Is Open Source Software Development Faster, Better, and
Cheaper than Software Engineering?

Walt Scacchi
Institute for Software Research
University of California, Irvine
Irvine, CA 92697-3425 USA
+1-949-824-4130, +1-949-824-1715
Wscacchi@uci.edu

ABSTRACT

In this paper, I draw attention to the question of determining how
open source software development may represent a significant
alternative to modern software engineering techniques for
developing large-scale software systems. OSSD often entails
shorter time frames, producing higher quality systems, and
incurring lower costs than may be realized through developing
systems according SE techniques. Understanding why and how
this may arise is the focus of this paper.

Keywords

Software Engineering, Open Source Software Development

1. Introduction

The likelihood and circumstances in which open source represents
a more effective and efficient approach than software engineering
merits serious review. Such conditions may point to the need to
critically reflect on how the practice and principles of software
engineering needs a serious rethinking and possible reformulation
to address and accommodate OSSD, as well as how OSSD differs
from current SE principles.

If it is true that OSSD is faster, better, and cheaper than SE, then
why bother with SE? Does OSSD address and resolve the
"software crisis" that gave rise to SE? Has OSSD demonstrated
the practical value and success of informal approaches, compared
to the formal notation-based approaches widely advocated SE
scholars? Is "humanated" OSSD more productive than automated
SE? Answering these questions cannot be ignored or slighted by
mere reference to more than three decades of academic and
industrial SE research. Instead, this position paper seeks to bring
questions like these into the foreground so as to advocate the
position that the SE community needs to recognize how, and
under what conditions, OSSD may represent a faster, better, and
cheaper alternative for how to engineer complex software systems.
Failure of the SE community to embrace OSSD as something
different than current SE principles, may relegate the future of SE
research to that of an academic curiosity, rather than as an
engineering discipline whose capabilities are maximized when
operationalized as a complex web of socio-technical development

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. 2. ICSE
Workshop on Open Source Software Engineering, May, 2002,
Orlando, FL.

Copyright 2002 ACM X-XXXXX-000-0/00/0000...$5.00.

processes and community oriented work practices.

2. Do those who advocate "open source
software engineering' practice modern

software engineering principles?

To help motivate my position, I first present a small case study
that examines one experience that tries to show that OSSD and SE
are not necessarily the same in means and ends.

2.1 Case study: Tigris.org

Let us consider the following case of the Tigris.org OSSD
community and some of the OSSD/SE projects affiliated with it.
None of the observations that follow are intended to in any way to
denigrate or accentuate the important and valued efforts of this
community. Instead, the purpose is to provide a real-world
example of what happens when OSSD and SE come together.

This community identifies itself (via the Web site) as being a
meeting ground for OSS developers and software engineering
specialists and students. In browsing the Web site for Tigris.org,
one finds in its Mission Statement:

"Tigris.org provides information resources for software
engineering professionals and students, and a home for open
source software engineering tool projects. We also promote
software engineering education and host some undergraduate
senior projects.” (http:www.tigris.org, March 2002).

Such a claim might therefore lead one to expect to find numerous
examples and instances of modern software engineering
techniques and concepts being applied to support OSSD. For
example, OSSD seems to focus attention to source code
development and debugging [DiBona 1999, Pavilcek 2000]. Thus
modern coding techniques like modularity and the use of program
debugging and execution monitoring tools are expected. Beyond
this, most SE textbooks draw attention to topics like requirements
engineering, software architecture and component design,
validating an implementation (i.e., source code) satisfies its
requirements, while testing/verifying the implementation is a
consistent, complete, traceable, and in some way correct
realization of its architecture and component design. Project
management and configuration management also receives
appropriate attention. So we next look to find examples and
instances of these SE practices in Tigris's "featured projects", such
as ArgoUML.

