amorphous state of the contributor population.

24

11 References
Avison, D. E., & Myers, M. D. (1995). Information Systems and Anthropology: An

Anthropological Perspective on IT and Organizational Culture. Information Technology and
People, 8, (43-56).

Berquist, M. and J. Ljungberg, The power of gifts: organizing social relationships in open source
communities, /nfo. Systems J., 11(4), 305-320, October 2001.

Crowston, K., & Scozzi, B. (2002). Exploring Strengths and Limits on Open Source Software
Engineering Processes: A Research Agenda. Paper presented at the 2" Workshop on Open
Source Software Engineering, Orlando, Florida.

DiBona, C., Ockman, S., & Stone, M. (1999). Open Sources: Voices from the Open Source
Revolution. Sebastol, CA: O'Reilly & Associates Inc.

Dubg, L., & Robey, D. (1999). Software Stories: Three Cultural Perspectives on the
Organizational Practices of Software Development. Accounting, Management and
Information Technologies, 9(4), 223-259.

Easterbrook, S. (Ed.). (1993). CSCW: Cooperation or Conflict. New York: Springer-Verlag.

Elliott, M. (2000). Organizational Culture and Computer-Supported Cooperative Work in a
Common Information Space: Case Processing in the Criminal Courts. (Vol. Unpublished
Dissertation). Irvine: University of California, Irvine.

Elliott, M. (2003). The Virtual Organizational Culture of a Free Software Development
Community. Paper presented at the 3rd Workshop on Open Source Software, Portland,
Oregon.

Elliott, M., & Scacchi, W. (2002). Communicating and Mitigating Conflict in Open Source
Software Development Projects, Working Paper: Institute for Software Research, University

of California, Irvine, http://www.ics.uci.edu/~melliott/commossd.htm

25

Elliott, M., & Scacchi, W. (2003). Free Software: A Case Study of Software Development in a
Virtual Organizational Culture. Working Paper: Institute for Software Research, University

of Calfornia Irvine, http://www.ics.uci.edu/~wscacchi/Papers/New/Elliott-Scacchi-GNUe-

study-DRAFT.pdf

Feller, J., & Fitzgerald, B. (2002). Understanding Open Source Software Development. N.Y .:
Addison-Wesley.

Fielding, R. T. (1999). Shared Leadership in the Apache Project. Communications of the ACM,
42(4), 42-43.

K. Fogel (1999). Supporting Open Source Development with CVS. Scottsdale, AZ: Coriolis
Press.

Easterbrook, S. M., Beck, E. E., Goodlet, J. S., Plowman, M., Sharples, M., & Wood, C. C.
(1993). A Survey of Empirical Studies of Conflict. In S. M. Easterbrook (Ed.), CSCW:
Cooperation or Conflict?, 1-68. London: Springer-Verlag.

Godwin, M. (1984). Nine Principles for Making Virtual Communities Work. Wired, 2.06, 72-73.

Gregory, K. (1983). Native-view Paradigms: Multiple Cultures and Culture Conflicts in
Organizations. Administrative Science Quarterly, 28, 359-376.

James D. Herbsleb, Rebecca E. Grinter (1999). Splitting the Organization and Integrating the

Code: Conway's Law Revisited. ICSE 1999: 85-95.
Hine, C. (2000). Virtual Ethnography. London: Sage.
Koch, S., & Schneider, G. (2000). Results from Software Engineering Research into Open

Source Development Projects Using Public Data, Wirtschaftsuniversitat Wien.

26

Kollock, P. (1996). Design Principles for Online Communities, The Internet and Society:

Harvard Conference Proceedings, http://sscnet.ucla.edu/soc/faculty/kollock/papers/design.htm.

Kollock, P., & Smith, M. (1996). Managing the Virtual Commons: Cooperation and Conflict in
Computer Communities. In S. Herring (Ed.), Computer-Mediated Communication:
Linguistic, Social, and Cross-Cultural Perspectives, 109-128, Amsterdam: John Benjamins.

Kollock, P., & Smith, M. A. (1999). Communities in Cyberspace. In M. A. Smith & P. Kollock
(Eds.), Communities in Cyberspace (pp. 3-25). New York, NY: Routledge.

Mackenzie, A., Rouchy, P., & Rouncefield, M. (2002). Rebel Code? The Open Source 'Code’ of
Work. Paper presented at the Open Source Software Development Workshop, February 25-
26, 2002, Newcastle-upon-Tyne, UK.

Martin, J. (2002). Organizational Culture: Mapping the Terrain. Thousand Oaks: Sage
Publications.

Mockus, A., Fielding, R., & Herbsleb, J. (2002). Two Case Studies on Open Source Software
Development: Apache and Mozilla. ACM Trans. Software Engineering and Methodology,
11(3), 309-346.

Mockus, A., Fielding, R. T., & Herbsleb, J. (2000). A Case Study of Open Source Software
Development: The Apache Server. Proc. 22" Intern. Conf. on Software Engineering, 263-

272, Limerick, IR.

Nardi, B., Whittaker, S., Bradner, E. Interaction and Outeraction: Instant Messaging in Action.

(2000). Proceedings CSCW 2000.

Noll, J., & Scacchi, W. (1999). Supporting Software Development in Virtual Enterprises.

Journal of Digital Information, 1(4), http://jodi.ecs.soton.ac.uk/.

27

Olsson, S. (2000). Ethnography and Internet: Differences in Doing Ethnography in Real and
Virtual Environments. Paper presented at the IRIS 23, Laboratorium for Interaction
Technology, University of Trollhattan Uddevalla.

Ott, J. (1989). The Organizational Culture Perspective. Pacific Grove, CA: Brooks/Cole.

Pace, R. C. (1990). Personalized and Depersonalized Conflict in Small Group Discussions: An
Examination of Differentiation. Small Group Research, 21(1), 79-96.

Pavlicek, R. G. (2000). Embracing Insanity: Open Source Software Development. Indianapolis,
IN: SAMS Publishing.

Raymond, E. S. (2001). The Cathedral & The Bazaar: Musings on Linux and Open Source by
an Accidental Revolutionary. Sebastopol, CA: O'Reilly & Associates.

Robey, D., & Azevedo, A. (1994). Cultural Analysis of the Organizational Consequences of
Information Technology. Accounting, Management, and Information Technology, 4(1), 23-37.

Sawyer, S. (2001). Effects of Intra-Group Conflict on Packaged Software Development Team
Performance. Information Systems Journal, 11, (155-178).

Scacchi, W. (2002a). Open EC/B: A Case Study in Electronic Commerce and Open Source
Software Development (Technical Report). Irvine, CA: University of California, Irvine.

Scacchi, W. (2002b). Understanding Requirements for Developing Open Source Software
Systems. IEE Proceedings - Software, 149(2), 24-39.

Schein, E. (1990). Organizational Culture. American Psychologist, 45, 109-119.

Schein, E. H. (1991). The Role of the Founder in the Creation of Organizational Culture. In P. J.
Frost, L. F. Moore, M. R. Louis, C. C. Lundberg, & J. Martin (Eds.), Reframing
Organizational Culture (pp. 14-25). Newbury Park, CA: SAGE Publications, Inc.

Schein, E. H. (1992). Organizational Culture and Leadership. San Francisco: Jossy-Bass.

28

Smith, A. D. (1999). Problems of Conflict Management in Virtual Communities. In M. A. Smith
& P. Kollock (Eds.), Communities in Cyberspace (pp. 134-163). New York, NY: Routledge.

Stallman, R. (1999a). Free Software Foundation Brochure. Cambridge, MA: Free Software
Foundation.

Stallman, R. (1999b). The GNU Operating System and the Free Software Movement. In C.
DiBona, S. Ockman, & M. Stone (Eds.), Open Sources: Voices from the Open Source
Revolution (pp. 53-70). Sebastopol, CA: O'Reilly & Associates, Inc.

Strauss, A. L., & Corbin, J. (1990). Basics of Qualitative Research: Grounded Theory
Procedures and Techniques. Newbury Park, CA: Sage Publications.

Trice, H. M., & Beyer, J. M. (1993). The Cultures of Work Organizations. Englewood Cliffs, NJ:
Prentice Hall.

Williams, S. (2002). Free as in Freedom: Richard Stallman's Crusade for Free Software.
Sebastopol, CA: O'Reilly & Associates.

Yin, R. K. (1994). Case Study Research, Design and Methods. 2nd ed. Newbury Park: Sage

Publications.

29

Collaboration, Leadership, Control, and Conflict Negotiation in the
Netbeans.org Open Source Software Development Community

Chris Jensen and Walt Scacchi
Institute for Software Research
Donald Bren School of Information and Computer Sciences
University of California, Irvine
Irvine, CA, USA 92697-3425

{cjensen, wscacchi}@ics.uci.edu

Abstract

Large open source software development
communities are quickly learning that, to be
successful, they must integrate efforts not only
among the organizations investing developers
within the community and unaffiliated volunteer
contributors, but also negotiate relationships with
external groups hoping to sway the social and
technical direction of the community and its
products. Leadership and control sharing across
organizations and individuals in and between
communities are common sources of conflict.
Such conflict often leads to breakdowns in
collaboration. This paper seeks to explore the
negotiation of these conflicts, collaborative
efforts, and leadership and control structures in
the Netbeans.org community.