ArgoUML "is a modelling tool to help you do your design using
UML...and it is also an Open Source Development project where
you are invited to contribute". ArgoUML is also "a domain-
oriented design environment that provides cognitive support of
object-oriented design" (http://www.argouml.tigris.org). The
ArgoUML project today includes more than 19,000 registered

http://www.tigris.org/
http://www.argouml.tigris.org)/

users and over 150 developers'. ArgoUML is thus a large
software development project, with a significant number of users
that is conceived to support SE professionals using modern SE
design tools and techniques.

UML is a widely recognized unified modeling language that is the
addressed in many SE textbooks, and found in use in many SE
R&D projects. Using UML, software engineering professionals
can create or document Use Cases for software requirements, and
of course, UML is a notation for specifying software component
design and architectural features of component arrangements.
However, nowhere on the ArgoUML Web site can one find any
Use Case diagrams that specify the requirements for ArgoUML,
nor any UML descriptions of ArgoUML's architecture or
component design. Thus, it appears that ArgoUML developers' do
not practice using the tool itself to document its own
development. As such, perhaps it's not surprising to discover:

"Sofitware engineering practices are key to any large development

project. Unfortunately, software engineering tools and methods
are not widely used today. Even after over 30 years as an
engineering profession, most software developers still use few
software engineering tools. Some of the reasons are that tools are
expensive and hard to learn and use, also many developers have
never seen software engineering tools used effectively.”
(http://www.argouml.tigris.org, March 2002).

So what are we, as software engineering professionals suppose to
learn from the ArgoUML experience in SE? Is SE good for
someone else, or for students to study, but not for those who
actually build SE tools that support modern SE techniques and
concepts? Similarly, if we examine any of the remaining 35 or so
other projects affiliated with Tigris.org, it is difficult to find which
SE tools, which are being developed within the Tigris.org
community, actually are being used by other projects within the
community’, and whether any were engineered using SE
techniques like Use Cases for requirements and UML for their
design. Instead, the situation we find is better characterized as:

"The open source software development movement has produced
a number of very powerful and useful software development tools,
but it has also evolved a software development process that works
well under conditions where normal development processes fail.
The software engineering field can learn much from the way that
successful open source projects gather requirements, make design
decisions, achieve quality, and support users. Open source
projects are also great for developers to keep their skills current
and plug into a growing base of shared experience for everyone
in the field." (http://www.argouml.tigris.org, March 2002).

In this case of the Tigris.org community, but not generalizing to
all OS-SE efforts, it appears that the objectives and practices of
OSSD and SE are different, and may not be closely related. These

! http://www.tigris.org/community/community_main.html

% The configuration management tool, Subversion, is being use to
manage its own source code configuration. In contrast, it is
unclear whether the issue tracking (or bug reporting) system,
Scarab, is being used to track issues arising during its
development, or in the development of other Tigris.org projects.
This observation is not intended to be in any way a
positive/negative assessment of these OSSD projects, but
instead to highlight that OSSD and SE practices are different.

results also should help researchers investigating OSSD projects
recognize the potential risks for making pre-mature
generalizations about typifying what OSSD is, or how it works,
based on the examination of a single OSSD project, or even a
single OSSD community [cf. Scacchi 2001, 2002]. What is true of
one OSSD project's artifacts, processes, or practices may not be
true of any other OSSD project, without explicit comparison.

With this modest grounding, I now turn to more examine the
overarching question which my position addresses. Note that my
opening question does not focus on attributes of open source
programs or other executable implementations (e.g., make files,
operating system shell scripts, plug-in modules (like "ActiveX
controls"), or intra-application scripting code like JavaScript).
Instead I focus on OSSD processes and practices.