Keywords

Collaboration, Conflict Negotiation, Leadership,
Process, Open Source Software Development,
Netbeans.org

1. Introduction

Is open source software development (OSSD)
best characterized as being strictly cooperative, or
as cooperative and in conflict at the same time
[Easterbrook 1993]? Conflict clearly arises during
sustained software development efforts [e.g.,
Sawyer 2001]. But previous studies of conflict
associated with Internet-based communities has
focused attention to that found in specific OSSD
projects operating as virtual organizations [Elliott
and Scacchi 2003], as non-profit foundations
[O'Mahony 2004], or in online discussion
communities [Smith 1999]. None of these studies
specifically help us understand the kinds of
conflict, cooperation, and collaboration that arises
or is needed to coordinate large-scale OSSD
processes and effort in large project communities

where corporate sponsorship may be a central facet
of OSSD.

NetBeans.org is one of the largest OSSD
communities around these days [cf. Jensen and
Scacchi 2003]. Netbeans.org is a Java-focused
OSSD community backed by Sun Microsystems
devoted to creating both an integrated development
environment (IDE) for developing large Java-based
applications, as well as a platform for development
of other software products. Originally started as a
student project in 1996, the Netbeans.org project
was acquired and subsequently released as an open
source community project by Sun, whose
Netbeans.org team includes many of the
community's core developers. While the issues
presented here stem from observations in the
Netbeans.org community, they are by no means
limited to this community, nor have their
challenges been insurmountable.

Our study focuses on three items. First, we
identify the objects of interaction among
participants in the NetBeans.org community that
are media through which collaboration, leadership,
control and conflict negotiation are expressed and
enacted. Second, we explore relationships arising
in NetBeans.org on an intra-community level.
Then, we look at relationships between
communities like Netbeans.org and other
communities and organizations.

2. Objects of Interaction

Much of the development work that occurs in an
open source software project centers around the
creation, update, and other actions (e.g., copy,
move, delete) applied to a variety of software
development artifacts. These artifacts serve as
coordination mechanisms [Schmidt and Simone
1996, Simone and Mark 1999], in that they help
participants communicate, document, and
otherwise make sense of what the emerging

software system is suppose to do, how it should
be or was accomplished, who did what, what went
wrong before, how to fix it, and so forth.
Furthermore, within a project community these
artifacts help coordinate local, project-specific
development activities, whereas between multiple
project communities, these artifacts emerge as
boundary objects [Star 1990] through which inter-
community activities and relations are negotiated
and revised. The artifacts may take the form of
text messages posted to a project discussion list,
Web pages, source code directories and files, site
maps, and more, and they are employed as the
primary media through which software
requirements and design are expressed. These
“software informalisms” [Scacchi 2002] are
especially important as coordination mechanisms
in OSSD projects since participants generally are
not co-located, they do not meet face-to-face, and
authority and expertise relationships among
participants is up for grabs.

The NetBeans IDE is intended to support the
development of Web-compatible Java
applications. In the context of the NetBeans.org
project and its role within a larger Web-
compatible information infrastructure, additional
artifacts come into play within and across
projects. These include the content transfer
protocols like the HyperText Transfer Protocol
(http) which are systematically specified in
Internet standards like RFC documents, as well as
more narrowly focused communication state
controllers associated with remote procedure calls
(or remote method invocations). They also
include shared data description formats like the
HyperText Markup Language (html) and the
eXtensible Markup Language (XML), as well as
client-side or server-side data processing scripts
(e.g., CGI routines). Such descriptions may be
further interpreted to enable externally developed
modules to serve as application/module plug-ins,
which enable secondary or embedded applications
to be associated with an OSS system. Other
artifacts are brought in from other OSSD projects
to serve as project support tools, such as those
used to record and store system defect (bug)
reports (Issuzilla), email list managers, and even
large comprehensive collaborative software
development environments and project portals,
like SourceCast [Augustin, Bressler, and Smith
2002]. Finally, OSSD projects may share both
static and operational artifacts in the course of
collaborating or cooperating through mutually
intelligible and interoperable development
processes, which might take an explicit form like
the Java Community Process (JCP), or an implicit
and embedded form such as that which emerges

from use of project repositories whose contents
are shared and synchronized through tools that
control and track alternative versions (CVS), bug
reports, or Web site content updates.

Accordingly, in order to explore where issues of
collaboration, leadership, control and conflict may
arise within or across related OSSD projects, then
one place to look to see such issues is in how
project participants create, update, exchange,
debate, and make sense of the software
informalisms that are employed to coordinate
their development activities. This is the approach
taken here in exploring the issues both within the
NetBeans.org project community, as well as
across the (fr)agile ecosystem [Highsmith 2002]
of inter-related OSSD projects that situate
NetBeans.org within a Web information
infrastructure.

3. Intra-Community Issues

As noted in the first section, NetBeans.org is a
large and complex OSSD project. To help convey a
sense of the complexity, semi-structured modeling
techniques such as rich pictures [Monk and
Howard 1998] can be used to provide a visual
overview of the context that situates the creation
and manipulation of the software informalisms and
OSSD processes that can be observed in the
NetBeans.org project [Oza, et al, 2002]. Figure 1
displays such a rich picture, highlighting the variety
of roles that participants in the NetBeans.org
project perform, the types of concerns they have in
each role, and the development tasks they
regularly enact, as part of the configuration of
OSSD activities they articulate and coordinate
through software informalisms [cf . Simone and
Mark 1999].

We have observed at least three kinds of issues
arise within an OSSD community like
NetBeans.org. These are collaboration, leadership
and control, and conflict.

3.1. Collaboration

According to the Netbeans.org community
Web site, interested individuals may participate in
the community by joining in discussions on
mailing lists, filing bug and enhancement reports,
contributing Web content, source code, newsletter
articles, and language translations. These activities
can be done in isolation, without coordinating with
other community members, and then offered up for
consideration and inclusion. As we’ll see, reducing
the need for collaboration is a common practice in
the community that gives rise to positive and

negative effects. We discuss collaboration in terms
of policies that support process structures that
prevent conflict, looking at task completion
guidelines and community architecture.

3.1.1. Policies and Guidelines

The NetBeans.org community has detailed
procedural guidelines' for most common
development tasks, from submitting bug fixes to
user interface design and creating a new release.
These guidelines come in two flavors: development
task and design style guidelines. In general, these
policies are practiced and followed without
question. Ironically, the procedures for policy
revision have not been specified.

Precedent states that revisions are brought up
on the community or module discussion mailing
lists, where they are debated and either ratified or
rejected by consensus. Developers are expected to
take notice of the decision and act accordingly,
while the requisite guideline documents are
updated to reflect the changes. In addition, as some
communities resort to “public flogging” for failure
to follow stated procedures, requests for revision
are rare and usually well known among concerned
parties, so no such flogging is done within
Netbeans.org.

Overall, these policies allow individual
developers to work independently within a process
structure that enables collaboration by encouraging
or reinforcing developers to work in ways that are
expected by their fellow community members, as
well as congruent with the community process.

3.1.2. Separation of Concerns: an Architectural
Strategy for Collaborative Success

Software products are increasingly developing
a modular, plug-in application program interface
(API) architectural style in order to facilitate
development of add-on components that extend
system functionality. = This strategy has been
essential in an open source arena that carries
freedom of extensibility as a basic privilege or, in
some cases, the right of free speech or freedom of
expression through contributed source code. But
this separation of concerns strategy for code
management also provides a degree of separation
of concerns in developer management, and
therefore, collaboration.

In concept, a module team can take the plug-in

1http://www .netbeans.org.org/community/gui
delines/

API specification and develop a modular extension
for the system using any development process in
complete isolation from the rest of the community.
This ability is very attractive to third-party
contributors in the Netbeans.org community who
may be uninterested in becoming involved with the
technical and socio-political issues of the
community, or who are unwilling or unable to
contribute their source code back to the
community. Thus, this separation of concerns in
the Netbeans.org design architecture engenders
separation of concerns in the process architecture.
Of course, this is limited by the extent that each
module in the Netbeans.org community is
dependent on other modules.

Last, volunteer community members have
periodically observed difficulties collaborating
with volunteer community members. For example,
at one point a lack of responsiveness of the
(primarily Sun employed) user interface team’,
whose influence spans the entire community, could
be observed. This coordination breakdown led to
the monumental failure of usability efforts for a
period when usability was arguably the most-cited
reason users chose competing tools over
Netbeans.org. Thus, a collaboration failure gave
rise to product failure. Only by overcoming
collaboration issues was Netbeans.0r§ able to
deliver a satisfactory usability experience’.