3. How is OSSD faster than SE?

OSSD projects like those at Tigris.org enact "Internet time"
development practices, much like Microsoft, Netscape, and others
[Cusumano 1999, MacCormack 2001]. Internet time efforts
emphasize minimizing time to market and delivery of incremental
improvements in functionality, instead of complete well-
engineered functionality. Internet time development also focuses
on collecting feedback from early users as a way to determine
which incremental functionality, and which perceived errors in
available functionality matters most, as a way to determine
emerging system requirements after the fact [Truex 1999]. OSSD
projects rely on software informalisms [Scacchi 2002] as
information resources that can be browsed, crosslinked, and
updated on demand. These informalisms are socially lightweight
mechanisms for managing, communicating, and coordinating
globally dispersed knowledge about who did what, why, and how.
These informalisms are easy to learn and use as semi-structured
representations that capture software requirements, system design,
and design rationale. As OSS developers are themselves end-users
of their systems, then software requirements and design take less
time to articulate and negotiate, compared to SE projects that must
elicit requirements and validate system design with end-users who
are generally not SE professionals.

4. How is OSSD better than SE?

OSSD projects are iteratively developed, incrementally released,
reviewed and refined by software development peers in an
ongoing agile manner [cf. Boehm 2001]. These methods ensure
acceptable levels of quality, coherence, and security of system-
wide software via continuous distributed testing and profiling
[Payne 2002, Schmidt 2001]. OSSD efforts are hosted within
decentralized communities of peers [Benkler 2001, Kogut 2001,
Scacchi 2001, 2002, Sharman 2002] that is interconnected via
Web sites and repositories. Community oriented OSSD also gives
rise to new kinds of requirements for community building,
community software, and community information sharing systems
(Web site and interlinked communication channels for email,
forums, and chat). In contrast, most SE projects are targeted for
hosting within a centralized corporate setting, where access and
visibility may be restricted to local participants. OSSD standards
[Freericks 2001] that reinforce best practices are apparently easier
to access and follow due to their Web-based deployment, and a
long history of community oriented participation in developing
implementation oriented standards in an open source manner,

http://www.argouml.tigris.org)/
http://www.argouml.tigris.org)/

compared to the institutionally oriented processes used to develop
SE standards.

5. How is OSSD cheaper than SE?

OSSD tools are inexpensive/free, comparatively easy to use and
learn. These tools are both given and received as public goods or
gifts [Bergquist 2001]. Faster and better OSSD conditions in turn
tend to drive down the cost of developing software, at least in
terms of schedule and budget resources. Most OSSD projects are
voluntarily staffed who want to work on the project, who will
potentially commit their own time and effort, and who find
personal and professional benefit from the OSSD development
efforts [Scacchi 2002]. Minimal management or governance
forms [Fielding 1999, Sharman 2002] are used to direct OSSD
efforts, compared to the more rigidly hierarchical, managed,
planned, staffed, controlled, and budgeted project activities
typical for SE efforts.

6. How to make SE faster, better, and cheaper

via OSSD processes and practices

OSSD projects enact teamwork structures and relatively flat, peer-
oriented decentralized community forms [Benkler 2001, Kogut
2001, Scacchi 2001, 2002, Sharman 2002] that reduce/supplant
functional organizational forms inherent in traditional SE
techniques that increase bureaucratic tendencies. OSSD avoids
reliance on formal project management techniques and
administrative structures that pervade industrial SE projects.
OSSD is generally community oriented and agile [Boehm 2002],
rather than customer oriented and formal [Scacchi 2002].
Developers as users mitigate need to spend resources trying to
figure out what users want, and whether what is developed and
delivered meets user needs [Scacchi 2002]. Thus, the opportunity
exists for developing new SE processes, practices, and community
forms that are decentralized, peer-oriented, and rely on semi-
structured, informal representations of software artifacts. SE
community Web sites and community development tools also
appear to be candidates for adoption.

7. Conclusions

OSSD appears to be changing the world of software development
at a faster, better, and cheaper pace, and with a broader impact
and audience, than SE has achieved. Understanding why this is so
may be key to advancing the state of the art of both SE and
OSSD. Failing to recognize the differences between the two may
result in OSSD characterizing more of the leading edge of
software system development, while SE characterizes more of the
trailing edge. Where do you want to be?