3.2. Leadership and Control

Ignoring internal Sun (and third party)
enterprise structure, there are five observable layers
of the Netbeans.org community hierarchy.
Members may take on multiple roles some of
which span several of these layers. At the bottom
layer are users, followed by source contributors,
module-level managers, project level release
managers (i.e. IDE or platform), and finally,
community level managers (i.e. IDE and platform)
at the top-most layer. Interestingly, the
“management” positions are simply limited to
coordinating roles; they carry no other technical or
managerial authority. The release manager, for
example, has no authority to determine what will
be included in and excluded from the release®. Nor
does s/he have the authority to assign people to
complete the tasks required to release the product.
The same is true of module and community

2http://www.netbeans.org.org/servlets/ReadM
sg?msgld=531512&listName=nbdiscuss

3http://www javalobby.org/thread.jspa?foruml
D=61&threadlD=9550#top

4http://www.netbeans.org.org/community/gui
delines/process.html

managers. Instead, their role is to announce the
tasks that need to be done and wait for volunteers
to accept responsibility.

Accountability and expectations of
responsibility are based solely on precedent and
volunteerism rather than explicit assignment,
leading to confusion of the role of parties
contributing to development. Leadership is not
asserted until a community member champions a
cause and while volunteerism is expected, this
expectation is not always obvious. The lack of a
clear authority structure is both a cause of freedom
and chaos in open source development. Though
often seen as one of its strengths in comparison to
closed source efforts, it can lead to process failure
if no one steps forward to perform critical activities
or if misidentified expectations cause dissent.

The difficulties in collaboration across
organizations within the community occasionally
brought up in the community mailing lists stem
from the lack of a shared understanding leadership
in the community. This manifests itself in two
ways: a lack of transparency in the decision making
process and decision making without community
consent. While not new phenomenon, they are
especially poignant in a movement whose basic
tenets include freedom and knowledge sharing.

3.2.1. Transparency in the Decision Making
Process

In communities with a corporately backed core
development effort, there are often decisions made
that create a community-wide impact that are made
company meetings. However, these decisions may
not be explicitly communicated to the rest of the
community. Likewise private communication
between parties that is not made available on the
community Web space or to the forwarded to other
members is also hidden. This lack of transparency
in decision-making process makes it difficult for
other community members to understand and
comply with the changes taking place if they are
not questioned or rejected. This effect surfaced in
the Netbeans.org community recently following a
discussion of modifying the release process [cf.
Erenkrantz 20037’.

Given the magnitude of contributions from the
primary benefactor, other developers were unsure
of the responsibility and authority Sun assumed
within the development process. The lack of a

Shttp://www .netbeans.org/servlets/BrowseList
?listName=nbdiscuss&by=thread&from=19116&t
0=19116&first=1&count=41

clearly stated policy outlining these bounds led to a
flurry of excitement when Sun members
announced major changes to the licensing scheme
used by the community without any warning. It
has also caused occasional collaboration
breakdown throughout the community due to
expectations of who would carry out which
development tasks. The otherwise implicit nature
of Sun's contributions in relation to other
organizations and individuals has been revealed
primarily through precedent rather than assertion.

3.2.2. Consent in the Decision Making Process

Without an authority structure, all decisions in
development are done through consensus, except
among those lacking transparency. In the case of
the licensing scheme change, some developers felt
that Sun was within its rights as the major
contributor and the most exposed to legal threat °
while others saw it as an attack on the "democratic
protection mechanisms" of the community that
ensure fairness between participating parties’. A
lack of consideration and transparency in the
decision making process tend to alienate those who
are not consulted and erode the sense of
community.

3.3. Conflict Resolution

Conflicts in the Netbeans.org community are
resolved via community discussion mailing lists.
The process usually begins when one member
announces dissatisfaction with an issue in
development. Those who also feel concern with
the particular issue then write responses to the
charges raised. At some point, the conversation
dissipates- usually when emotions are set aside and
clarifications have been made that provide an
understanding of the issue at hand. If the problem
persists, the community governance board is tasked
with the responsibility of resolving the matter.

The governance board is composed of three
individuals and has the role of ensuring the fairness
throughout the community by solving persistent
disputes. Two of the members are elected by the
community, and one is appointed by Sun
Microsystems. The board is, historically, a largely
superficial entity whose authority and scope are
questionable and untested. While it has been
suggested that the board intercede on a few rare

6http://www.netbeans.org.org/serviets/ReadM
sg?msgld=534707 &listName=nbdiscuss

7http://www.netbeans.org.org/serviets/ReadM
sg?msgld=534520&listName=nbdiscuss

occasions, the disputes have dissolved before the
board has acted. Nevertheless, board elections are
dutifully held every six months®.

Board members are typically prominent
members in the community. Their status carries
somewhat more weight in community policy
discussions, however, even when one member has
suggested a decision, as no three board members
have ever voted in resolution on any issue, and
thus, it is unclear what effect would result. Their
role, then, is more of a mediator: to drive
community members to resolve the issue amongst
themselves. To this end, they have been effective.

4. Inter-Community Issues

As noted earlier, the NetBeans.org project is not
an isolated OSSD project. Instead, the NetBeans
IDE which is the focus of development activities in
the NetBeans.org project community is envisioned
to support the interactive development of Web-
compatible software applications or services that
can be accessed, executed, or served through other
OSS systems like the Mozilla Web browser and
Apache Web server. Thus, it is reasonable to
explore how the NetBeans.org project community
is situated within an ecosystem of inter-related
OSSD projects that facilitate or constrain the
intended usage of the NetBeans IDE. Figure 2
provides a rendering of some of the more visible
OSSD projects that surround and embed the
NetBeans.org within a Web information
infrastructure. This rendering also suggests that
issues of like collaboration and conflict can arise at
the boundaries between projects, and thus these
issues constitute relations that can emerge between
project communities in OSSD ecosystem.

With such a framing in mind, we have
observed at least three kinds of issues arise across
OSSD communities that surround the
NetBeans.org community. These are
communication and collaboration, leadership and
control, and conflict resolution.

4.1. Communication and Collaboration

In addition to their IDE, Netbeans.org also
releases a general application development
platftorm on which the IDE is based. Other
organizations, such as BioBeans and RefactorIT
communities build tools on top of or extending the
NetBeans platform or IDE. How do these

8http://www.netbeans.org.org/about/os/who-
board.html

organizations interact with Netbeans.org, and how
does Netbeans.org interact with other IDE and
platform producing organizations? For some
organizations, this collaboration may occur in
terms of bug reports and feature requests submitted
to the Netbeans.org issue-tracking repository.
Additionally, they may also submit patches or
participate in discussions on community mailing
list or participate in the Netbeans.org “Move the
Needle” branding initiative. Beyond this,
Netbeans.org participates in the Sun sponsored
Java.net meta-community, which hosts hundreds of
Java-based OSSD projects developed by tens of
thousands of individuals and organizations.

A fellow member of the Java.net community,
the Java Tools Community, considered by some to
be a working group’ for the Java Community
Process, is an attempt to bring tool developers
together to form standards for tool interoperability.
Thus Netbeans.org, through its relationship with
Sun, is a collaborating community in the
development of, and through compliance with,
these standards, and looks to increasing
collaboration = with other tool developing
organizations.

4.2. Leadership and Control

OSSD generally embrace the notion of choice
between software products to build or use. At the
same time, developers in any community seek
success for their community, which translates to
market share.

In some cases, communities developing
alternative tools do so in peaceful coexistence,
even collaboratively. In other cases, there is a
greater sense of competition between rivals.
NetBeans and its chief competitor Eclipse (backed
largely by IBM) fall into the latter category.
Eclipse has enjoyed some favor from users due to
performance and usability issues of NetBeans, as
well as IBM's significant marketing and
development resource contributions. Yet, they
have a willingness to consider collaborative
efforts to satisfy demands for a single, unified
IDE for the Java language that would serve as a
platform for building Java development tools and
a formidable competitor to Microsoft's .NET.
Ultimately, the union was defeated, largely due to
technical and organizational differences between
Sun and IBM'", including the inability or

Ohttp.//www.internetnews.com/dev-
news/article.php/3295991

10http://www.adtmag.com/article.asp?id=8634,
and

unwillingness to determine how to integrate the
architectures and code bases for their respective
user interface development frameworks (Swing
for NetBeans and SWT for Eclipse).

4.3. Conflict Resolution

Conflicts between collaborating communities
are resolved in similar fashion to their means of
communication- through discussion between Sun
and Eclipse representatives, comments on the
Netbeans.org mailing lists, or other prominent
technical forums (e.g. Slashdot and developer
blogs). Unfortunately, many of these discussions
occur after the collaborating developer has moved
away from using Netbeans.org (often, in favor of
Eclipse). Nevertheless, the feedback they provide
gives both parties an opportunity to increase
understanding and assists the Netbeans.org
community by guiding their technical direction.