8. Acknowledgements

The research described in this report is supported by a grant from
the National Science Foundation #IIS-0083075, from the NSF
Industry/University grant to the UCI CRITO Consortium, and
from the Defense Acquisition University by contract N487650-
27803. No endorsement implied. Mark Ackerman at University of
Michigan, Mark Bergman and Margaret Elliott at the UCI
Institute for Software Research, are collaborators on this research.

9. References

1. Y. Benkler, The Battle Over the Institutional Ecosystem in
the Digital Environment, Communications ACM, 44(2), 84-
90, February 2001.

2. M. Bergquist and J. Ljungberg, The power of gifts:
organizing social relationships in open source communities,
Info. Systems J., 11(4), 305-320, October 2001.

3. B. Boehm, Get Ready for Agile Methods, with Care,
Computer, 35(1), 64-69, Jan. 2002.

4. M. Cusumano and D.B. Yoffie, Software Development on
Internet Time, Computer, 32(10), 60-69, October 1999.

5. C.DiBona, S. Ockman and M. Stone, Open Sources: Voices
from the Open Source Revolution, O'Reilly Press, 1999.

6. J. Feller and B. Fitzgerald, Understanding Open Source
Software Development, Addison-Wesley, NY, 2002.

7. R.T. Fielding. Shared Leadership in the Apache Project.
Communications ACM, 42(4), 42-43, 1999.

8. C. Freericks, Open Source Standards on Software Process: A
Practical Approach, IEEE Comm. Mag.,116-123, April 2001.

9. N.lJergensen, Putting it all in the trunk: incremental software
development in the FreeBSD open source project, /nfo.
Systems J., 11(4), 321-336, October 2001.

10. B. Kogut and A. Metiu, Open Source Software Development
and Distributed Innovation, Oxford Review of Economic
Policy, 17(2), 248-264, 2001.

11. A. MacCormack, R. Verganti, and M. Iansiti, Developing
Products on Internet Time: The Anatomy of a Flexible
Development Process, Mgmt. Science, 47(1), January 2001.

12. A. Mockus, R.T. Fielding, and J. Herbsleb, A Case Study of
Open Source Software Development: The Apache Server,
Proc. 22", Intern. Conf. Soft. Eng, 263-272, 2000.

13. R. Pavlicek, Embracing Insanity: Open Source Sofiware
Development, SAMS Publishing, Indianapolis, IN, 2000.

14. C. Payne, On the Security of Open Source Software, Info.
Systems J., 12(1), 61-78, January 2002.

15. W. Scacchi, Software Development Practices in Open
Software Development Communities, /. Workshop on Open
Source Software Engineering, Toronto, Ontario, May 2001.

16. W. Scacchi, Understanding the Requirements for Developing
Open Source Software Systems, /EE Proceedings - Sofiware,
to appear, 2002.

17. D. Schmidt and A. Porter, Leveraging Open-Source
Communities to Improve the Quality & Performance of
Open-Source Software, I*. Workshop on Open Source
Software Engineering, Toronto, Ontario, May 2001.

18. S.Sharman, V. Sugurmaran, and B. Rajagopalan, A
Framework for Creating Hybrid-Open Source Software
Communities, Info. Systems J., 12(1), 7-25, 2002.

19. D. Truex, R. Baskerville, and H. Klein, Growing Systems in
an Emergent Organization, Communications ACM, 42(8),
117-123, 1999.

	Introduction
	Do those who advocate "open source software engineering" practice modern software engineering principles?
	Case study: Tigris.org

	How is OSSD faster than SE?
	How is OSSD better than SE?
	How is OSSD cheaper than SE?
	How to make SE faster, better, and cheaper via OSSD processes and practices
	Conclusions
	Acknowledgements
	References