5. Discussion and Conclusion

Generally, volunteer Netbeans.org developers
expect Sun to provide leadership but not control.
People outside the community (e.g. users, former
users, and potential users) often voice their
concerns in off-community forums (e.g., Slashdot,
blogs, etc) rather than NetBeans.org community
message boards, due to accountability or visibility
barriers (creating an account, logging in accounts),
small as they may seem to be. In addition, such
message forums may not be a part of such an
individual’s daily work habits- they’re more likely
to wvisit a site like Slashdotorg than the
Netbeans.org forum because they are not interested
enough in staying abreast of NetBeans
developments or participating in the community.
Nonetheless, people working in, or interested in
joining or studying OSSD projects, must address
how best to communicate and collaborate their
development processes and effort, how to facilitate
or ignore project leadership and control, and how to
work you way through conflicts that may or may
not be resolvable by community participants.

Overall, we have observed three kinds of
coordination and collaborating issues arise within
OSSD project communities like NetBeans.org, and
three similar kinds of issues arise across OSSD
communities that surround NetBeans.org within an
ecosystem of projects that constitute a Web
information infrastructure. Previous studies of
conflict in either OSSD projects have examined
either smaller projects, or in virtual communities

http://www.eweek.com/article2/0,1759,1460110,0
0.asp

that do not per se develop software as their focus.
As corporate interest and sponsorship of OSSD
stimulates the formation of large projects, or else
the consolidation of many smaller OSSD projects
into some sort of for-profit or not-for-profit
corporate enterprise for large-scale OSSD, then we
will need to better understand issues of
collaboration, conflict, and control in OSSD.

6. Acknowledgments

The research described in this report is
supported by grants from the National Science
Foundation #ITR-0083075 and #ITR-0205679
and #ITR-0205724. No endorsement implied.
Contributors to work described in this paper
include Mark Ackerman at the University of
Michigan Ann Arbor; Les Gasser at the
University of Illinois, Urbana-Champaign; John
Noll at Santa Clara University; and Margaret
Elliott at the UCI Institute for Software Research.

7. References

Augustin, L., Bressler, D., and Smith, G.,
Accelerating Software Development through
Collaboration, Proc. 24" Intern. Conf. Software
Engineering, Orlando, FL, 559-563, May 2002,

Crowston, K. and Scozzi, B., Open Source
Software Projects as Virtual Organizations:
Competency Rallying for Software Development,
IEE Proceedings—Software, 149(1), 3017, 2002.

Easterbrook, S. (ed.), CSCW: Cooperation or
Conflict, Springer-Verlag, New York, 1993.

Elliott, M. The Virtual Organizational Culture of
a Free Software Development Community, Proc.
3 Workshop on Open Source Software
Engineering, 25™ Intern. Conf. Software
Engineering, Portland, OR, May 2003.

Elliott, M. and Scacchi, W., Free Software
Developers as an Occupational Community:
Resolving Conflicts and Fostering Collaboration,
Proc. ACM Intern. Conf. Supporting Group Work,
21-30, Sanibel Island, FL, November 2003.

Erenkrantz, J., Release Management within Open
Source Projects, Proc. 3 Workshop on Open
Source Software Engineering, 25™ Intern. Conf.
Software Engineering, Portland, OR, May 2003.

Highsmith, J., Agile Software Development
Ecosystems, Addison-Wesley Pub. Co., 2002.

Jensen, C. and Scacchi, W., Automating the
Discovery and Modeling of Open Source
Software Processes, Proc. 3 Workshop on Open
Source Software Engineering, 25th. Intern. Conf.
Software Engineering, Portland, OR, May 2003.

Jensen, C. and Scacchi, W., Process Modeling of
the Web Internet Infrastructure, submitted for
publication, June 2004.

Monk, A. and Howard, S. The Rich Picture: A
Tool for Reasoning about Work Context,
Interactions, 21-30, March-April 1998.

O’Mahony, S., Non-profit Foundations and their
Role in Community-Firm Software Collaboration,
to appear in Making Sense of the Bazaar:
Perspectives on Open Source and Free Software,
J. Feller, B. Fitzgerald, S. Hissam, & K. Lakhani
(Eds.), O'Reilly & Associates, Sebastopol, CA,
2004.

Sawyer, S., Effects of intra-group conflict on
packaged software development team
performance, Information Systems J., 11, 155-
178, 2001.

Scacchi, W., Understanding the Requirements for
Developing Open Source Software, [EE
Proceedings—Sofiware, 149(1), 24-39, 2002.

Scacchi, W., Free/Open Source Software
Development Practices in the Computer Game
Community, [EEE Software, 21(1), 59-67,
January/February 2004.

Schmidt, K., and Simone, C., Coordination
Mechnanisms: Towards a Conceptual Foundation
of CSCW System Design, Computer Supported
Cooperative Work, 5(2-3), 155-200, 1996.

Simone, C. and Mark, G., Interoperability as a
Means of Articulation Work, Proc. Intern. Joint
Conf. Work Activities Coordination and
Collaboration, San Francisco, CA, 39-48, ACM
Press, 1999.

Smith, A.D., Problems of Conflict Management in
Virtual Communities. In M.A. Smith and P.
Kollock (eds.), Communities in Cyberspace,
Routledge, New York, 134-163, 1999.

Star, S. L., The Structure of I11-Structured
Solutions: Boundary Objects and Heterogeneous
Distributed Problem Solving, in Distributed
Artificial Intelligence (eds. L. Gasser and M. N.
Huhns), Vol. 2, 37-54. Pitman, London, 1990.

<> : - S C
¢ netBeans: e B @Sun

Microsystems

Download and
use free
software

netheans community
is heing run i a fair
atudd Dpen fmanter

Dewnload new
+— releaze

make decisions for Slart new

El the community, on telease phase, Release
The Board : ropose
high lewel propose Manager

schedule/pla

repott bugs

Eelease proposal, Belease
updates, branch for current

release, release post
/mor‘tem, review Eelease
Candidates & decide final

release

,.-"' \

Tools

Website

- Deploy
5 Builds
decide features for
the project and
merge patches/bu
fizes, create module
web page

download
development gy
builds and test, ‘*i‘:‘_.*
Relegse Q- - 7177 i
builds O
e OQA teatm

Site
Ldministrator

Select feature to

develep, bug to fix
download netbeans,

Q & OO intain a cotnmit code E:s-_liuce Qd

2 O projecty Cohtribute to en—:;:

module grant CV3 Comanity, Eof

! ! g cotninit Ideet time - Hualty ol
f Fenase 2 2 the software

group of privilege to constraints for
Maintainer developery developers the release Developersi Contributors
Link to all Uze cas-;s?)\-/ Link to Tools Links to all Agents

Figure 1. A rich picture view of the roles (labeled icons), concerns (clouds), and activities
(hyperlinked text) found in the intra-community context of NetBeans.org
[cf. Oza, et al, 2002].

Coordination__

HH\
\ Conflict
kY \\ i -
Coordlq?tlon 2 __ Conflic %
“‘-h-_q______ _ ' T
z Coordination

NetBeans \ N

) \

AN
Coordination Conflict

Coordination
_ Conflict P
Conflict Coordination
Conflict
- —--j"’/
T Conflict
“Coordination—

Figure 2. An overview of the inter-community ecosystem for NetBeans.org

Other project deliverables

The research efforts described in the preceding chapters involved the development, user,
or enhancement of software tools (and input notations) that support process discovery,
modeling, analysis, and enactment. No tools were developed to support process
breakdown or recovery. As these “research-grade only” tools (or perhaps better said
“prototypes”) are subject to ongoing development and refinement (including
abandonment of earlier program versions no longer in use), we recommend using the
contact information below to get the most current information, and where appropriate,
access to the source code and related documentation (if any) for these tools.

To receive information regarding access to the software developed, used, or enhanced in
the course of this research please contact:

For process modeling, analysis, and enactment tools described in this report, contact Dr.

John Noll, jnoll@scu.edu.

For process discovery and modeling tools described in this report, contact Chris Jensen,
cjensen@ics.uci.edu.

	Proposal-abridged.pdf
	Proposal-abridged.pdf
	Dynamic Process Enactment, Discovery, and Recovery
	Research Goal
	Research Approach
	Modeling, enacting, and capture of globally dispersed enterprise processes
	Discovering processes from routine, dynamic, or h
	Recovering and articulating processes that breakd

	References

	Jensen-Scacchi-ProSim04.pdf
	2.1. Rich Hypermedia
	2.2. Process Flow Graph
	3.1. Mozilla Quality Assurance Process
	Figure 2: Apache HTTP server release process flow graph [cf.

	3.2. Apache HTTP Server Release Process
	Figure 4: NetBeans requirements and release process reenactm

	3.3. NetBeans Requirements and Release Process

